
 

 

Abstract-Many-objective problem has more than 3 objectives. 
Because of the extraordinary difficulty of acquiring their Pareto 
optimal solutions directly, traditional methods will be out of 
operation for such problems. In recent years, many researchers 
have turned their attention to the study of this area. They are 
interested in two areas: acquiring some part of Pareto front 
which is useful to the researchers (Preferred Solutions) and 
reducing redundant objectives. In this paper, we combine two 
dimension reduction methods: the method based on Pareto 
optimal solution analysis and the method based on correlation 
analysis, to form a novel algorithm for dimension reduction. 
Firstly, the Pareto optimal solutions are acquired through 
NSGA-II. Then the objectives who contribute little to the 
number of non-dominated solutions are removed. At last, the 
dimension of objectives is reduced further according to their 
contribution to the principal component in PCA analysis. In this 
way, we can acquire the right non-redundant objectives with 
low time complexity. Simulation results show that the proposed 
algorithm can effectively reduce redundant objectives and keep 
the non-redundant objectives with low time. 

Keywords-Pareto optimal solution, PCA, many-objective 
optimization, multi-objective optimization, dimension 
reduction, DTLZ5 (I, M). 

I.  INTRODUCTION 

n recent years, Evolutionary Computation (EC) has become 
of intriguing interest. Objective optimization is one of the 

main applications of EC. A problem is considered as 
single-objective optimization problem if its objective is only 
one; and it is considered as multi-objective optimization 
problem if its objectives are more than one. In multi-objective 
optimization area, many-objective problem means its 
objectives being more than three [1]. The general model of a 
multi-objective optimization problem [2] is shown below:  
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Where, ࡲሺ࢞ሻ  indicates the objective vector; ݉  is the 
dimension of  ࡲሺ࢞ሻ; ࢞  represents the independent variable 
vector, which has a value between the upper bound ࢒ and the 
low bound ࢛ ; ݊  is the dimension of ࢞ ; ݃௜ሺ࢞ሻ  and ݄௜ሺ࢞ሻ 
represent the constraints of the optimization problem, 
including the equality and inequality constraints. As a general 
rule, an optimization problem involves several inequality 
constraints (ݍ) and equality constraints (k-q). If both ݍ and ݇ 
are equal to zero, the problem becomes an unconstrained 
multi-objective optimization problem; otherwise, the problem 
is called constrained multi-objective problem. 

II.  RELATED WORKS 
In the past few years, some classical multiobjective 

optimization algorithms based on evolutionary algorithm 
have proposed, such as NSGA-II [3], MOEA/D [4], PESA-II 
[5], SPEA2 [6] and so on. Nevertheless, when the objectives 
are more than 3, the many-objective optimization problems 
will involve some new features, which make the traditional 
classical algorithms poor effect, or even out of action. To 
solve such difficulties caused by the increase of objectives, 
we should first have some knowledge about the new features, 
and then search for some effective methods to solve these 
difficulties. 

 Along with the number of objectives increasing, the 
dimension of objective space grows rapidly. Any two 
individuals in the population are easier to be inter-dominated 
in the evolutionary process [4]. As a result, most individuals 
in the population become non-dominated in the early stage of 
evolution, making the selection strategy weaken its pressure 
to the Pareto front, or even lose its pressure [7]. This pressure 
is one of the main reasons that EAs can converge to the Pareto 
optimal solutions. 

 A simple method to solve the loss of selection pressure is 
to enlarge the size of population and increase the number of 
generations. A large population can make the probability that 
the new better solutions appear higher than a small 
population, while a large number of generation give 
algorithms more times to acquire better solutions. However, 
there have been some papers [8] pointed out that, when the 
number of objectives increases by one, the population should 
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also double itself to avoid losing its selection pressure. As a 
result, accompanied by the increase of the objectives, the 
population size expands exponentially [7]. 

 Along with the increase of objectives and population size, 
the computational complexity grows rapidly. When 
objectives are too many, the time EAs consume in obtaining 
the Pareto optimal solutions is often intolerable for a desktop 
computer. So an algorithm with low computational 
complexity must be found to reduce the time cost. This has 
been one of the difficulties we have faced with in 
many-objective optimization area in recent years.  

 The increase of the dimension of objective space will also 
cause difficulty in the visualization of Pareto front. When the 
objectives are more than 3, we could not show the high 
dimension Pareto front in Cartesian Coordinates system, 
which is different from multi-objective optimization problem 
with only 2 or 3 objectives. Lotov [9] and Tenenbaum [10] 
proposed methods for the visualization of high dimensional 
Pareto front, called decision map [9] and geodesic map [10], 
respectively. The analysis in reference [8] confirm that two 
methods need a huge amount of data, which makes them 
limited in application and still need much research. However 
we find that if we remove the non-conflictive objectives while 
keeping the inter-confliction among objectives, the 
dimension of objective space could be reduced. This is really 
helpful for the visualization of the final solutions, especially 
when the objectives can be reduced to 3 or 2. 

