
Cooperative DynDE for Temporal Data Clustering

Kristina S. Georgieva and Andries P. Engelbrecht

Abstract— Temporal data is common in real-world datasets.
Clustering of such data allows for relationships between data
patterns over time to be discovered. Differential evolution (DE)
algorithms have previously been used to cluster temporal data.
This paper proposes the cooperative data clustering dynamic
DE algorithm (CDCDynDE), which is an adaptation to the
data clustering dynamic DE (DCDynDE) algorithm where each
population searches for a single cluster centroid. The paper
applies the proposed algorithm to a variety of temporal datasets
with different frequencies of change, severities of change,
dataset dimensions and data migration types. The clustering
results of the cooperative data clustering DynDE are compared
against the original data clustering DynDE, the re-initialising
data clustering DE and the standard data clustering DE. A
statistical analysis of these results shows that the cooperative
data clustering DynDE algorithm obtains better data clustering
solutions to the other three algorithms despite changes in
frequency, severity, dimension and data migration types.

I. INTRODUCTION

Data clustering is a task that aims to determine relation-
ships among objects by grouping similar objects together
[1]. This task has been previously performed with a vari-
ety of computational intelligence (CI) algorithms, including
neural networks [2], swarm intelligence algorithms [3][4][5],
artificial immune systems [6][7] and evolutionary algorithms
[8][9].

Temporal data [10], which is data that changes with
time, introduces additional complexities for data clustering
algorithms. The changing data results in the clustering so-
lution differing from one time-step to another, requiring
the algorithms to track the new centroids. Changes in the
environment, which refer to a change in the constitution of
the clusters within that environment, may include clusters
becoming larger, smaller, appearing, disappearing, moving,
and patterns that migrate to other clusters. These changes
make it difficult for algorithms to cluster data due to the
loss of diversity and outdated memory [11] suffered by the
population-based algorithms. The loss of diversity refers to
individuals in the population of an algorithm converging
to a solution, making the population less diverse. This
phenomenon is problematic in temporal environments as few
or no individuals explore the search space for better solutions
when the environment changes. Outdated memory refers
to the optimal values found by an algorithm’s population
becoming obsolete as the environment changes.

Few computational intelligence algorithms for clustering
temporal data have previously been implemented. Examples
of such algorithms include the local network neighbourhood
artificial immune system [6], re-initialising data cluster-
ing PSO [12], multi-population data-clustering PSO [12],
cooperative-multipopulation data-clustering PSO [12], re-
initialising data clustering DE [13], data clustering dynamic

DE (DCDynDE) [13] and a combination of self-organising
maps (SOMs) and autoregressive integrated moving average
(ARIMA) time-series models [14].

This paper focuses on differential evolution (DE) ap-
proaches to cluster temporal data. Georgieva and Engelbrecht
[13] proposed two adaptations to Hanuman et al’s [9] data
clustering DE in order to handle temporal data. The first
algorithm proposed was the re-initialising data clustering DE
(RDCDE), which re-initialises part of a population when a
change occurs. The second algorithm proposed was the data
clustering dynamic DE (DCDynDE), which uses repulsion
and Brownian individuals in order to re-diversify the pop-
ulation. This paper proposes the cooperative data clustering
DynDE (CDCDynDE), which adapts the DCDynDE by mak-
ing each population search for a single optimum instead of
for all optimums in parallel to the other populations. This
allows for various areas of the search space to be exploited
for clusters, while the repulsion and Brownian individuals
promote exploration in the temporal environment.

An empirical analysis of the CDCDynDE in comparison
with Hanuman et al’s [9] data clustering DE, the RDCDE
and the DCDynDE is done in this paper. The results show
that the CDCDynDE performed the clustering task more
effectively than the other algorithms. The algorithm’s perfor-
mance remained good despite changes in frequency, severity,
dimension and pattern migration types.

The article begins with Section II summarises the DE,
Hanuman et al’s [9] data clustering DE, RDCDE and DynDE
in Section. These summaries are followed by the proposed
CDCDynDE algorithm in Section III, the experimental set-up
in Section IV and the results of the performed experiments
in Section V. Lastly, Section VI summarises the article’s
findings along with possible future work.

