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Abstract—Order acceptance and scheduling (OAS) is a hard
optimisation problem in which both acceptance decisions and
scheduling decisions must be considered simultaneously. Design-
ing effective solution methods or heuristics for OAS is not a trivial
task, especially to deal with different problem configurations and
sizes. This paper proposes a new heuristic framework called
forward construction heuristic (FCH) for OAS and develops
a new sequential genetic programming (SGPOAS) method for
automatic design of FCHs. The key idea of the new GP method is
to learn priority rules directly from optimal scheduling decisions
at different decision moments and evolve a set of rules for FCHs
instead of a single rule as shown in previous studies. The results
show that evolved FCHs are significantly better than evolved
single priority rules. The evolved FCHs are also competitive with
the existing meta-heuristics in the literature and very effective
for large problem instances.

Index Terms—genetic programming, scheduling, heuristics

I. INTRODUCTION

Order acceptance and scheduling (OAS) is a planning
problem in make-to-order manufacturing systems. OAS aims
to determine which customer orders to be accepted and how
these orders are scheduled in order to optimise the use of
manufacturing resources. As compared to the pure scheduling
problems where only scheduling decisions are taken into
account, OAS is more complicated because both acceptance
and scheduling decisions need to be considered simultaneously
to find the optimal solutions. This paper focuses on the OAS
problem in the single machine environment with dependent
setup times [1], [2], [3]. Given a set of N customer orders,
each order j € {1,..., N} is characterised by a release time
T;, a processing time p;, a due date d;, a weight/penalty w;,
a maximum revenue ¢;, and a deadline J] Before an order j
is processed, a (dependent) setup time s; ; is required if order
J is processed right after order i (sg; is the setup time of
order j if it is the first order to be processed). If the order
is completed before the due date d;, the profit prt; obtained
from order j is the maximum revenue e;. Otherwise, prt; is
the remaining profit after deducting the penalty caused by the
tardiness 7; = max(0,C; — d;) from e;, where C; is the
completion time of order j. Generally, the profit obtained by
an order j can be calculated by prt; = e; — w;T;. If orders
are finished after their deadlines d_j no profit is gained and
these orders are rejected. The objective of this problem is to
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maximise the total profit TPR = } ., prt; where A is the
set of accepted orders. A Mixed Integer Linear Programming
(MILP) model of this problem is presented in Oguz et al. [4].

Ghosh [5] proved that OAS is NP-hard and previous works
have shown that finding optimal solutions in this case is very
challenging, even for small instances [1], [6], [7]. Therefore,
several heuristics have been proposed to search for near
optimal solutions for OAS. Rom and Slotnick [8] developed a
hybrid method in which solutions found by a genetic algorithm
(GA) are further improved by a local search heuristic. In their
proposed GA method, a solution is an array of real numbers
corresponding to all orders, which decides the sequence in
which orders are processed (orders that do not increase total
profit will be rejected). Huang et al. [9] considered the OAS
problem with setup costs as a major factor (due dates and
penalty costs are ignored) and proposed an algorithm for this
problem by formulating it as resource-constrained profitable
tour problem. Oguz et al. [4] developed a simulated annealing
method (ISFAN) for the OAS problem with dependent setup
times in customised packing material producers and showed
that their proposed method can find good solutions for large
scale problem instances. Cesaret et al. [1] developed a tabu
search (TS) method to handle the same OAS problem and
the experimental results showed that the proposed TS method
outperformed ISFAN in most instances. Lin and Ying [3]
developed a hybrid artificial bee colony (ABC) method for
OAS, where an effective iterated greedy local search heuristic
is employed to enhance the quality of solutions found by ABC.
Genetic Programming (GP) [10] has been successfully used
for many scheduling problems [11], [12], [13] and it has been
also applied in OAS to find reusable and effective scheduling
rules to generate initial solutions for search heuristics [2].
The experimental results show that the proposed GP method
can improve the effectiveness and efficiency of the search
heuristics. Different representations and evaluation schemes
in GP for OAS were latter investigated by Park et al. [14]. A
comprehensive review of OAS can be found in Slotnick [15].