For traditional multi-objective optimization problem, 
researchers have proposed many test problems to inspect the 
effect of new algorithms. These test problems involve all 
kinds of features that Pareto front has, such as multimodal, 
deceptive multimodal, the bias, degenerated front, 
disconnected front, the concavity or convexity, and so on[11]. 
Moreover most of these test problems have the characteristic 
of scalability, that is, the objectives and the variables are 
scalable. As a result, these test problems can be applied to 
inspect many-objective optimization algorithms. For 
instance, Deb et al [12] proposed DTLZ test problem and 
Huband et al [11] proposed WFG test problem. There is a 
description about other common test problem in [11]. But few 
of these test problems have the degraded Pareto front. This is 
one of the features that make the objectives of these test 
problems can be reduced. Consequently, the test problems 
that can really be applied to test many-objective optimization 
algorithms, especially dimension reduction algorithms, are 
still not enough. For this reason, Deb et al improved the 
DTLZ5 test problem, and proposed DTLZ5 (I, M) test 
problem suit, which is specially used to test the effect of 
dimension reduction algorithms in many-objective 
optimization.  

In recent years, the research about many-objective 
optimization problems, especially those with a large number 
of objectives, is still inadequate. But on the other hand, what 
is promising is that there is more and more research in this 
area, and some algorithms have been proposed by researchers 
over the past few years. These algorithms resolve the 

many-objective optimization problems from the following 
aspects: 

1. In many-objective optimization problems, the users are 
not interested in all the Pareto optimal solutions, but only a 
local part of them. The rest parts may somehow cause 
interference to the final decision for users. Therefore, when 
dealing with such problems, users do not need to resolve all 
the Pareto optimal solutions, but only the ones the users 
interested in. Such method is called multi-objective 
optimization based on priori-knowledge. This method usually 
assumes that there are no redundant objectives [13] and may 
somehow lose diversity and shrinks the distribution of Pareto 
front. Because the priori-knowledge makes the individuals in 
the population converging to a special part of the Pareto front 
and reducing the non-dominated solutions, the selection 
pressure and the convergence to Pareto front are improved. 

  According to the way the priori-knowledge is considered, 
the priori-knowledge is divided into priori information, 
interactive information and posteriori information, which are 
described in detail in [1] and [14], while the posteriori 
information is the most common choice for the researchers 
[14]. Corne et al [15] effectively analyzed the characteristics 
of the Pareto optimal solutions, which offers us guidance 
about how to choose priori-knowledge and which part of the 
Pareto solutions is useful. Jaszkiewicz et al [16] proposed a 
complex relational model of local preference, and based on 
which a kind of immune clone algorithm solving preference 
multi-objective optimization problems was proposed [1]. 

2. In practical application, the assumption about 
non-redundant objectives doesn’t stand in most of common 
conditions. Zitzler [17] did a detailed analysis about the 
redundancy among the objectives in many-objective 
optimization. The main characteristic of the redundant 
objectives being removable is that there are correlations 
among some objectives in the internal of the Pareto optimal 
solutions and the values of these objectives increase or 
decrease simultaneously (or the trend is similar). Be such 
objectives removed, the Pareto optimal solutions could be 
acquired without influence, while the time needed could be 
saved. For this reason, this kind of optimization problems can 
be solved by computing the Pareto optimal solutions after the 
objectives being reduced. Through such Pareto optimal 
solutions, we can rebuild the whole Pareto front for the 
primitive problem. 

Many dimension reduction algorithms proposed in recent 
years mainly focus on two aspects: analyzing the 
non-dominated solutions or analyzing the correlations among 
objectives. Zitzler et al [17] have proposed a dimension 
reduction algorithm which is based on the dominance 
relationship among the Pareto optimal solutions. Meanwhile, 
Coello Coello et al [18] have proposed a dimension reduction 
algorithm using feature selection technique. This kind of 
algorithm is also called dimension reduction method based on 
the features. Deb et al [8] have proposed a dimension 
reduction algorithm based on PCA analysis, which uses the 
linear correlations among the objectives to reduce the 

1975



 

 

dimension of objective space. This algorithm is further 
developed in [13]. However, some papers point out that [11] a 
few of key points are enough to characterize the real 
dimension of objective space. A good method is the 
introduction of priori-knowledge, which can help us to 
acquire the key points among Pareto optimal solutions. Singh 
[19] has proposed the conception of “corner solution” and 
designed an algorithm of dimension reduction using this 
conception. 

3. In most of the multi-objective optimization algorithms, 
researchers use the concept of “Pareto optimal”, which was 
proposed by Edgeworth [20] and later improved by Pareto 
[21], to select and rank individuals in the population [22]. 
This method shows good effect when the objectives are few, 
but low efficiency with amount of time cost when the 
objectives are many. Therefore, researchers have proposed 
several improved concepts to instead “Pareto optimal”. For 
instance, the conception of “E-optimal” has been proposed in 
reference [22], and a fast algorithm has formed based on this 
concept. Some classic concepts of the representation of 
optimization have been summarized in reference [14]. 

