
Online Generation of Trajectories for Autonomous Vehicles using a
Multi-Agent System

Garrison W. Greenwood
Department of Electrical & Computer Engineering

Portland State University
Portland, OR 97207 USA

Saber Elsayed, Ruhul Sarker, Hussein A. Abbass
School of Engineering and Information Technology,

UNSW-Australia at Canberra
Canberra 2600 ACT, Australia

Abstract—Autonomous vehicles are frequently deployed in
environments where only certain trajectories are feasible. Clas-
sical trajectory generation methods attempt to find a feasible
trajectory that satisfies a set of constraints. In some cases the
optimal trajectory may be known, but it is hidden from the
autonomous vehicle. Under such circumstance the vehicle must
discover a feasible trajectory. This paper describes a multi-agent
system that uses a combination of reinforcement learning and
differential evolution to generate a trajectory that is ε-close to a
target trajectory that is hidden.

I. INTRODUCTION

Trajectory generation involves defining a set of feasible
motions that will move a body (vehicle, robot, etc.) from a
starting point to an end point subject to a set of constraints.
These constraints arise from any number of sources. For
example, a trajectory may have obstacles or no-fly zones
that must be avoided [1]. Trajectories should not require a
movement—e.g., navigation around a sharp turn—that exceeds
a vehicle’s capability [2]. In still other cases the trajectory
should provide a low probability of detection [3]. All of these
examples have the same thing in common: they assume at
least one desirable trajectory exists that satisfies all constraints,
but it is not known a priori. The question then is how can a
desirable trajectory be found?

Classical trajectory generation would model the problem as
an optimization problem. A solution is a complete trajectory
that satisfies all constraints and possibly optimize an objective
function, such as minimization of energy consumption. In
some applications—as in surveillance operations—the au-
tonomous vehicle does not need to exactly fly-by the way
points on this target trajectory. It is sufficient that the vehicle
flies within some distance ε of each desired way point. The
dynamic nature of the operational environment also makes
it difficult for the vehicle to identify all target way points
in advance and before take-off. We will call this problem
online trajectory generation to differentiate it from the classical
trajectory generation problem.

Online trajectory generation is difficult to do in a centralized
way because this type of trajectory generation involves several
interacting and competing components. This is particularly
true with fixed-length trajectories. For instance, changing the
morphology (shape) of a fixed-length trajectory moves at least
one endpoint location. Similarly moving an endpoint changes

the morphology. The generated trajectory must closely match
a target trajectory but specific details about the target trajectory
are not known.

Since centralized methods are often impractical, a reason-
able approach is to decompose the generation processes into
a collection of sub-systems or agents that work together to
generate the trajectory. A generated trajectory is called feasible
if the start and stop points are within some distance ε of the
desired endpoint locations and its shape is isomorphic to the
target trajectory1. The agents collaborate to construct segments
of the trajectory and adapt their behavior as needed to satisfy
local goals. Their collective actions must satisfy the global
goal, which is to generate a feasible trajectory.

This paper describes how a multi-agent system (MAS) can
generate feasible trajectories in <n. The target trajectory is
hidden in the sense its start point, stop point, length and
shape are not known beforehand, but must be discovered
through an algorithmic process. The proposed MAS discovers
a target trajectory by using differential evolution (DE) to find
the start/end points and then generating candidate trajectories.
A form of reinforcement learning rates the quality of those
trajectories.

The paper is organized as follows. Section II gives a precise
definition of the trajectory problem. Section III describes
how a candidate and a target trajectory can be compared to
measure endpoint locations and path isomorphism. Section
IV is particularly important because it describes the MAS
approach for generating isomorphic candidate trajectories in
a piecemeal manner. Experimental results are presented in
Section V. Lessons learned about the MASON agent toolkit
(used to design the MAS) are discussed in Section VI.

II. PROBLEM DESCRIPTION

Let Θ ⊂ <` where Θ is the union of m closed subsets
{θ1, θ2, . . . , θm}. Each θi represents regions in `-space that
are feasible or areas of interest. Let x0 ∈ θi and xn ∈ θj ,
where i 6= j, be a particle moving from x0 to xn which follows
some trajectory T : x0 → xn. A trajectory that satisfies certain
properties (which are problem dependent) is called the target
trajectory and is denoted by T ∗.

1“Isomorphic” in this context means any two corresponding sample points
in the generated trajectory and the target trajectory are at most distance ε
apart.