Previous studies have shown that GP is an effective method
to design heuristics for OAS [14] or enhance the performance
of other meta-heuristics [2]. However, there are two main
limitations with the current GP methods. Because heuristics
evolved by GP are restricted to a single priority rule, it
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Figure 1: Constructing an active scheduling with the priority rule p; + e;%s; ;.

is very difficult for these evolved heuristics to cover all
situations of the OAS problem. This is the main reason
why the evolved heuristics are usually not as competitive
as the highly customised meta-heuristics for OAS. The other
limitation is that the fitness of evolved heuristics is measured
by their performance on training instances. This approach is
quite simple and is able to reflect the average performance
of evolved heuristics, at least at the instance level. However,
this approach does not point out whether a decision made at
a decision moment (at the beginning of the schedule or when
an order is completed) is correct or not. As a result, we do
not know whether evolved heuristics perform well or badly
in a certain situation. Moreover, because the fitness is based
on the relative error between the obtained objective values
and the referenced objective values (normally an upper bound
from solving the MILP model [4]), certain biases may occur
(e.g. from loose upper bounds for certain instances). This may
make GP evolved heuristics more specialised on certain cases
and deteriorate their generality.

A. Goals

The goal of this paper is to develop a new genetic program-
ming method to learn heuristics for OAS based on optimal
scheduling data. The novelty of the proposed method is two-
fold. First, the fitness of evolved priority rules depends on how
well the rules perform at each decision moment rather than
the final objective values obtained from each training instance
usually used in previous studies. Second, a sequential learning
method is developed to learn a set of priority rules to cope with
different situations. In order to achieve our goal, the following
research objectives need to be fulfilled.

i. Designing forward construction heuristics to build com-
plete OAS solutions based on a set of priority rules.
ii. Generating a dataset of optimal scheduling decisions.
iii. Developing a new genetic programming method to learn
a set of priority rules from the generated dataset.

B. Organisation

The rest of this paper is organised as follows. The next
section proposes new forward construction heuristics (FCHs)
for OAS. Section III describes how the dataset of optimal
scheduling decisions is generated using branch-and-bound

(B&B). In Section IV, we describe the new GP method [14] for
generating a set of rules employed in FCHs. The performance
of the proposed GP method is compared to that of the existing
GP method in Section V. Then, we compared the performance
of evolved FCHs with other meta-heuristics in the literature.
Finally, we provide conclusions and discussions for future
research in Section VI.

II. FORWARD CONSTRUCTION HEURISTICS

As discussed in the previous section, the heuristics evolved
by the existing GP method [14] are mainly based on a
single priority rule; and therefore, it is very difficult for these
heuristics to capture all situations in OAS. In this section,
we develop a new forward construction heuristic (FCH) to
build a complete OAS solution based on a set of priority rules.
The key principle of this heuristic is to combine priority rules
specialised for different situations together in order to improve
the quality of the final obtained solutions.

A. Constructing active schedule

An example of how a priority rule can generate an OAS
solution is shown in Figure 1 (the priority rule is represented
in tree-form which is used in GP). The procedure in this figure
starts by building a list of unscheduled active orders which can
be processed before their deadlines (see the definition of active
orders in this paper in the next paragraph). Then, the evolved
rule calculates the priority of each order in the list using the
corresponding information of that order. After priorities are
assigned to all orders in the list, the order with the highest
priority will be processed (and certainly this order is accepted).
The current time of the schedule (ready time to process the
next order) is adjusted. The list of unscheduled active orders is
updated and the procedure stops if no order can be completed
before its deadline.