 Although researchers have proposed lots of new thinking 
about dimension reduction, a single method either cannot 
reduce the dimension thoroughly or cost a long period of 
time. Therefore, how to reduce the time cost while keeping 
the effect of dimension reduction is an important aspect worth 
studying. Because different algorithms tend to have their own 
advantages and disadvantages, the combination of two or 
more such algorithms may offset their weakness and achieve 
a better effect. In this paper, we combine the advantages of 
two algorithms (the algorithm which is based on the analysis 
of the Pareto optimal solutions [19] and the algorithm which 
is based on the PCA analysis of objectives [13]) to design a 
new algorithm. While keeping the accuracy of dimension 
reduction, the algorithm costs less time than the algorithms in 
references [8] and [13], both of which are based only on the 
PCA analysis of objectives. 

The rest parts of this paper are organized as follows: the 
third part describes the proposed algorithm in detail; the 
fourth part presents the test problem suit which is used to 
verify the effect of the algorithm, meanwhile the result and its 
analysis will also be involved; the last part mainly 
summarizes the deficiencies of the proposed algorithm and 
the future research direction. 

III.  PARETO-PCA-NSGA-II ALGORITHM 
In this section, we introduce two dimension reduction 

methods used in the proposed algorithm, which are based on 
the analysis of Pareto optimal solution and the PCA analysis 
of objectives respectively, and the whole algorithm proposed 
in this paper, then we give the process of the proposed 
algorithm. We firstly acquire the Pareto optimal solutions 
using the NSGA-II algorithm, and then we reduce the 
objectives through the above two dimension reduction 
methods orderly and iteratively until no objective can be 

reduced. The analysis of the proposed algorithm will be 
shown as follows. 

A. The dimension reduction method based on analysis of 
Pareto optimal solutions 

1) The dimension reduction method based on “corner 
solutions” 

We know that there is a correspondence between Pareto 
optimal solutions and Pareto front, which is described by the 
objective functions. In order to acquire the maximum of the 
whole Pareto front, we have to keep the most of the Pareto 
optimal solutions when reducing the objectives. The 
dimension reduction method based on the analysis of Pareto 
optimal solutions takes the relative decrement of the Pareto 
optimal solutions as the criterion whether the corresponding 
objective should be removed. According to whether the 
criterion of the reduction is to minimize the objectives with a 
certain decrement of Pareto optimal solutions or to maximize 
the Pareto optimal solution with a certain number of 
objectives, Singh et al [19] proposed δ-moss problem which 
takes the former criterion and k-moss problem which takes 
the latter criterion. Because δ-moss problem does not need to 
know the number of objectives, this kind of problem is 
commonly used. 

  Let ிܰ  and ிܰି௙  respectively represent the number of 
Pareto optimal solutions before and after one objective is 
removed, then the ratio of the two variables can be 
determined by the following formula: ௙ܴ ൌ ேಷష೑ேಷ                                   (2) 

  When the value of ௙ܴ is bigger than a certain threshold 
which is artificially settled, the removal of the corresponding 
objective may has little effect on the Pareto optimal solutions, 
which means the corresponding objective should be removed. 
On the other hand, if the value is less than the threshold, then 
the effect is great, and the objective should not be removed. 

  In [19], Singh proposed the concept of “corner solution” 
and designed a dimension reduction algorithm based on this 
concept. “Corner solutions” are some special points among 
the Pareto optimal solutions. If the solutions converge to one 
special point when one or more objectives take the minimum 
values, we call this point “corner solution”. The dimension 
reduction algorithm based on the corner solution takes these 
corner solutions as the representation of Pareto optimal 
solutions, and realizes very low time complexity. 
2) The dimension reduction method based on uniform 

Pareto optimal solutions  
In spite of its low time complexity, the dimension 

reduction algorithm based on corner solutions [19] cannot 
guarantee the thoroughness of dimension reduction. 
Meanwhile, in the process of acquiring the corner solutions, 
the shapes of Pareto front may have some influence on the 
result, which means some interference point may appear to 
impact the final result of dimension reduction.  

  The proposed algorithm takes advantage of the main 
principal of the method in reference [19]. As the difference 
between the two methods in this paper and reference [19], for 
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ease of the PCA analysis after the analysis of uniform Pareto 
optimal solutions, we use the uniformly distributed Pareto 
optimal solutions on the Pareto front instead of the corner 
solutions in reference [19]. There is no doubt that this will 
increase the computational complexity and the time cost, but 
the final result will not be influenced by the shape of Pareto 
front, thereby accuracy of dimension reduction is enhanced. 
In addition, in order to minimize the number of objectives, the 
proposed algorithm carries the analysis of Pareto optimal 
solutions iteratively until the result of the analysis doesn’t 
change, which is different from the one iteration of corner 
solutions analysis [19]. In this way, the dimension of 
objective space can be reduced thoroughly.  