II. DIFFERENTIAL EVOLUTION

The DE is a population-based evolutionary algorithm (EA)
that has been used to solve a wide range of optimization
problems [13][15][16][17]. The DE, like other EAs makes
use of evolutionary operators to adapt individuals. These
operators are mutation, crossover, and selection. DE differs
from other EAs by applying these operators in a different or-
der, as well as introducing diversity via the mutation of each
parent individual and producing a trial vector. Mutational step
sizes are based on distances that randomly selected individu-
als are from one another. The trial vector is recombined with
the parent individual, using a discrete crossover operator, to
produce a single offspring. The offspring then competes with
the parent individual, through a selection process, to survive
to the next generation.

437

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

The mutation operator creates a trial vector for each parent
individual xi using

ui(t) = xi1(t) + β(xi2(t)− xi3(t)) (1)

where xi1(t) is the target vector, which in this paper is
a randomly selected individual, xi2(t) and xi3(t) are two
randomly selected individuals used to create a difference
vector with i1 6= i2 6= i3, and β is a constant, called the
scaling factor.

The crossover operator implements a discrete recombina-
tion of the parent individual and the trial vector using

x′ij(t) =

{
uij if j is ∈ J
xij(t) if j is /∈ J (2)

where ui is the trial vector and J is a set of crossover points.
The crossover points are determined differently depending
on whether exponential or binomial crossover is used. For
binomial crossover a crossover probability is used to ran-
domly determine which points are to be crossed over. For
exponential crossover an index is randomly selected and
a sequence of adjacent indexes are chosen to be crossed
over. The algorithms described in this paper use binomial
crossover.

An elitist selection operator is used to accept the best
individual between the parent and offspring to survive to the
next generation.

DE has been developed to solve continuous-valued op-
timization problems, and has been shown to be very effi-
cient [18][19][20][21]. Data clustering can be defined as an
optimization problem, where the objective is to find cluster
centroids that maximise the compactness and separation of
clusters. Since data clustering is in effect an optimization
problem, DE can be applied to find optimal cluster centroids.

Hanuman et al [9] adapted the DE in order to solve data
clustering problems, referred to in this paper as the standard
data clustering DE (SDCDE) algorithm. The first change to
the algorithm is the representation of an individual. In the DE
algorithm an individual is represented as an n-dimensional
vector, where n is the dimensionality of the problem. The
solution to a clustering problem, however, is a group of
cluster centroids. Each cluster centroid is an nx-dimensional
vector. Therefore the dimension of a SDCDE individual is
n = nx ∗ nK , where nK is the number of cluster centroids.

The second change to the DE algorithm is the use of the
dataset to guide the search. Before the fitness of an individual
is calculated, each data pattern is assigned to the cluster cen-
troid closest to it, which is determined using the Euclidean
distance measure. The fitness is then calculated using the
distances between data patterns and the centroids that the
patterns are assigned to. This paper uses the quantization
error as the fitness measure, which is calculated using [22]

Je =

∑nK

k=1

∑
∀zp∈Ck

d(zp,ck)

|Ck|
nK

if |Ck| > 0

∞ if |Ck| = 0
(3)

where zp is a data pattern, Ck is a cluster, ck is the cluster
centroid of Ck and |Ck| is the total number of data patterns
in cluster Ck.

DE algorithms suffer from loss of diversity in temporal
environments [23], rendering it inefficient to cluster temporal
data unless a mechanism is incorporated to re-diversify the
population. Georgieva and Engelbrecht [13] proposed two
adaptations to the SDCDE:
• The re-initialising data clustering DE (RDCDE) adapts

the DCDE by re-initialising a percentage of the popu-
lation if a change in the environment occurs. The re-
initialisation places a percentage of the population at
randomly selected positions in the search space, allow-
ing re-initialised individuals to explore the environment
for new solutions.