1218

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

x0, xn and T ∗ are known but not disclosed to a user.
Instead, the user must try to identify T ∗ through an algorithmic
process. In abstract terms this algorithm has two phases: in
the first phase the algorithm searches for likely start and end
points of T ∗ and in the second phase tries to deduce the shape.
It does this by repeatedly generating a candidate trajectory T̂
between the end points found during the first phase. Each T̂ is
input to a black box and the black box then outputs a number
λ indicating how closely T̂ and T ∗ match. λ decreases as the
degree of matching gets better. λ−1 thus corresponds to fitness
in an evolutionary algorithm. The objective is to repeat this
algorithm until the target trajectory is reconstructed.

III. APPROACH

R
2

Fig. 1. An example trajectory problem in <2. In this example the
target trajectory (red line) and the first candidate trajectory (blue line) have
considerably different start/end points and the trajectory shapes are completely
different. That candidate trajectory would have a large λ value. Conversely,
the second candidate trajectory (green line) has relatively accurate start/end
points and the trajectory shape is much closer to the target trajectory. The
corresponding λ value is much smaller.

Figure 1 shows a simple case in <2 with m = 5. Of course,
as shown in the figure, x̂0 may be located nowhere near x0,
x̂n nowhere near xn and T̂ may look nothing like T ∗. The
λ equation must consider all of these factors. With x ∈ <n,
define a vector function

F (x) =
∑
θi3x

|θi| (1)

where |θi| represents the volume of θi in <n. Then the
equation for λ is

λ = α1 |F (x̂0)− F (x0)| + α2 |F (x̂n)− F (xn)|
+ α3D(T ∗, T) (2)

where αj is user defined and D(·, ·) is a dissimilarity measure.
The first term in Eq. (2) penalizes the difference between the
candidate and target trajectory start points. The second term
penalizes differences in the end points. The last term reflects
the difference in shape between the two trajectories. D(·, ·) =
0 implies the two trajectories are identical in shape; λ = 0
means the trajectories are identical in shape and their start/end
points coincide.

A number of trajectory distance measures have been pro-
posed to check the similarity of two trajectories. These mea-
sures include Euclidean distance, dynamic time warping [4]
and a variety of edit distance measures. Euclidean distance has
only O(n) complexity (n is the trajectory length) while the
other methods have O(n2) complexity. But Euclidean distance
requires both trajectories to be of the same length, which does
not frequently occur. Also, Euclidean distance is susceptible
to noise (as is dynamic time warping). The edit distance
measures can handle noise and will work with sequences of
different length but the complexity is much greater than that
of Euclidean distance. So which distance measure is best?
It turns out the answer is analogous to the No Free Lunch
Theorem in optimization: no distance measure works best
for all situations [5]. Nevertheless, the edit distance measures
seem to be gaining in popularity.

The idea behind edit distance is simple. Given two trajec-
tories S and R, how many insert, delete or replace operations
are needed to transform S into R? Each time an operation
is needed, the edit distance increases by one. For example,
consider the two 1-D trajectories S = {1 101 2 7 4} and
R = {1 2 3 4} with threshold parameter ε = 1. Two elements
are considered “equal” if their difference is less than or equal
to ε. Notice, S ≡ R if the 2nd element of S is deleted and
the element ‘7’ is replaced by ‘3’. Hence, the edit distance
between S and R is two. The smaller the number of operations
required, the smaller the edit distance and the more similar the
trajectories.

Without loss in generality, we assume 2-D trajectories
for now. Let R and S be trajectories of length m and n,
respectively. Then R = [(t1, r1), . . . , (tm, rm)], where ri =
(ri,x, ri,y). To compute the distance between two trajectories
R and S, we use Edit Distance on Real Sequences (EDR) [6].
This edit distance measure looks for long common subse-
quences in the two trajectories. There will be gaps between
these subsequences and EDR assesses a penalty proportional
to the size of these gaps. The EDR between R and S is given
by

EDR(R,S) =

 m n = 0
n m = 0

min(γ1, γ2, γ3) otherwise
(3)

where

γ1 = EDR(REST(R), REST(S)) + SubCost
γ2 = EDR(REST(R), S) + 1
γ3 = EDR(R, REST(S)) + 1

1219

and SubCost = 0 if match(r1, s1) = true and 1 otherwise.
Two elements ri and sj match if |ri,x − sj,x| ≤ ε and
|ri,y − sj,y| ≤ ε where ε is a threshold parameter. The edit
distance is calculated using dynamic programming. Thus the
complexity of computing edit distance is O(mn). Notice EDR
does not require m and n be equal.