  In the analysis of uniform Pareto optimal solutions, the 
first step is to acquire the Pareto optimal solutions which are 
uniformly distributed on the Pareto front. NSGA-II [3] is 
adopted to obtain such an approximation of Pareto optimal 
solutions. And then, we use the method introduced above to 
estimate whether the corresponding objective is removable; if 
not, we should restore the objective; if yes, considering that 
the objective has been removed, we should do nothing. In 
spite of NSGA-II, some other algorithms can also acquire 
uniformly distributed Pareto optimal solutions, such as 
MOEA/D, which can used instead of NSGA-II. It can be 
found from the later analysis that even if the solutions cannot 
converge to the real Pareto Front accurately, this method still 
works. The process of dimension reduction method in the 
paper is shown in Algorithm 1. 
Algorithm 1: The dimension reduction method based on uniform 
Pareto optimal solutions 
variables：Rpa：Pareto non-dominated population; 
         NF：The number of non-dominated solution in Rpa; 
         DRpa：The Pareto non-dominated population after one 
objective is removed; 
         NF-f：The number of non-dominated solution in DRpa; 
         C：the threshold of the ratio of NF-f and N. 

Algorithm process: 
1. Initialize the iteration count variable: i=0; 
2. Acquire the Rpa through running the NSGA-II algorithm; 
3. While i<the dimension of objective space 
4.      NF←the number of non-dominated solution in Rpa; 
5.      Remove the ith objective in objective space; 
6.      Reacquire the DRpa through non-dominated strategy;  
7.      NF-f←the number of non-dominated solution in DRpa;  
8.      Calculate the ratio of NF-f and NF: Rf=NF-f/NF; 
9.      If Rf<C, then remain the situation; otherwise rebuild the   
          ith objective in objective space;  
10.      i=i+1; 
11. end 

B. Dimension reduction process based on PCA analysis 
1)  PCA analysis 

PCA analysis is the abbreviation of principal component 
analysis, which is a kind of statistical analysis tool for 
multivariate data. The main function of such tool is to reduce 
the dimension of the data through analyzing the statistical 
correlation, minimizing the correlation and keeping the 
biggest variation among the data. 

  When applying the PCA to EAs, we should firstly acquire 
the Pareto optimal solutions. Then, through the PCA analysis 

of these solutions, we can acquire the information about 
principal component and secondary components. After that, 
we can rank the objectives according to their contributions to 
the principal component and secondary components. And 
finally, the objectives with little contribution should be 
removed. 

Among the statistic characteristics of the data, the 
covariance matrix and correlation matrix both contain the 
linear correlation among the data. Therefore both matrixes are 
often adopted by the PCA analysis. For instance, the 
correlation matrix is adopted in reference [8]. However, 
because both matrixes could only involve the linear 
correlation among the data and lose the nonlinear correlation, 
the algorithm in reference [8] has some limitations. Deb [13] 
used kernel matrix instead of the correlation matrix, he 
proposed a nonlinear dimension reduction framework. 

 Because the data used for PCA analysis usually locate in a 
specific interval, the results of PCA analysis are related to the 
interval. To keep the accuracy of PCA analysis, we should 
solve the Pareto optimal solutions accurately, or we might be 
led to the wrong results. To assure that the solutions are 
located on the Pareto front, the algorithms in references [8] 
and [13] take large-scale population and thousands of 
iterations. Nevertheless, such a process may cost huge 
amount of time which might be out of the capacity of a 
common desktop computer. The algorithm may be more 
practical if we can lessen the time cost of the algorithm. 
2) The process of dimension reduction based on PCA 

analysis 
The PCA in this paper still follows the general principle of 

PCA. That is, we firstly obtain the Pareto optimal solutions; 
and then carry the PCA analysis of the solutions. Because 
most of the redundant objectives are removed during the 
analysis of Pareto optimal solutions, few objectives, or even 
no objective is removed during the PCA analysis sometime. 
To assure that the redundant objectives are totally removed, 
we should reduce the dimension of objective space iteratively 
with the analysis of Pareto optimal solutions. The process of 
dimension reduction based on PCA analysis is shown in 
Algorithm2. 

Algorithm2: the process of PCA analysis 
variables：Rpa：Pareto non-dominated population; 
  C: threshold of calculation of the eigenvalue; 
  CT: threshold of the correlation coefficient between objectives. 
Algorithm process: 
1. Initialize the iteration count variable: i=0; 
2. R←the correlation coefficient matrix of Rpa; 
3. EigValue←the eigenvalue vector of the matrix R*R,  
     EigValueVector←the eigenvector matrix of the matrix R*R; 
     EigValue←the normalized vector of EigValue, 
     The vector EigValue and each row of the matrix EigVector are 
ordered based on the order of the value of EigValue elements in 
small to large;  
4. EigV←EigValue(1), EV←EigVector(:,1), ReOrder←the 
subscript of objectives corresponding to the maximum and 
minimum value of the elements in vector;  
5. i←2; C=0.97 
6. While EigV<C 
7.      EV←EigVector(:,i), EigV=EigV+EigValue(i) 
8.     If EigValue(i)<0.1
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9.        Re ←the subscript of objectives corresponding to the 
            maximum value of the elements in vector EV; 
10.        ReOrder←[ReOder; Re]                                                     
11.      Else 
12.        t=sign(EV),l=length(EV); 
13.        If sum(t)=l or sum(t)=-l 
14.          Re ← the subscript of objectives corresponding to the 
maximum value of the elements in vector EV; 
15.          ReOrder←[ReOder; Re] 
16.        Else 
17.          PM←max(EV);NM←min(EV) 
18.           If PM>|NM|&|NM|>0.8*PM || PM<|NM|&PM>0.8*|NM| 
19.             Re←the subscript of the objectives corresponding to 
PM and NM in EV 
20.             ReOrder←[ReOder; Re] 
21.          Else 
22.              Re←the subscript of objectives corresponding to 
max(PM,|NM|) in EV 
23.               ReOrder←[ReOder; Re] 
24.          End 
25.        End 
26.    End  
27. End of if and while 
28. Remove the recurring objectives in vector ReOrder; 
29. R1←R(ReOrder,ReOrder); 
30. a←length(ReOrder);b←length(FOv) 
31. CT←(1-a/b)*C 
32. for every two column of R1 , presented as the ith and jth 
column (i<j) 
33.  If the sign of the two column are exactly the same, then 
34.        If R1(i,j)>CT 
35.          ReOrder(j) should be removed from ReOrder 
36.        end  
37.  End 
38. End of for  
39. The objective remained in vector ReOrder are the last 
non-redundant objective. 