• The data clustering dynamic DE (DCDynDE) combines
the DCDE with Mendes and Mohais’ [24] DynDE
algorithm. The DynDE is a multi-population DE that
adds Brownian individuals and exclusion to the DE in
order to increase the diversity of the population. The
DynDE selects a percentage of the weakest individuals
in a sub-population to become Brownian individuals
during each iteration. Brownian individuals are individ-
uals generated by adding Gaussian noise to the position
of best individual of a sub-population. Additionally, if
two sub-populations are within a certain radius of each
other, the weakest sub-population is excluded by being
re-initialised.
The DCDynDE adapts the DynDE by changing the
representation of the individuals to contain a group of
centroid positions. Additionally, the data patterns are
assigned to their closest centroid and the fitness of
each solution is determined using the quantization error
defined in Equation (3).

The datasets used are automatically generated datasets
with known characteristics. The time-step when a change
occurs is, therefore, priorly known and was provided to the
RDCDE. The DCDynDE, on the other hand, is capable of
tracking changes in the environment through repulsion and
Brownian individuals, requiring no prior knowledge of the
time-step when a change occurs.

III. COOPERATIVE DATA CLUSTERING DYNAMIC
DIFFERENTIAL EVOLUTION

The DCDynDE [13] algorithm consists of multiple popu-
lations working in parallel, where the final solution is the best
global best over all sub-populations. This section proposes an
adaptation of the DCDynDE, by letting each sub-population
search for a single centroid instead of all of the centroids.
By doing this, the task of each sub-population is reduced
to finding an nx-dimensional vector instead of an nx ∗ nK-
dimensional solution, focusing the search. This approach is
similar to the cooperative PSO developed by Van den Bergh
and Engelbrecht [25].

The CDCDynDE algorithm initialises nK sub-populations
of nx-dimensional individuals, where nK is the total number

438

of clusters. The quantization error requires knowledge of all
cluster centroid positions in order to determine the suitability
of a clustering solution. By making each population search
for a single centroid position, this knowledge is lost. In
order to calculate the fitness of an individual, CDCDynDE
introduces a context individual, inspired by the cooperative
PSO [25]. A context individual is a nx ∗ nK-dimensional
individual comprised of the best nx-dimensional centroids
from each sub-population.

To calculate the fitness of a solution belonging to sub-
population Sk, the dimension k of the context individual is
replaced with that solution. The remainder of the context
individual consists of the best solutions of the other popula-
tions. The fitness of this adapted context individual is then
calculated and assigned as the fitness of the solution.

During each iteration of the CDCDynDE the distance
between the global best solutions of each sub-population
is calculated. If the distance between two sub-populations
is smaller than a pre-defined exclusion radius, rexcl, the
weakest of the two sub-populations is re-initialised. The re-
initialisation involves placing all individuals within the sub-
population at random positions in the search space. The
re-initialised sub-population therefore restarts its search for
an optimal centroid. This exclusion mechanism, taken from
the DCDynDE algorithm, allows for each sub-population to
find a different centroid and promotes separability between
clusters.

After the exclusion has taken place, the sub-populations
that were not re-initialised are adapted using the standard
mutation, crossover and selection DE mechanisms. A per-
centage, bperc%, of the weakest individuals in each sub-
population are then selected to become Brownian individuals.
These Brownian individuals are adapted using

wij = yij +N(0, σ) (4)

where wij is the new value for dimension i of the Brow-
nian individual’s centroid at index j, yij is the value for
dimension i of the global best individual’s centroid at index
j and N(0, σ) is Gaussian noise with mean 0 and standard
deviation σ.

The CDCDynDE is summarised in Algorithm 1.

IV. EXPERIMENTAL SETUP

Auto-generated temporal datasets provided by Graaff [6]
were used. The datasets include three data migration types,
namely pattern migration, cluster migration and centroid
migration. For pattern migration a single data pattern mi-
grates from the cluster to which it belongs to a randomly
selected cluster. For cluster migration all data patterns in a
selected cluster migrate to other randomly selected clusters.
For centroid migration all data patterns of a cluster migrate
to new positions where the patterns still belong to the same
cluster. Clusters appear, disappear, grow and shrink in the
various datasets.