Given a set K of unscheduled orders, an order j is called
active if r; < t(K) where ¢(K) = minjcg { max{r;,t} +
Sprev,j + pj}, t is the current decision moment, and prev
is the index of the previously completed order. Only active
schedules are considered here in order to avoid wasting the
available capacity of the machine. It should be noted that
active schedules generated in this case do not necessarily
contain an optimal schedule because of the dependent setup
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Algorithm 1 Pseudocode for FCH

1: let £ (initially empty) be the list of determined rules for
each decision moment

2: let S* be the best found solution

3: repeat

4: L+~ L

5:  let S be the partial solution

6:  while £’ is not empty do

7: select the order j to process next using one loop of
the procedure in Figure 1 with the first rule in £’

8: insert j into S

9: remove the first rule from £’

10: end while
11:  if there are no unscheduled orders then

12: break;

13:  end if

14. for all A € Ado

15: Sp < S

16: select the order j to process next using one loop of
procedure in Figure 1 with A#'; insert j into S},

17: Sk < applying the procedure in Figure 1 to S with

A until there is no unscheduled orders
18:  end for
19:  let k* = argming (total_profit(Sk))
20:  append A7l to £; and S* « Sk~
21: until termination condition is reached
22: return S*

times. However, it can help us find very good (near optimal)
solutions. From our experiments, evolved rules that focus on
active orders are more effective than those considering all
unscheduled orders [2].

B. FCH procedure

Given a backbone priority rule Aj' and a set of alternative
priority rules A = {Af', AL, A4, ..., A4}, an OAS solution
can be constructed using the procedure in Algorithm 1.

The list £ contains priority rules in the sequence in which
they are applied to determine the next order to process. For
example, if £ = (A, A§, A{"), the first order to process will
be determined by apply rule Af' to calculate priorities for
all unscheduled orders and the one with the highest priority
will be processed next (as shown in Figure 1). The next
two orders to be processed will be determined by A and
A4, In Algorithm 1, steps 4-10 are used to determine the
partial solution with L. If there is no unscheduled or non-
profitable orders after all rules in £ are applied, the algorithm
is terminated. Otherwise, we try to find the most suitable rule
to be applied at the decision moment ¢ at the end of partial
solution S. To estimate the effectiveness of rule A7 at this
decision moment, we use the backbone rule A§' to determine
orders in the latter decision moments. The rule A?* which
leads to the solution Sy~ with the highest total profit will be
appended to L.

The procedure in Algorithm 1 is a forward heuristic because

we only examine what priority rules should be applied at
the latter decision moments without going backward to check
whether rules in the previous decision moments should be
changed. In order to make FCHs effective, we need a good
backbone rule Ay as well as the alternative set A. A good
backbone rule should provide generally good solutions for
OAS so we can make good estimates of the effectiveness of
rules at a decision moment. Meanwhile, the set of alternative
priority rules should cover a diverse set of rules to handle
different situations. In Section IV, a new sequential genetic
programming method is proposed to help automatically design
priority rules used in FCHs.

ITI. GENERATING THE DATASET

Since rules designed for FCHs focus on each decision mo-
ment, using the original OAS dataset and the fitness function
in previous studies [2], [14] is not suitable because they
mainly emphasise on the overall performance of rules for each
instance (rather than a particular decision moment). In order
to learn which priority rules are more suitable at a particular
decision moment, one straightforward approach is to use the
scheduling data from optimal OAS solutions. In this paper, a
branch-and-bound (B&B) method is developed to generate a
dataset of optimal scheduling decisions for OAS.

Branch-and-bound is a popular optimisation approach in
scheduling [16]. Basically, there are two important steps in
B&B: (1) branching and (2) bounding. The proposed B&B
algorithm implicitly enumerates all candidate schedules where
the branching strategy and the bounding approach are used to
prune/eliminate non-optimal candidate schedules. The basic
B&B algorithm proposed in this study can be described as
follows:

i. Initialise B&B with a root node containing an empty
schedule; the node is marked as unexamined. Set lower
bound to —oo .

ii. Examine the bottom-left-most unexamined node of the
search tree.

iii. Calculate an upper bound (the highest total profit that can
be obtained) for the node with its current partial schedule
and unscheduled orders.

iv. If the upper bound is lower than the lower bound, the
node will be pruned (no longer explored).

v. If the upper bound is equal to the lower bound or there is
no unscheduled order, the partial schedule from the node
is a complete schedule and the lower bound is updated if
the total profit obtained from the considered schedule is
higher than the lower bound.

vi. If the upper bound is higher than the lower bound,
apply the branching strategy to generate child nodes by
appending unscheduled orders to the partial schedule of
the parent node.

vii. Return to step ii until there is no unexamined node.