C. The main framework of the algorithm 
The proposed algorithm firstly obtains the Pareto optimal 

solutions using the NSGA-II algorithm. And next, we use the 
analysis of uniform Pareto optimal solutions to reduce the 
dimension of objective space, which alternate with the 
NSGA-II iterations until the dimension of the objective space 
cannot be reduced. After that, the dimension of the objective 
space will be reduced further through PCA analysis of 
objectives. To assure that the dimension has been reduced 
adequately, the whole process will be carried out iteratively, 
until the dimension of the objective space cannot be reduced 
any more in both processes of PCA analysis and the analysis 
of uniform Pareto optimal solutions. 

 To make the furthest use of the data acquired during the 
NSGA-II iterations, the method of online dimension 
reduction [13] will be adopted. The whole process of the 
proposed algorithm is shown as following: 

Algorithm 3: The main framework of the proposed algorithm 
variables：FOv：objective vector; ORc：the threshold of Pareto 
analysis dimension reduction; Epop,Epa：the parent population in 
variable space ad objective space; Rpa：Pareto non-dominated 
population; SGMax：the number of iteration of population;         
SNM：population size. 
Algorithm process： 
1. Initialize the vector FOv and the threshold ORc, randomly 
generate the Parent population EPOP and calculate the value of the 
individuals in EPOP which are stored in Epa; 
2. Run the algorithm NSGA-II with the size of the population SNM 

and the maximum generation SGMax 
3. Rpa←the Pareto non-dominated population acquired using the 
algorithm NSGA-II 
4. Reduce the dimension of objective space through the analysis of 
the Pareto optimal solution in Rpa, the result of dimension 
reduction is stored in vector Tov 
5. If length(TOv)!=length(FOv), then FOv←TOv, and goto step 2; 
otherwise goto step 6 
6.Reduce the dimension of objective space through the PCA 
analysis of the objective in Rpa, the result of dimension reduction 
is stored in vector Tov 
7. If length(TOv)!=length(FOv), then FOv←TOv, and goto step 2; 
otherwise the algorithm is ended. And the final result is stored in 
FOv. 

IV.  SIMULATION RESULTS 
A.  DTLZ5 (I, M) test problem suit 

DTLZ5 (I, M) [8] test problem suit was improved from 
DTLZ5 test problem [12]. DTLZ5 has a degraded Pareto 
front, which is a good feature for dimension reduction. 
However, due to the fixed number of non-redundant 
objectives in the test problem, DTLZ5 could not adequately 
test the effect of the algorithms. DTLZ5 (I, M) test problem 
suit overcame the shortage of DTLZ5, Making the number of 
objectives M, the number of non-dominated objectives I and 
the number of variables n changeable without influence to 
each other. For this reason, Deb et al proposed DTLZ5 (I, M) 
to test the effect of the algorithm he proposed. Moreover, this 
test problem suit is also used in reference [8]. For the clarity, 
the common formula of DTLZ5 (I, M) test problem suit [8] is 
given as follows. 

 
where, xM is the distance parameter [11], while x1~xM-1are the 
position parameters [11]. During the evolution, the location 
of individuals on the Pareto front and the dimension of 
objective space are decided by x1~xM-1, while xM only affects 
the way individuals converge to the Pareto front. Both x1~xM-1 
and xM form the variable space, and the values of them range 
in the interval [0, 1]. On the assumption that the dimension of 
xM is k, the dimension of variable space could be decided by 
the fo formula (4) [8]: ݊ ൌ ܯ ൅ ݇ െ 1                                 (4) 
  In the formulas (3) and (4), M is the dimension of the 
objective space, and I in formula (3) is the real dimension of 
the Pareto front. The objective values of the Pareto optimal 
solutions have the following relationship [8]: ∑ ሺ ௜݂ሻଶ ൌ 1M௜ୀଵ                                  (5) 
  This formula could help us to estimate whether the 
individuals converge to the Pareto front. 