The datasets consisted of 8000 patterns, 100 time-steps, 80
data patterns per time-step and a maximum of eight clusters

at any point in time. Patterns consisted of either three, eight
or fifteen attributes. Frequencies, which refer to the rate at
which changes occur, ranged from one to five, where a larger
number implies less changes. The severities of change, which
refer to the magnitude of the change, ranged from one to
five. The iteration at which a change occurs was calculated as
f
10 ∗T , where f is the frequency of change, and T is the total
number of iterations. A total of 225 artificial datasets were
clustered as there are three migration types, three dimensions,
five frequencies and five severities.

Algorithm 1 CDCDynDE
1: Initialise S sub-populations of individuals
2: while stopping condition is not reached do
3: Generate a context individual by replacing each

dimension with the best solution of each population
respectively, and denote as b(k, Sk.ŷi), where k is the
population index and Sk.ŷi is the best solution for that
population.

4: for each sub-population Sk do
5: for each individual Sk.xi do
6: Replace dimension k of b(k, Sk.ŷi) with
Sk.xi to create b(k, Sk.xi)

7: for each data pattern zp do
8: Calculate the Euclidean d(zp, Sk.xikj

) of
zp and each cluster centroid Sk.xikj of b(k, Sk.xi)

9: Assign pattern zp to cen-
troid Sk.xikj

, such that d(zp, Sk.xikj
) =

min∀kj=1...Nkj

{
d(zp, Sk.xikj

)
}

10: end for
11: Calculate the fitness of b(k, Sk.xi)
12: end for
13: end for
14: Compare the global best individuals from each sub-

population to each other
15: if the global best positions of both sub-populations

are within rexcl of each other then
16: re-initialise the sub-population with the worst

global best
17: else
18: for each sub-population that was not re-initialised

do
19: for each individual Sk.xi do
20: Update Sk.xi using the mutation,

crossover and selection mechanisms of the DE
21: end for
22: Update context individual
23: Make a percentage of the weakest individuals

Brownian Individuals and update them using Equation
(4)

24: end for
25: end if
26: end while

A population of 50 individuals was initialised within the
bounds of the dataset, which are defined per dimension by

439

the lowest and highest value of each attribute in the dataset.
Algorithms were run for a total of 1000 iterations and results
were averaged over 30 independent runs. Centroids leaving
the boundaries of the search space were re-set to remain on
the boundary. Ten percent of the population was re-initialised
in the RDCDE and 10% of the population was selected
to become Brownian individuals in both the DCDynDE
and the CDCDynDE. An exclusion radius of 5.0 was used
along with a scaling factor and crossover probability of
0.5. The DCDynDE and CDCDynDE both used a total of
eight populations as the maximum number of clusters in the
datasets at any point in time was eight.

The quality of the clustering solution was measured using
three measures [6], namely the inter-cluster distance, the
intra-cluster distance and the Ray-turi validity index. The
inter-cluster distance refers to the distance between clusters,
which is maximised and calculated using

Jiter =
2

nK(nK − 1)

nK−1∑
k=1

nK∑
k2=k+1

d(ck, ck2
) (5)

where ck and ck2
are cluster centroids.

The intra-cluster distance refers to the distance between
data patterns within a cluster. This distance is minimised
and calculated using

Jintra =

nK∑
k=1

∑
∀z∈Ck

d(zp, ck)

|P |
(6)

where |P | is the total number of data patterns in the dataset.
The last measure is the Ray-turi validity index. This

measure combines the inter-cluster and intra-cluster distances
for a more accurate representation of the quality of the
clustering solution. The Ray-turi validity index is minimised
and calculated using

QD =
Jintra
intermin

(7)

where intermin is the smallest inter-cluster distance found
using Equation (5).

Wins and losses per algorithm based on the Ray-turi
validity index were determined based on an approach pro-
posed by Helbig and Engelbrecht [26]. For each sample, the
Ray-turi validity index of all iterations before a change to
the environment occurred was averaged. This gives a more
accurate representation of the performance of the algorithm
over time than only taking the last iteration’s value. For each
problem each algorithm’s performance was compared against
each other algorithm using 30 independent samples. First a
Kruskal-Wallis test was performed to determine if there is
a statistically significant difference between the algorithms’
performance. If there was a statistically significant difference,
pair-wise Mann-Whitney U tests were performed and the
resulting U-values were used to determine the winning and
losing algorithm for a particular problem.