A. Upper bound

In their study, Oguz et al. [4] have proposed two upper
bounds for OAS to evaluate the performance of their proposed
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heuristics [4], [1]. The first bound is generated by using their
MILP model with the time limit of 3600 seconds while the
second bound is obtained by solving the linear programming
(LP) relaxation of the MILP strengthened with some additional
valid inequalities. Although these bounds are effective in some
cases, they are too computationally expensive to use within
B&B. Therefore, we proposed a new simple and efficient
approach to determining an upper bound for OAS. This ap-
proach is motivated by the observation that the OAS problem
with a single machine is similar to the conventional knapsack
problem where a set of items are to be selected to maximise
the total value while the total weight does not exceed a given
limit. Given a set K of unscheduled orders at the decision
moment ¢, a MILP of a simplified OAS model is as follows:

maximise Z el (1)
jeL
subject to:
2Pl <T 2
jEL
I; €{0,1} VjelL 3)

where I; is the decision variables, which determine whether
each order j is accepted (I; = 1) or rejected (I; = 0).
All orders j € K with C} < d_j are included in L where
C% = max{r;,t} +min;ex'{si ;} +pj is the earliest possible
completion time of order j and K’ = K U{prev} and prev is
the index of the previous order that has just been finished. The
modified profit € = e; — w; max{0,C; — d;} is the highest
profit that can be obtained by order j. The modified processing
time p); = min;ex+{si;}+p;j is the least possible time to pro-
cess order j. Finally, 7' = max;e g {d; } —min{¢, min;c g {r; } }
is the total time budget to process all orders.

In this MILP model, only acceptance/rejection decisions
are considered and scheduling decisions are ignored. This
simplified model is in the form of a knapsack problem which
can be solved efficiently by some off-the-shelf optimisation
approaches. In this study, dynamic programming [17] is used
to solve the knapsack problem because it is effective in a
wide range of problem instances. Other more sophisticated and
efficient optimisation approaches such as branch-and-bound
can also be used here to solve the knapsack problem. In
our B&B algorithm, the upper bound is the optimal objective
value obtained from the knapsack problem plus the total profit
obtained from the scheduled orders in the partial solution.
From our experiments, the upper bound obtained from our
knapsack model is usually very close to those obtained from
the LP relaxation and the MILP model of OAS [4], [1], and
its computational times are much lower.

B. Branching strategy
In order to make B&B more efficient, we need to design a
good branching strategy. We apply these two rules:

i. All orders that cannot be completed before their deadline
will not be considered (C; < d;).

ii. Only considering orders that satisfy r; < FEC or
max;ex{Si;} > Sprev,j, Where EC is the earliest com-
pletion time of all remaining orders j € K.

The first rule is quite straightforward because we do not
want to consider orders that cannot provide any profit. Mean-
while, the second rule tries to eliminate orders that would
be too early to process now. The first condition in this rule
is similar to that used to generate active schedules [16].
However, because of the dependent setup times, the first
condition becomes too strict and we need to further check
if the considered order can have lower setup times if it is
processed later. Therefore, we only ignore a node if the order
appended to its partial solution fails to satisfy these two
conditions.

Moreover, child nodes generated from a parent node are
sorted based on the priority rule Ap in equation (4) such that
nodes with higher priorities will be explored first. This rule is
applied to quickly obtain a very strong lower bound that can
help to eliminate many unexamined nodes (via pruning).

_ ¢j/d;
h X pj — Sprev,; min(t — d;, 0)

Ap “4)

The behaviour of this rule can be summarised as follows.

o If two orders have equivalent values of slack (t—d;) and
processing/setup times, the order with a higher revenue
and closer deadline will be processed first.

e If two orders have similar revenue and deadline, setup
time is ignored when they are late (t > d;). If they are
early, the one with the smaller setup time and slack will
have higher priority.

The coefficient h is used to control the importance of
processing time as compared to setup times and slacks. From
our experiments, i = 7.5 provides reasonable results across
different OAS instances.