IV. MAS DESIGN PHILOSOPHY

The general concept is to build a minimum edit distance
candidate path using a 3-agent system. The candidate path
is built in a piecemeal manner, one dimension at a time.
Before describing the details, it is worthwhile reviewing a
concept regarding edit distance. Edit distance equals the num-
ber of operators (replace, insert or delete) needed to convert
a candidate trajectory into the target trajectory. The replace
operator is needed if two corresponding points in the two
trajectories differ in magnitude by a value greater than ε. The
two trajectories do not have to be the same length because
the insert operator (or conversely the delete operator) can be
applied to make the candidate and target trajectories equal
length. This latter point is key to the piecemeal construction
technique.

The objective is to create a candidate trajectory that matches
point for point with a target trajectory in N -space. The idea
is to create a candidate trajectory that is ε-close to a target
trajectory at (typ.) k = 10 sample points. The candidate
trajectory is built piecemeal one dimension at a time.

A number of agent-based modeling (ABM) software toolkits
exist and several papers that compare them exist. We chose the
MASON [7] toolkit for this work primarily because it has a
straightforward scheduler for the agent tasks and, unlike some
ABM toolkits, it does not require a spatial orientation for the
agents.

TABLE I
AGENT DEFINITIONS

Agent Notation Action

1 Aε adjust ε
2 As adjust segment length
3 Ac retrieves edit distance;

changes path generation
dimension

A. Agent Behavior

The candidate path is generated one segment at a time. It
begins by adding a line segment with one end-point at x̂0.
This segment lies in only one dimension (say x). Three agents
are needed to generate the candidate path (See Table I.) The
process begins with the first agent (Aε) making ε initially
large and the second agent (As) creating a short trial line
segment towards the next sample point. A large initial value
for ε makes the initial line segment length ε-close to the x
coordinate of the next target trajectory sample point. That
means k − 1 replacement operations are needed to make the

candidate and target trajectories of equal length. Hence, the
edit distance is k − 1. The first agent then slowly decreases
ε until the segment end-point is no longer ε-close. This event
occurs when the edit distance suddenly increments to k. The
second agent now increments the segment length until end-
point is again ε-close to the target sample points indicated by
the edit distance drop back to k − 1. The first agent reduces
ε again and the two agents work back and forth, alternating
between reducing ε and increasing the line segment length.
This process continues until the segment end-point is within
some user-defined minimum ε0 to the next target sample point.
This iterative process is shown in Figure 2.

The third agent is a control agent. At each time step, this
agent obtains the location of the line segment end-point from
the second agent. It then sends the end-point location to the
black box and retrieves the edit distance. The edit distance
from the previous time step is stored so it is easy to see if
the edit distance incremented, decremented or remained the
same. In either of the first two cases an event is generated
(see below). Eventually ε becomes less than a predefined lower
bound ε0. At that time the control agent informs the other two
agents no further updates are needed in that dimension. The
control agent then tells the other two agents to move to the
next dimension (say y) and repeat the process. The process
continues until all dimensions are covered. The candidate
trajectory now has one line segment with one end-point at
the target trajectory start (x0) and the other end-point ε0-close
to the first target trajectory sample point in all N dimensions.
This latter end-point becomes the end-point of the next line
segment that will be generated. The process repeats until the
entire candidate trajectory has been placed.

Each agent is reactive, which means it maps sensors input
into actions. The behavior of the first two agents is described
by the state diagrams depicted in Figure 3. Note these are
not finite state machine diagrams because the arc labels are
events and not inputs. For example, in Figure 3(a) the agent
transitions from a state s1, where ε decreases at each time
step, to a state s2 where it remains constant. This transition
takes place when the event “edit distance increments” (ED ↑)
is detected. It transitions back to state s1 where it starts
decrementing again once the event “edit distance decrements”
(ED ↓) is detected.

B. Generating Trajectories

Generating a trajectory consists of two phases. In the first
phase, a search is conducted to find the trajectory end-points.
The second phase involves the path generation between the
end-points. The objective is to find end-points within some ε0
of the target trajectory (T ∗) end-points and then find a path
shape that matches the T ∗ shape. Referring back to Eq. (2),
the first two terms depend on the end-point locations while the
third term depends on the edit distance between a candidate
path and T ∗.