V. RESULTS AND DISCUSSION

The average inter-cluster distance, intra-cluster distance
and Ray-turi validity index values are reported in Table I. The
table shows that the CDCDynDE obtained the highest inter-
cluster distance and, therefore, had the most separated clus-
ters. This result has a large standard deviation value, implying
that the resulting inter-cluster distances varied significantly
for the problems used. The DCDynDE, on the other hand,
obtained the lowest inter-cluster distance making its resulting
clusters the least separate. Lastly, the SDCDE and RDCDE
obtained similar values for the inter-cluster distance.

The DCDynDE obtained the lowest intra-cluster distance
and, therefore, the most compact clusters. The CDCDynDE,
SDCDE and RDCDE clusters resulted in similar values
for the intra-cluster distance, with the RDCDE obtaining
the highest value. Once again, CDCDynDE has a large
standard deviation, implying a significant difference between
the resulting intra-cluster distances for the problems used.

The Ray-turi validity measures the performance of the
algorithm by combining the inter-cluster and intra cluster
distance measures. This is a more accurate measure because
a clustering solution is required to have clusters that are
very compact and highly separated from each other. The
CDCDynDE obtained the lowest Ray-turi validity index,
indicating that the algorithm performed the clustering task
most effectively. The variation of the Ray-turi validity index
across all the problems is much less significant than that
of the inter-cluster and intra-cluster distances for the CDC-
DynDE algorithm. The DCDynDE performed the clustering
task better than the SDCDE and RDCDE, but worse than the
CDCDynDE.

Table II summarises the total statistically significant wins,
#wins, and losses, #losses, obtained by each algorithm as
well as the Diff value, which is calculated using Diff =
#wins−#losses. The CDCDynDE obtained the most wins
and least losses when compared against the other algorithms.
The DCDynDE obtained 70 more losses than wins, while the
SDCDE and RDCDE both obtained significantly more losses
than wins. These results are illustrated in Figure 1 for a visual
interpretation.

The problems used consisted of various severities, fre-
quencies, dimensions and pattern migration types. Figures 2-
5 illustrate the behaviour of each algorithm as the various
parameters change.

Figure 2 illustrates Diff of each algorithm for dimen-
sions 3, 8 and 15. For the three dimensional problems the
CDCDynDE and the DCDynDE both have a high Diff
and, therefore, significantly more wins than losses. The SD-
CDE and RDCDE, on the other hand, obtained significantly
more losses than wins for three-dimensional problems. As
the dimensions increase the performance of the DCDynDE
abruptly decreases, while the performance of the SDCDE
and RDCDE slightly increases. The CDCDynDE remains
the best performing algorithm throughout, obtaining the most
wins and least losses for all-dimensional problems, and is the
only algorithm with a positive Diff value throughout.

440

TABLE I
AVERAGES AND STANDARD DEVIATION FOR INTER-CLUSTER DISTANCE, INTRA-CLUSTER DISTANCE AND RAY-TURI VALIDITY FOR EACH ALGORITHM

Algorithm
Inter-cluster Distance Intra-cluster Distance Ray-Turi Validity

SDCDE 22.983 ± 3.266 10.679 ± 3.981 1.141 ± 0.178
RDCDE 22.963 ± 3.257 10.682 ± 3.979 1.154 ± 0.198
DCDynDE 19.830 ± 3.346 3.877 ± 2.995 0.979 ± 0.207
CDCDynDE 30.072 ± 11.323 10.39107 ± 8.908 0.677 ± 0.276

TABLE II
TOTAL STATISTICALLY SIGNIFICANT WINS AND LOSSES PER ALGORITHM

Attribute
SDCDE RDCDE DCDynDE CDCDynDE

Wins 203 204 300 632
Losses 466 466 370 37
Wins - losses -263 -262 -70 595

Fig. 2. Diff per algorithm as dimensions change

Figure 3 illustrates Diff of each algorithm for frequencies
1, 2, 3, 4 and 5, where a higher value means that less
changes occur in the environment. The CDCDynDE obtained
the highest Diff value for all frequencies. The DCDynDE,
on the other hand, obtained more losses than wins when
less changes occurred in the environment and improved
performance as the changes increased (with lower frequency
values). The SDCDE and RDCDE both obtained more losses
than wins for all frequencies, decreasing performance as
more changes in the environment occurred.