min ଵ݂ሺ࢞ሻ ൌ ൫1 ൅ 100݃ሺ࢞ெሻ൯ ଵሻߠሺݏ݋ܿ ڮ ெିଶሻߠሺݏ݋ܿ ெିଵሻ minߠሺݏ݋ܿ ଶ݂ሺ࢞ሻ ൌ ൫1 ൅ 100݃ሺ࢞ெሻ൯ ଵሻߠሺݏ݋ܿ ڮ ெିଶሻߠሺݏ݋ܿ ெିଵሻߠሺ݊݅ݏ min ڭ        ڭ      ெ݂ሺ࢞ሻ ൌ ൫1 ൅ 100݃ሺ࢞ெሻ൯  ଵሻߠሺ݊݅ݏ

௜ߠ ൌ ൞ 2ߨ ݅                                        ௜ݔ ൌ 1,2, ڮ , ܫ െ 4൫1ߨ 1 ൅ ݃ሺ࢞ெሻ൯ ሺ1 ൅ 2݃ሺ࢞ெሻݔ௜ሻ    ݅ ൌ ,ܫ ڮ , ሺܯ െ 1ሻ 0 ൑ ௜ݔ ൑ 1 ݎ݋݂ ݅ ൌ 1,2, ڮ , ݊ 

݃ሺ࢞ெሻ ൌ ∑ ሺݔ௜ െ 0.5ሻଶ    ௫೔࢞אಾ                                                         (3) 
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B.  The relevant parameter settings 
In order to facilitate the comparison of the proposed 

algorithm with that in reference [8], we use the same scale of 
population as in reference [8] which involves 800 individuals. 
To assure that the population has adequately evolved before 
the PCA analysis, we arrange 400 iterations for every 
NSGA-II process. Large numbers of experiments show that 
the ideal threshold of Rf is between 0.7 and 0.8, which in this 
interval has little effect on the result of dimension reduction. 
However, when the value of Rf is too small, the iterations tend 
to stop prematurely and result in the deletion of 
non-redundant objectives; while when the value is too large, 
it tends to remove few objectives before the PCA analysis, 
making it difficult to effectively converge to the Pareto 
optimal solutions. Generally we set the Rf to be 0.8. 

C.  The analysis of the results 
Because the same test problem suit is adopted in this paper 

and in reference [8], and the algorithm in reference [8] has a 
better effect than other algorithms while being completed in 
the theoretical analysis, the algorithm in reference [8] is 
chosen to compare with the proposed algorithm. Compared 
with the larger number of iterations in the NSGA-II process, 
the time cost of the PCA analysis and the analysis of uniform 
Pareto optimal solutions could be ignored. Meanwhile, 
because both two algorithms have the same scale of 
population, the time complexity of two algorithms could be 
compared by the total iterations of the NSGA-II adopted in 
this paper. 
1) The analysis of the simulation results 

In the process of dimension reduction, before the PCA 
analysis, we should first make the population converge to the 
Pareto front through a huge number of iterations. However, 
the experiments tell us that, when the dimension of objective 
space is high, it is hard for the population to converge to the 
Pareto front even if a huge number of iterations are carried. 
For instance, we have carried an experiment using DTLZ5 (2, 
10) test problem, which has ten objectives with two 
dimensional Pareto front. We ran NSGA-II on it using a 
population of 800 individuals for a thousand iterations. The 
simulation results are shown in figure1. 

  
(a)                      (b) 

Figure1: Pareto optimal solutions of DTLZ5 (2, 10) 

Figure 1 (a) shows the resulting Pareto front of 1000 
iterations, meanwhile figure 1 (b) represents the real Pareto 
front of this problem [8]. The axes represent respectively the 
objective f9 and f10. The comparison of two figures tells us 
that, even though 1000 iterations have been carried, the 

individuals of the population could not converge to the real 
Pareto front, and many of them are located in the wrong place. 
Moreover, in the whole process of the algorithms in 
references [8] and [13], the number of objectives tends to 
decrease. As a result, there is no need to carry so huge scale of 
population and such large number of iterations when the 
objectives are few. For this reason, using the changeable scale 
of population and iterations according to the number of the 
objectives is a good way to reduce the time cost of the 
algorithm. On the other hand, if we could reduce some 
redundant objectives before the PCA analysis, then we can 
enhance the selection pressure of individuals and make it 
easier for the population to converge to the Pareto front. The 
proposed algorithm performs the analysis of uniform Pareto 
optimal solutions to remove the redundant objectives before 
the PCA analysis. In order to illustrate the feasibility of this 
process more clearly, we give the result of the analysis of 
Pareto optimal solutions for DTLZ5 (2, 10) and DTLZ5 (3, 
10) respectively in table 1 and table 2. 

  In both two tables, we ran the NSGA-II on both two 
problems for 1000 iterations with the population of 800 
individuals, we statistic the ratio of the number of Pareto 
optimal solutions before and after each objective being 
removed after every 100 iterations. Each row of the tables 
represents the results of every statistic, while each column 
represents 10 statistical results for every objective. Each cell 
in tables corresponds to the value of ௙ܴ for every objective 
mentioned in part 2. In order to make the results of the 
analysis more clear, we use the underline to emphasize the 
objectives with low statistic ratio. 