After an optimal solution of an instance is obtained by the
proposed B&B algorithm, we will know which order needs
to be processed at a decision moment. The dataset of optimal
scheduling decisions is presented as shown in Figure 2. At
the decision moment ¢,, = 23 in Figure 2 with the optimal
sequence of remaining orders (5,4,3,10,7,9,2,1), order 5
must be the one with the highest priority at this decision
moment and it must be processed before other remaining
orders. If it is viewed as a classification problem, seven
classification decisions need to be made, corresponding to
seven pairwise comparison {a, b) where a and b are the indices
of two orders. In this paper, we arrange the data such that
a < b and the seven pairwise comparisons at the decision
moment ¢, as shown in Figure 2 are (4,5), (3,5), (5,10),
(5,7) (5,9), (2,5), and (1,5). The last column shows the
classification decision which is 1 if order a is processed before
order b and O otherwise.

In this paper, the proposed B&B method is used to solve all
(250) instances with 10 orders from Cesaret et al. [1] and the
optimal scheduling data obtained from these instances will be

1827



decision

Table I: Terminal and function sets for priority rules
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Figure 2: Dataset of optimal scheduling decisions.

used by our proposed GP method in the next section to learn
a set of rules for FCHs.

IV. SEQUENTIAL GENETIC PROGRAMMING METHOD

In this section, we describe the GP method for learning
priority rules through the training set of optimal scheduling
decisions.

A. Representation

The proposed GP method uses the same representation as in
previous studies [2], [14] to evolve priority rules for OAS. In
this case, the priority rule is in tree form as shown in Figure
1. The terminal set and function set used to synthesise priority
rules are presented in Table I. In this table, the protected
division function % returns a value of 1 when division by
0 is attempted.

For each training example (a row in Figure 2), the priority
rule A will be used to the assign priority A(a) for order
a and the assign priority A(b) for order b. For a specific
training example, if A(a) > A(b) (A(a) < A(b)) when the
decision is 1 (0), the priority rule makes correct decision for
that example (A(a) = A(b) means the priority rule makes
incorrect decision because it cannot discriminate between the
two orders).

B. Fitness function

Different from previous studies where fitness of an evolved
priority rule is measured by the average relative error between
the objective values and upper bound of training instances,
the fitness in our proposed GP method is measured by the
accuracy of the decision made by evolved rules in each training
example. After an evolved priority rule A is applied to all
training instances, the fitness is calculated as follows:

fitness(A) = aAecy + (1 — o) Aces (5)

where

number of correct moments

Accy (6)

" total number of decision moments

number of correct examples
total number of examples

Accy = @)

In our fitness function, Acc; tries to measure the accuracy of
priority rule for each decision moment. In this case, a correct
moment is the decision moment in which the priority rule pro-
vides the correct decisions for all examples. Meanwhile, Acco
aims to measure the accuracy of each pairwise comparison.
While Acc; emphasises more on identifying the order with
the highest priority at a decision moment, Acce emphasises
more on eliminating orders that are unlikely to be processed
at a decision moment. In general, if a priority rule determines
the optimal solutions for the OAS problem, the fitness for that
priority rule is 1 (Acc; = Accy = 1). Otherwise, rules with
higher fitness are better because they can produce solutions
more similar to the optimal solutions. In this paper, Accy
is more important as we want evolved rules to make correct
decision at each decision moment. Accsy is used in the fitness
in order to help smoothen the fitness function to avoid GP
from being stuck at a large plateau.

Although the fitness function proposed here is very different
from the one used in previous studies, they both aim to help
GP evolve priority rules that give the highest priority to the
order which should be processed next. This property of the
evolved rules is still maintained by the new fitness function
because orders with higher priorities are preferred in pairwise
comparisons (as shown in Section IV-A).

C. Proposed algorithm

The overall algorithm of the proposed sequential genetic
programming method for OAS (SGPOAS) is presented in
Algorithm 2. The algorithm starts by loading all training
examples in the dataset D (see Section III). The list A of
alternative rules for FCHs is initialised with only the rule Ap
in equation (4). In each loop of SGPOAS (steps 4-19), a GP
process is performed to find the rule with the best fitness based
on the training set D. The GP process in SGPOAS is similar
to the conventional tree-based GP (see Section IV-D for more
information about the parameters and genetic operators of GP).
At the end of each GP process, the decision moments in which
the best evolved rule A* makes correct decisions are identified
and all training examples belonging to these moments are
removed from the training set D. SGPOAS continues until
the training set D becomes empty.