During the first phase an evolutionary algorithm called
differential evolution (DE) was used to search for the two
trajectory end-points [8]. DE is a population based stochastic

1220

Fig. 2. An example of agent-based path generation. The black node is the
starting node (x̂0) and the red path is the target path. The green node is
a candidate node. One agent moves the green node while a second agent
controls the threshold ε. The location of the green node decrements the edit
distance when ε = 2 but increments the edit distance when ε = 1. A new
line segment is then generated from x̂1 and the process described above is
repeated. The difference is now the edit distance switches between k − 1
and k − 2. Once completed a candidate trajectory with k sample points will
have been generated. All points in the candidate path are ε0-close to the
corresponding sample points in the target trajectory.

search algorithm. The population consists of N individuals
where in trajectory problems each individual Ij , j = 1 . . . N ,
consists of a d-dimensional real vector representing a location
in d-space. The initial population is randomly initialized and
the algorithm runs for a fixed number of iterations. During
each iteration, new individuals are created by a stochastic
process. Specifically,

I
′

i,j =

Ia1,j + ξ.(Ia2,j − Ia3,j) if (rand ≤ CR

or j = jrand),
Ij,j otherwise.

(4)

where a1 is a random integer number ∈ [1, N/2] [9], while
a2 and a3 are random integer numbers ∈ [1, N], a1 6= a2 6=
a3, rand ∈ [0, 1], ξ is an amplification factor ∈ [0, 1], the
crossover rate (CR) ∈ [0, 1], and jrand ∈ 1,2,...,number of
variables is a randomly selected index.

Fitness is a measure of the quality of a solution. For this
problem the fitness of an individual is computed by extracting
the coordinate location and then computing λ−1. High fitness
means the proposed location is near the true end-point of T ∗.
Suppose we are searching for the starting point x̂0. Referring
to Eq. (2), only the first term is of interest. By assuming x̂n =
xn the second term equals zero. This also forces all candidate
trajectories to have the same number of insert operations so
the third term is constant. Thus only the first term affects λ.
Once the x̂0 is found the first term equals 0 so a search can
begin for x̂n again with a constant third term; only the second
term now affects λ.

As stated above, during each iteration each individual Ij
creates an offspring I ′. The fitness of the parent and offspring
are computed and the higher fit individual is kept. Typically
400 iterations are sufficient to find a good end-point location
although the algorithm can terminate early if an end-point is
found within ε0 of the target trajectory end-point. The best fit
individual in the final population is chosen as the end-point.

The candidate path generation is conducted a dimension at
a time by extending a line segment from the previous fixed

point This previous fixed point is ε-close to the corresponding
target trajectory point. Since this previous fixed point is on the
real number line, the line segment either extends to the left
(decreasing values) or to the right (increasing values)2.

Figure 3(b) shows the second agent, which controls the
segment line length. Two behaviors are depicted. In most cases
the agent’s behavior will follow the state diagram with the
green nodes. That is, the segment length extends from the
sample point to the right until the edit distance decrements.
This length then will not change until the event ED ↑ is
detected. However, it is entirely possible the target trajectory
switches direction (doubles back), for instance, to avoid an
obstacle. In that situation the line length should be extending to
the left instead. The brown set of nodes covers that particular
case. The dashed red line shows that the agent’s behavior can
switch between the two state diagrams depending on which
direction the segment extends from the sample point.

1
No Change

2
decrease

ED

ED

1
No Change

2
extend
right

ED ED

3
No Change

4
extend
left

EDED

(a)

(b)

s s

s s

s s

Fig. 3. Agent definition state diagrams: (a) agent controls ε size and (b)
agent controls candidate path segment length. Each state has a state ID and the
action performed by the agent when in that state. Labels on the arcs indicate
events that cause the state transitions. Agent in (b) has two potential behaviors
(see text).

All agents have access to a boolean event register. This
register, depicted in Figure 4, has 5-bits for each dimension in

2Consider the case where the target trajectory “doubles back” to avoid an
obstacle. In that case the value of the next sample point will be less than that
of the current sample point, which means the line segment should extend to
the left.

1221

...

ED ED D1ED ED ED ED DnED ED

Fig. 4. Event register used in MAS. There are 5-bits in the register for each dimension in the trajectory.

the trajectory: an ED ↑ and ED ↓ event bit for the two agents
and a Dj event bit for the j-th dimension. Initially, these bits
are cleared indicating no event has occurred. The respective
bit is set to indicate an event occurred. For instance, when
the edit distance increments, the ED ↑ bits are all set. The
two agents monitor their respective ED ↑ event bits each time
step to see if occurred; the event bit is cleared after reading it.
Thus, the control agent sets the edit distance event bits whereas
the other two agents clear those event bits automatically by
reading them. Only one Dj event bit at a time is set by the
control agent indicating which dimension the other two agents
work in. Only the control agent can set or clear the Dj bits.