Table 1: Results of DTLZ5 (2, 10) 
Iterations f1    f2    f3    f4   f5   f6    f7    f8     f9    f10 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

0.668 0.700 0.890 1.000 0.962 0.840 0.885  0.503  0.329  0.016 
0.576 0.710 0.907 0.997 0.995 0.943 0.553  0.350  0.196  0.089 
0.572 0.707 0.882 1.000 0.992 0.987 0.577  0.310  0.171  0.060 
0.648 0.675 0.849 1.000 1.000 0.997 0.578  0.351  0.199  0.066 
0.602 0.703 0.848 0.999 0.994 0.997 0.585  0.358  0.179  0.058 
0.576 0.688 0.865 1.000 0.996 0.994 0.579  0.313  0.173  0.060 
0.624 0.659 0.862 1.000 0.998 0.996 0.513  0.349  0.188  0.062 
0.601 0.688 0.849 0.999 0.988 1.000 0.555  0.381  0.201  0.064 
0.654 0.651 0.848 1.000 0.991 0.992 0.622  0.393  0.198  0.064 
0.673 0.630 0.846 1.000 0.998 0.992 0.623  0.369  0.204  0.058 

Table 2: Results of DTLZ5 (3, 10) 
Iterations f1    f2   f3    f4    f5   f6     f7    f8     f9    f10 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000

1.000 0.999 0.999 0.999 0.998 0.996 0.996  0.007  0.008  0.005 
0.999 0.999 0.996 0.996 0.994 0.992 0.990  0.003  0.009  0.005 
1.000 0.999 0.998 0.998 0.996 0.995 0.995  0.004  0.009  0.002 
1.000 0.999 0.998 0.997 0.997 0.996 0.995  0.003  0.006  0.002 
1.000 0.999 0.997 0.995 0.995 0.994 0.994  0.002  0.003  0.009 
1.000 0.996 0.996 0.994 0.993 0.991 0.990  0.002  0.007  0.005 
1.000 1.000 0.999 0.997 0.994 0.993 0.991  0.003  0.006  0.004 
1.000 0.999 0.999 0.999 0.997 0.997 0.995  0.004  0.008  0.004 
1.000 0.999 0.997 0.996 0.995 0.991 0.988  0.005  0.006  0.005 
1.000 1.000 0.999 0.999 0.998 0.994 0.992  0.003  0.004  0.007 

  Through two tables we could find that even in the early 
stage of the evolution, there always are some objectives that 
have a small value of ௙ܴ, such as the objectives f9 and f10 in 
the 100th iterations and the objectives f8, f9 and f10 after 
200th iterations in DTLZ5 (2, 10), and the objectives f8, f9 
and f10 in DTLZ5 (3, 10). While being the reason why the 
algorithm in references [19] and [17] could achieve good 
effect, this situation universally exists in the many-objective 
optimization problems. This situation indicates that we could 
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retain the non-redundant objectives that have a great 
contribution to the dominance relationship, even though the 
population hasn’t converged to the Pareto front and there are 
redundant objectives kept. For example, in DTLZ5 (2, 10), if 
we set the threshold C of  ௙ܴ to 0.8, only 4 objectives could be 
identified as redundant objectives and removed in the first 
statistical analysis. As a result, the redundant objectives 
couldn’t be removed totally during the analysis of uniform 
Pareto optimal solutions. The PCA analysis is still in need to 
remove the redundant objectives left. Because the redundant 
objectives could not be removed at all, the final result is 
mainly determined by the PCA analysis. If the PCA analysis 
could not remove the redundant objectives totally, or 
mistakenly remove the non-redundant objectives, the effect of 
the algorithm will become bad. 
2) DTLZ5 (I, 10) test problems 

The test problems with 10 objectives are experimented. In 
order to clearly understand the whole process of dimension 
reduction and analyze the result of every sub process, the 
experiments in this paper keeps the results after every PCA 
analysis and the analysis of uniform Pareto optimal solutions. 
Take the problem DTLZ5 (2, 10) for instance, we describe the 
whole process of the algorithm as follow: 

Table 3: Analysis of dimension reduction of DTLZ5(2, 10) 
Pareto Analysis1 f1  f2  f3  f6  f7  f8  f9  f10 
Pareto Analysis2 f3  f7  f2  f1  f9  f8  f10 
Pareto Analysis3 f3  f2  f1  f8  f9  f10 
Pareto Analysis4 f2  f1  f3  f8  f9  f10 
PCA1 f10  f9 
Pareto Analysis5 f9  f10 
PCA2 f10  f9 

  As shown in table 3, the algorithm has carried 5 times 
analysis of uniform Pareto optimal solutions and twice PCA 
analysis. f4 and f5 are removed after the first Pareto analysis, 
after that, f6 and f7 are removed respectively after the second 
and third Pareto analysis. While there is no objective removed 
during the fourth and fifth Pareto analysis, the PCA analysis 
will be carried out to reduce the redundant objectives further. 
Since the smallest non-redundant objective set has been 
obtained after the first PCA analysis, the rest process is not 
necessary. But the situation is not always the same. The later 
experiments will prove that more than one PCA analysis 
should be carried out before acquiring the smallest 
non-redundant objective set. However, to assure that the 
redundant objectives have been removed totally, an extra 
PCA analysis has to be carried out. 