The sequential approach is applied here because it is very
hard to find a rule which is capable of providing optimal
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Algorithm 2 Sequential Genetic Programming (SGPOAS)

1: let D« {Ey, Es,...,Ep} be the training data
2 A+ {A§'} where Al = Ap (see equation (4))

3. repeat
//a new GP process
4:  randomly initialise the population P < {Aq,...,Ag}
50 set A" < null and fitness(A*) = —co
6:  while generation < maxGenerations do
7: for all A; € P do
8: apply A; to all examples E; € D
9: evaluate fitness(A;)
10: if fitness(A;) > fitness(A™) then
11: A" — A
12: fitness(A*) « fitness(A;)
13: end if
14: end for
15: P < apply reproduction, crossover, mutation to P
16: generation <— generation + 1

17:  end while
//update the training set

18: D < remove all examples belonging to correct moments,
determined by A*, from D

19: A+ Au{A*}

20: until D is empty

21: return A

decisions for all situations. In each loop of SGPOAS, we try
to find a rule that can provide optimal scheduling decisions for
most training examples. Because a different rule (specialised
for certain situations) is evolved in each loop of SGPOAS, the
list A will contain a set of rules that can cope with different
situations and they can also compensate each other.

Since the rule Ap is used as the branching strategy in
B&B for generating training data, it is expected that the
optimal solution found by B&B will be influenced by this
rule. Therefore, it is helpful to use Ap as the backbone rule
for FCHs. Basically, we want SGPOAS to learn how B&B
searches for optimal solutions and to embed this knowledge
into the evolved FCHs. Similar to B&B, evolved FCHs try to
correct what went wrong with the solutions generated by Ap.

D. Parameter Settings

To generate the initial GP population, we applied the
ramped-half-and-half method [10]. Subtree crossover and sub-
tree mutation [10] are employed in this study. The crossover
rate, mutation rate and reproduction rate used in GP are
90%, 5% and 5%, respectively. The maximum depth of GP
trees is 8. Tournament selection of size 5 is used to select
individuals for genetic operators. The population size of 1000
and mazxGenerations of 50 are used for each GP process. For
the fitness function of SGPOAS, we set o = 0.9 in order to
emphasise more on the importance of making correct decisions
at a moment.

V. COMPUTATIONAL RESULTS

In order to evaluate the performance of SGPOAS, it is
compared to an existing GP method for OAS (GPOAS) [14].
GPOAS also uses the whole dataset from Casaret et al. [1]
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Figure 3: Performance of SGPOAS and GPOAS.

with 10 orders for training priority rules. Each GP method will
perform 50 independent runs and the datasets from Casaret et
al. [1] (with number of orders N from 25 to 100) are used
to assess the performance of evolved FCHs from SGPOAS
and evolved priority rules from GPOAS. This section also
compares the performance of evolved FCHs against those of
simulated annealing (ISFAN) [4] and tabu search (TS) [1]. All
statistical tests discussed in this study are Wilcoxon tests and
they are considered significant if the obtained p-value is less
than 0.05.

A. SGPOAS and GPOAS

For each dataset with a fixed number of orders N, an
evolved FCH or an evolved priority rule is applied to 250
instances (classified into 25 subsets based on 5 different
tardiness factors 7 and due date ranges R [1]). Due to the
space limitation of this paper, we will not present all detailed
results for each subset. Figure 3 shows the average absolute
percentage error of evolved FCHs and priority rules for all 250
instances in the dataset with different number of orders N. The
absolute percentage error is 100 x (UB — TPR)/UB where
UB is the upper bound found by CPLEX [1], [4] and TPR is
the total profit of the solution found by FCHs or priority rules.
It is noted that the GP method with lower average absolute
percentage errors is better.