The control agent manipulates the event register and sends
the current candidate path segment location to the black box to
get the edit distance. Since the edit distances from the previous
time step is stored it is trivial to see if an ED ↑ or ED ↓
event has occurred. The control agent is also responsible for
outputting the candidate path sample points. The behavior of
the control agent is described in Procedure 1.

Algorithm 1 Ac Agent Behavior
Require: D ← dim {# of path dimensions}

1: while D 6= 0 do
2: Clear all events
3: generate dimension D event
4: EDold ← initial edit distance
5: repeat
6: EDnew ← current edit distance
7: if EDnew > EDold then
8: generate ED ↑ event
9: end if

10: if EDnew < EDold then
11: generate ED ↓ event
12: end if
13: until EDnew == 0
14: D = D − 1
15: end while
Ensure: Candidate path sample points

The last issue to consider is direction of each segment.
Suppose the location of trajectory point xj has just been found.
The question is should the next segment to the next point xj+1

extend to the right (xj+1 > xj), extend to the left (xj+1 < xj)
or remain the same (xj+1 = xj)? The answer is determined
by a collaboration between agents Ac and As.

The process begins by generating a trial segment with
a point x′ slightly greater than xj . This then defines two

candidate paths: path #1 with xj+1 = xj and path #2 with
xj+1 = x′. Agent Ac sets ε small so the edit distance for
both paths is the same. ε is then slowly increased until the
edit distance decreases. If the edit distance for path #1 is
less, then the next segment extends to the left. If path #2
is less then the next segment extends to the right. If the edit
distance is the same for both paths then xj+1 = xj for the
next segment.

V. EXPERIMENTAL RESULTS

In this research, we used ξ = CR =0.95 during the search
for the trajectory endpoints. In these initial experiments each
individual in the population is a 3-D real vector although the
extension to arbitrary dimensions is trivial. The population
size was 25. There are two possible stopping criteria: (1) the
DE found endpoints within distance ε = 0.1 of the target
trajectory endpoints, or (2) a maximum of 400 generations
were processed. In almost all cases, the DE terminated because
the first criterion was satisfied.

The fitness function is λ−1. Although Eq. (2) has three terms
only, the first two terms are relevant for assigning fitness to an
individual in the population. However, the third term (the edit
distance) does vary depending on how the search progresses.
Assume the trajectory has n sample points (two endpoints plus
n− 2 intermediate waypoints). The DE conducts a search for
both trajectory endpoints simultaneously so, effectively, we are
computing the edit distance between a target trajectory of n
points and a candidate trajectory of 2 points. Hence the edit
distance will have a lower bound of n − 2 because n − 2
‘insert’ operations are needed. The edit distance term could
be one or two more depending on whether the endpoints are
within ε of the target trajectory endpoints because, if not, this
adds one or two ‘replace’ operations. The fitness landscape
itself is bi-modal but the DE was able to find the endpoints
without incorporating anything special to promote niching.

To test the algorithm, we generated test cases with different
number of segments (i.e. trajectory length) varying between 2
and 20 segments in a step of 2. The generation of each test
case was repeated 10 independent times to generate a total
of 100 test problems. All problems were generated within the
same fixed airspace volume.

The average running time of the algorithm over the 10
problems generated for each test case was then computed and
is shown in Figure 5. An exponential curve was found to best
approximate the relationship between the number of segments
and computational time with R2 = 0.98, where R2 is the
coefficient of determination indicating how well the data points
fit the curve. The equation of the curve is

1222

p = 4.823× e0.0959×s (5)

where p is the average processing time, and s is the number
of segments in a trajectory.

Fig. 5. The relationship between the number of segments in a trajectory and
computational time.

In Figure 6, we also studied the impact of ε on error,
and the relationship between error rate and computational
time. Here, “error” is defined as the area between the found
trajectory and the target trajectory. This area is zero when both
trajectories match exactly. It is obvious that this error will
decrease when ε decreases, because ε is in effect a tolerance
factor. However, what is important in Figure 6 is the trade–off
between computational time and error. This trade–off is critical
in real–world situations and the choice of an appropriate level
of trade-off is a context–dependent decision.

In Figure 6, we fixed the number of segments to 20 and
only varied ε. Time is reported in seconds.