 Figure 2 (a) and figure 2 (b) gives the Pareto fronts of the 
problems DTLZ5 (2, 10) and DTLZ5 (3, 10) acquired by 
NSGA-II after the dimension reduction.  

  
(a)                                                  (b) 

 
(c)                                                 (d) 

Figure 2: the Pareto fronts of DTLZ (I, 10) acquired by the NSGA-II after 
dimension reduction 

 Similarly, the mixture of the real Pareto fronts and the 
experimental results of both problems are shown respectively 
in figure 2 (c) and figure 2 (d). From both figures we can find 
that the experimental Pareto fronts have adequately 
converged to the real Pareto fronts, the results of the 
experiments and the real Pareto fronts have been coincident. 

In order to compare the difference between the proposed 
algorithm and the algorithm in reference [8], we give the 
smallest non-redundant objective set and the time cost of the 
problems DTLZ5 (2, 10), DTLZ5 (3, 10) and DTLZ5 (5, 10) 
for both algorithms in table 4. The comparison of both 
characteristics shows great advantage of the proposed 
algorithm. 
Table 4: The comparison of the proposed algorithm and PCA-NSGA-II in [8] 

Test problems The proposed algorithm  PCA-NSGA-II in [8] 
result  iterations result iterations 

DTLZ5(2,10) f9 f10 2000 f9 f10 3000 
DTLZ5(3,10) f8 f9 f10 800 f8 f9 f10 3000 
DTLZ5(5,10) f6 f7 f8 f9 f10 800 f1 f7 f8 f9 f10 3000 
Table 4 indicates that both algorithms can find the smallest 

non-redundant objective set. However, compared with the 
3000 iterations of PCA-NSGA-II [8], the proposed algorithm 
performs only 2000 iterations before the smallest 
non-redundant objective set is identified in the problem 
DTLZ5 (2, 10). The time cost is shortened by about one third. 
In DTLZ5 (3, 10), the proposed algorithm performs only 800 
iterations, which means that the time cost is shortened by 
about two third compared with the algorithm in reference [8]. 
As a result, the time complexity of the proposed algorithm is 
significantly decreased. 
3) DTLZ5 (I, 20) test problems 

In the DTLZ5 (I, 20) test problems, we take the situation 
when the parameter I equals to 2, 3 and 5 respectively, the 
results are shown in table 5. 
Table5: The comparison of the proposed algorithm and PCA-NSGA-II in [8] 

Test 
problems 

The proposed algorithm  PCA-NSGA-II in [8] 
results  iterations results iterations 

DTLZ5(2,20) f17 f20 2000 f17 f19 f20 5000 
DTLZ5(3,20) f16 f19 f20 2400 f16 f19 f20 6000 

DTLZ5(5,20) f14 f17 f18 f19 
20 2800 f1 f17 f18 f19 

f20 2000 

  We can find from the table 5 that the proposed algorithm 
could also find the smallest objective set with a relative low 
time cost when the number of objectives is as high as 20. 
However, because the analysis of uniform Pareto optimal 
solutions could not removes all the redundant objectives and 
the removed objectives are uncertain, the results vary among 
some smallest non-redundant objective sets. Figure 3 shows 
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the restored Pareto front using the Pareto optimal solutions 
acquired by the NSGA-II after the dimension reduction. 

 
(a)                                     (b) 

 
                            (c)                                              (d)               

 
                             (e)                                         (f)               

Figure 3: the Pareto fronts  by different non-redundant objective set 

In figure 3, the axes of figure 3 (a), (b) and (c) represent 
respectively the objectives [f19 f20], [f18 f20] and [f17 f20], 
while the Pareto fronts in these three figures corresponds to 
the same Pareto optimal solutions. These three figures show 
that any of these three objective sets could be the final result 
of the algorithm of dimension reduction. In the DTLZ5 (3, 
20) problem in figure 3, the axes of the figure 3 (d), (e) and (f) 
represent respectively the objectives [f18 f19 f20], [f17 f19 
f20] and [f16 f19 f20]. These three figures have the same 
situation as the DTLZ5 (2, 20) test problem. Figure 3 shows 
that the non-redundant objective sets are many in the 
optimization problems whose objectives have the 
characteristic of dimension reduction. 

In the problem DTLZ5 (5, 20), we find that the time cost of 
the proposed algorithm exceeds that in reference [8], 
however, the proposed algorithm succeeds in finding the right 
non-redundant objectives, thus avoiding the bad convergence 
to the Pareto front caused by the objective f1. 

V.  CONCLUSION 
The proposed algorithm combines two dimension 

reduction methods: the analysis of Pareto optimal solutions 
[17,19] and the PCA analysis of objectives [8,13]. The 
experiments are designed using the DTLZ5 (I, M) problem 
suit to test the performance of the proposed algorithm. The 
simulation results show that the proposed algorithm could 
acquire the smallest non-redundant objective set while 
significantly reducing the time complexity of algorithm. 

However, because NSGA-II is used to acquire the Pareto 
optimal solutions, the time cost is still very high. Finding a 
fast algorithm to instead the NSGA-II is a good way to reduce 
the time cost, which is also the future focus of the study. 
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