From the results in Figure 3, it is easy to see that FCHs
evolved by SGPOAS are significantly better than priority rules
evolved by GPOAS. There is an interesting point from these
results. The gaps between SGPOAS and GPOAS are smaller
and the variance of results from GPOAS tend to increase
when the number of orders increases. One reason is that the
acceptance decision is critical when the number of orders is
low and multiple rules in FCHs can help handle this issue
better than single priority rule evolved by GPOAS. When
the number of orders is high, it is very difficult for a single
rule to cope with all situations and provide good results.
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This is when FCHs show their advantages over single priority
rules. The detailed results (not presented here) for each subset
(with different 7 and R) also show that evolved FCHs are
significantly better than evolved single priority rules.

Regarding the computational time, it takes 178 seconds for
SGPOAS and 88 seconds for GPOAS on average to complete
one training run. However, because SGPOAS and GPOAS can
learn rules or set of rules offline, the difference in running
times between the two GP methods are not critical. Similarly,
the running times of FCHs are longer than those of single
priority rules but they are negligible because these rules are
able to solve large instances (up to 100 orders) within one
second. Given that evolved FCHs are much better than single
priority rules, extra times used for SGPOAS to learn a set of
rules are reasonable and worthwhile.

B. Evolved FCHs and other meta-heuristics

Figure 4 shows the performance of TS, ISFAN and evolved
FCHs across all instances in the datasets with different number
of orders. In this figure, the FCH line represents the aver-
age performance of all evolved FCHs and the shaded area
surrounding this line represents the minimum and maximum
average relative error (%) of evolved FCHs. In general, the
performance of evolved FCHs from different independent runs
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Figure 4: Performance of evolved FCHs, TS and ISFAN.

o |
~ '
. o | /
) ©
2
S B s TS
@ ; — FCH
2
e e
E o _| ,
= 0® /
(o)) 1
;= o _| !
c A
c
2 o /
o 4 -
T T T T T T
10 15 20 25 50 100

Number of orders

Figure 5: Running times of evolved FCHs, TS and ISFAN.

Table II: % Deviations from upper bound of total profit
obtained by ISFAN, TS and FCH (/N = 100)

ISFAN TS FCH*

T R
min avg max min avg max min avg max
0.1 0.1 8 9 13 1 2 3 1 2 2
0.3 7 9 10 2 2 3 1 1 2
0.5 6 9 11 0o 1 3 0 1 1
0.7 6 9 12 0o 0 1 0 0 ©
0.9 8 12 16 0 0 1 0 0 O
0.3 0.1 10 12 13 1 3 4 1 2 4
0.3 11 13 17 2 3 5 1 3 4
0.5 10 14 17 1 2 4 1 2 3
0.7 12 14 15 0o 2 3 0o 1 2
0.9 9 13 17 0 1 2 0 1 1
0.5 0.1 12 16 18 2 4 5 3 4 5
0.3 12 15 18 3 4 6 3 4 6
0.5 14 17 19 3 4 5 3 4 6
0.7 13 17 21 2 3 4 1 3 4
0.9 12 18 24 1 2 5 1 2 4
0.7 0.1 13 17 19 3 5 6 4 5 7
0.3 13 17 21 4 7 11 3 7 11
0.5 14 18 24 4 6 13 4 7 17
0.7 16 19 23 3 7 13 4 8 11
0.9 15 18 24 5 8 13 4 8 12
0.9 0.1 14 17 20 7 9 12 7 10 13
0.3 16 20 26 7 14 17 10 13 16
0.5 19 21 25 11 16 18 11 16 20
0.7 15 21 24 11 15 20 11 16 19
0.9 13 21 28 11 16 22 6 15 22

of SGPOAS are quite consistent as the performance range is
very small. From the figure, it is obvious that evolved FCHs
are always better than ISFAN on all problem sizes and the
gaps between the performances of ISFAN and FCHs increase
as the number of orders increases. The performance of evolved
FCHs is about 2-3% worse than that of TS when the number
of orders is lower than 50. However, it is noted that the gaps
between TS and evolved FCHs gradually reduce as the number
of order increases. When the number of orders is 100, TS is
dominated by a number of evolved FCHs. Table II illustrates
the performances one of the best evolved FCHs (based on its
performance on the entire dataset) as compared to ISFAN and
TS on the dataset with NV = 100. We can see that this evolved
FCH totally dominates ISFAN on all problem configurations.
It is also very competitive with TS on instances with high 7
and better than TS on instances with low 7.