Three example trajectories were evaluated. Figures 7, 8 and
9 show the results for target trajectories with 10, 14 and 20
segments, respectively. The trajectories were restricted to a
3D-box of size 25×25×25. Notice in all cases the candidate
trajectory is isomorphic to the target trajectory despite the
presence of several radical turns. This illustrates the MAS can
correctly generate trajectories that avoid obstacles.

Our decision to pick these radical turns was done with
a specific purpose in mind. In surveillance applications, an
autonomous vehicle may require to hoover over an object,
suddenly change its direction to comply with a complex
maneuver strategy, or revisit close–by areas in a random
manner. Therefore, the morphology of the generated trajectory
is normally different from a classical aircraft trajectory.

VI. DISCUSSION

We have described a MAS that generates a trajectory
matching an unknown target trajectory using reinforcement

Fig. 6. The relationship between deviations from target trajectory and
computational time as ε varies.

Fig. 7. Results for a test problem with a 10–segment target trajectory. Blue
line represents the target trajectory, while the red line represents the found
trajectory.

learning. Although the examples shown are 2-D trajectories,
the extension to trajectories in an arbitrary number of dimen-
sions is trivial requiring no real modifications.

Normally calculating the edit distance between two trajec-
tories of length m and n takes order O(mn) time. Most of
this cost is due to insert and delete operations and running
a dynamic programming algorithm. However, in our experi-
ments m = n so no insert/delete operations are required and
a dynamic programming algorithm is unnecessary. All that is
required when m = n is a series of match(·, ·) calculations,
defined in Section III, which can be done in O(m) time.
However, in many situations the two trajectories will not be

1223

Fig. 8. Results for a test problem with a 14–segment target trajectory. Blue
line represents the target trajectory, while the red line represents the found
trajectory.

Fig. 9. Results for a test problem with a 20–segment target trajectory. Blue
line represents the target trajectory, while the red line represents the found
trajectory.

the same length. For instance, in some cases many T ∗ sample
points may be available, but only a few of them are actually
needed to construct a feasible trajectory for an autonomous
vehicle.

We used the MASON [7] ABM toolkit to develop the
MAS. Although the scheduling of agent tasks is simpler
than other toolkits, MASON has no inherent communication
mechanism. It is for this reason the event register was created.
Using an event register provides an easy form of inter-agent
communication. Agents can monitor bits in this register to
communicate not only with each other but to form precepts

about the environment. Only minor modifications are needed
to allow multiple agent behaviors so adaptive agent behavior
was straightforward.

We demonstrated the performance of the algorithm on a
number of synthetic test problems. The complexity grows
exponentially. However, the exponent is a very small number
(0.09); therefore, the exponential growth is not too bad for
practical applications. The algorithm is unique in its ability
to incrementally build–up the trajectory. In our future work,
we will extend this research effort to include operations for
guidance and control of autonomous vehicles for specific
surveillance purposes.

REFERENCES

[1] Y. Xie, L. Liu, G. Tang, and W. Zheng, “Highly constrained entry
trajectory generation,” Acta Astro., vol. 88, pp. 44–60, 2013.

[2] T. Howard and A. Kelly, “Optimal rough terrain trajectory generation
for wheeled mobile robots,” Int’l. J. Robotics Res., vol. 26, no. 2, pp.
141–166, 2007.

[3] T. Inanc, K. Misovec, and R. Murray, “Nonlinear trajectory generation for
unmanned air vehicles with multiple radars,” in Proc. 43rd IEEE Conf. on
Decision & Control, 2004, pp. 3817–3822.

[4] A. Kassidas, J. MacGregor, and P. Taylor, “Synchronization of batch
trajectories using dynamic time warping,” AIChE J. , vol. 44, no. 4, pp.
864–875, 1998.

[5] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: experimental comparison of
resentations and distance measures for time series data,” in Proc. PVLDB,
2008, pp. 1542–1552.

[6] L. Chen, M. Ozsu, and V. Oria, “Robust and fast similarity search for
moving object trajectories,” in Proc. SIGMOD 2005, 2005, pp. 491–502.

[7] S. Luke, “Multiagent simulation and the MASON library,”
http://cs.gmu.edu/˜eclab/projects/mason/.

[8] S. Das and P. Suganthan, “Differential evolution: a survey of the state-
of-the-art,” IEEE Trans. Evol. Comp., vol. 15, no. 1, pp. 4–31, 2011.

[9] R. Sarker, S. Elsayed, and T. Ray, “Differential evolution with
dynamic parameters selection for optimization problems,” IEEE
Trans. Evol. Comp., (accepted, in press).

1224