Figure 4 illustrates Diff of each algorithm for severities

1, 2, 3, 4 and 5. The CDCDynDE obtained the most wins and
the least losses for all severities of change. The DCDynDE
obtained increased performance on higher severities, but still
remained with more losses than wins for the majority of the
severities, while the CDCDynDE’s performance decreased
by a small amount.

Figure 5 illustrates the total wins and losses per algorithm
for pattern migration, centroid migration and cluster migra-
tion problems. The CDCDynDE obtained the most wins and
least losses over all three migration types. The DCDynDE,
SDCDE and RDCDE all obtained more losses than wins for

441

Fig. 3. Diff per algorithm as frequencies change

Fig. 4. Diff per algorithm as severities change

pattern migration problems. The DCDynDE improved per-
formance compared to the SDCDE and RDCDE when used

on centroid migration and cluster migration problems, but
still obtained more losses than wins due to the CDCDynDE

442

Fig. 5. Wins and losses per algorithm for different migration types

Fig. 1. Total wins and losses per algorithm over all problems

performing better on all three migration types.

VI. CONCLUSIONS AND FUTURE WORK

This article introduced the CDCDynDE, an adaptation
to Georgieva and Engelbrecht’s [13] DCDynDE. It evalu-
ated the performance of the proposed algorithm against the
DCDynDE, SDCDE and RDCDE applied to a variety of
temporal datasets. The datasets included different severities
of change, frequencies of change, dimensions and pattern
migration types.

The average inter-cluster distance showed that the CD-
CDynDE obtained the most separable clusters, while the
average intra-cluster distance showed that the DCDynDE
obtained the most compact clusters. However, both measures
need to be considered in order to determine the quality of a
clustering solution. For this reason the Ray-turi validity index
was used to analyse the quality of the clustering solutions
in more detail. The average Ray-turi validity index value
showed that the CDCDynDE performed the clustering task
better than the DCDynDE, SDCDE and RDCDE.

Statistical tests were performed to determine the total wins
and losses obtained by each algorithm when compared to
each other algorithm. The Ray-turi validity index was used
for these tests. The CDCDynDE obtained the most wins
and least losses overall. When analysed in more detail it
was shown that the CDCDynDE obtained the most wins and
losses for all changes in severity, dimension, frequency and
migration type.

Future work may include comparing the algorithm to other
temporal data clustering algorithms, such as PSO, SOM and
AIS. A more detailed study can be performed to analyse
the algorithm’s performance over various parameters such as
frequency, severity and dimension. The CDCDynDE can also
be adapted to allow it to optimize the number of clusters and
can be applied to real-world datasets. Lastly, an analysis of
the effect of regenerating the context individual when the
best individual of the population is updated, instead of at the

443

beginning of every iteration, can be done.

ACKNOWLEDGEMENT

The support of SAP P&I BIT Mobile Empowerment and
the SARChI research chair in AI is hereby acknowledged.
The views and conclusions expressed in this paper are those
of the authors and are not necessarily to be attributed to the
mentioned parties.

REFERENCES

[1] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, 2009.

[2] J. Herrero, A. Valencia, and J. Dopazo, “A hierarchical unsupervised
growing neural network for clustering gene expression patterns.,”
Bioinformatics, vol. 17, no. 2, pp. 126–136, 2001.

[3] D. W. Van Der Merwe and A. P. Engelbrecht, “Data clustering
using particle swarm optimization,” in 2003 Congress on Evolutionary
Computation 2003 CEC 03 (2003), vol. 1, pp. 215–220, 2003.

[4] B. Santosa and M. K. Ningrum, “Cat swarm optimization for cluster-
ing,” in Soft Computing and Pattern Recognition, 2009. SOCPAR’09.
International Conference of, pp. 54–59, IEEE, 2009.