The computational times of ISFAN, TS, FCHs and the pro-
posed B&B (in Section III) are presented in Figure 5. ISFAN
is obviously the least efficient method here for instances even
with a small number of orders. With the number of orders
of 10 to 20, the running times of ISFAN is even worse than
those of B&B. The computational times of TS and evolved
FCHs are very small for instances with less than 50 orders.
The difference in running times between TS and FCHs is only
noticeable when the number of orders are from 50 to 100. It
is clear that evolved FCHs are still very efficient for large
instances. For the instances with 100 orders, it takes TS about
19 seconds on average to solve an instance while FCHs only
spends 0.064 seconds.

C. Further discussion

This paper provides an good opportunity to compare three
different types of approaches for a hard computational prob-
lem, which are exact optimisation (B&B), meta-heuristics
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(i.e. TS; we ignore ISFAN in this discussion because of its
poor performance), and automatic heuristic design (SGPOAS).
Figures 4-5 are very helpful to help us understand advantages
and disadvantages of the three approaches.

For small instances (number of orders N < 15), B&B is a
suitable method because it can provide the optimal solutions
within reasonable times. When N = 20, B&B failed to obtain
the optimal solutions within a five minute time limit for some
instances but its feasible solutions found (lower bound) are
still better than TS. However, when N > 20, the computational
time of B&B increases rapidly. With NV from 25 to 50, TS is a
good solution method as it balances between the computational
time and the quality of found solutions. For large instances
with N = 100, TS becomes cumbersome and evolved FCHs
become a good choice because they are both effective and
efficient in these cases.

This observation suggests that choosing an approach to
dealing with hard computational problems is very critical.
From our experiments, it is clear that problem size is an
important factor that influences the choice of a suitable ap-
proach. If the practical problem is reasonably small and exact
methods are capable of solving it within the time limit, exact
methods are always the excellent choice as they can guarantee
optimal solutions or at least show us the gaps between the
obtained solutions and the upper (lower) bound. When the
running time of exact methods are out of control, off-the-
shelf meta-heuristics such as tabu search and evolutionary
algorithms are needed in order to find acceptable solutions.
However, if the problem is large and even meta-heuristics are
not effective enough, it is a good idea to use an automatic
heuristic design approach such as SGPOAS in this paper to
extract the knowledge of optimal or good solutions to design
efficient heuristics. These heuristics can either operate on their
own or can be used to enhance the effectiveness and efficiency
of meta-heuristics.

VI. CONCLUSIONS

This study develops a new sequential genetic programming
method that evolves forward construction heuristics for OAS.
They key difference between the proposed SGPOAS in this
paper and the existing GP method is that the priority rules are
trained based on optimal scheduling decisions rather than the
objective values obtained from training instances. Moreover,
the proposed GP method aims to evolve a set of rules instead of
a single priority rule. The experimental results show that FCHs
evolved by SGPOAS are significantly better than evolved
single rules in all testing datasets. The evolved FCHs are
also competitive with existing meta-heuristics. The results
also show that evolved FCHs are a very suitable approach
to dealing with large problem instances of OAS.

There are many aspects that need to be investigated in the
future studies. First, the backbone rules can also be co-evolved
with the set of alternative rules in FCHs in order to enhance
the effectiveness of evolved FCHs. Second, it is useful to
investigate a new approach for learning a set of alternative
rules instead of the sequential learning approach in SGPOAS.

The goal should be to reduce the computational time of GP,
reduce the number of rules and improve the performance of
evolved FCHs. Finally, the generated dataset has basically
converted OAS into a binary classification problem in which
the classification decision is which order within two specific
orders must be processed first. If we are able to achieve 100%
classification accuracy, we can use the trained classifier to
construct optimal solutions for OAS. Therefore, it is interesting
to tackle the heuristic design problem from the classification
viewpoint and employ state-of-the-art classification techniques
to help us improve the quality of the generated heuristics.
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