[5] D. Karaboga and C. Ozturk, “A novel clustering approach: Artificial
bee colony (abc) algorithm,” Applied Soft Computing, vol. 11, no. 1,
pp. 652–657, 2011.

[6] A. Graaff, A Local Network Neighbourhood Artificial Immune System.
PhD thesis, University of Preotria, June 2011.

[7] L. N. de Castro and F. J. Von Zuben, “ainet: an artificial immune
network for data analysis,” Data mining: a heuristic approach, vol. 1,
pp. 231–259, 2001.

[8] P. Scheunders, “A genetic c-means clustering algorithm applied to
color image quantization,” Pattern Recognition, vol. 30, no. 6, pp. 859–
866.

[9] S. A. Hanuman, V. A. Babu, A. Govardhan, and S. C. Satapathy,
“Data clustering using almost parameter free differential evolution
technique,” International Journal of Computer Applications, vol. 8,
pp. 1–7, October 2010.

[10] J. Patel, “Temporal database system,” Master’s thesis, Department of
Computing, Imperial College, University of London,, June 2003.

[11] T. Blackwell, “Particle swarm optimization in dynamic environments,”
Evolutionary Computation in Dynamic and Uncertain Environments,
vol. 49, pp. 29–49, 2007.

[12] K. Georgieva and A. P. Engelbrecht, “A cooperative multi-population
approach to clustering temporal data,” in IEEE Congress on Evolu-
tionary Computation (CEC), pp. 1983–1991, 2013.

[13] K. Georgieva and A. P. Engelbrecht, “Dynamic differential evolution
algorithm for clustering temporal data,” in 9th International Confer-
ence on Large-Scale Scientific Computations, 2013.

[14] M. Van Der Voort, M. Dougherty, and S. Watson, “Combining ko-
honen maps with arima time series models to forecast traffic flow,”
Transportation Research Part C: Emerging Technologies, vol. 4, no. 5,
pp. 307–318, 1996.

[15] R. Storn, “On the usage of differential evolution for function optimiza-
tion,” in Fuzzy Information Processing Society, 1996. NAFIPS. 1996
Biennial Conference of the North American, pp. 519–523, IEEE, 1996.

[16] M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “Differential evo-
lution methods for unsupervised image classification,” in Evolutionary
Computation, 2005. The 2005 IEEE Congress on, vol. 2, pp. 966–973,
IEEE, 2005.

[17] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, “Differential evolution
training algorithm for feed-forward neural networks,” Neural Process-
ing Letters, vol. 17, no. 1, pp. 93–105, 2003.

[18] R. Storn and K. Price, “Differential evolution-a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[19] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” Evolutionary Computation, IEEE Transactions on,
vol. 15, no. 1, pp. 4–31, 2011.

[20] H.-Y. Fan and J. Lampinen, “A trigonometric mutation operation to
differential evolution,” Journal of Global Optimization, vol. 27, no. 1,
pp. 105–129, 2003.

[21] F. Neri and V. Tirronen, “Recent advances in differential evolution:
a survey and experimental analysis,” Artificial Intelligence Review,
vol. 33, no. 1-2, pp. 61–106, 2010.

[22] D. W. van der Merwe and A. P. Engelbrecht, “Data clustering using
particle swarm optimization,” in The 2003 Congress on Evolutionary
Computation, 2003. CEC ’03., vol. 1, pp. 215–220, 2003.

[23] M. C. du Plessis and A. P. Engelbrecht, “Improved differential
evolution for dynamic optimization problems,” in IEEE Congress on
Evolutionary Computation IEEE World Congress on Computational
Intelligence, 2008.

[24] R. Mendes and A. S. Mohais, “Dynde: a differential evolution for
dynamic optimization problems,” in IEEE Congress on Evolutionary
Computation, vol. 3, pp. 2808–2815, 2005.

[25] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” in IEEE Transactions on Evolutionary
Computation, vol. 8, pp. 225–239, 2004.

[26] M. Helbig and A. P. Engelbrecht, “Issues with performance measures
for dynamic multi-objective optimisation,” in 2013 IEEE Symposium
on Computational Intelligence in Dynamic and Uncertain Environ-
ments (CIDUE), pp. 17–24, IEEE, 2013.

444

