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Abstract— This paper proposes a cooperative coevolutionary
approach to multi-robot formation control. To deal with the
formation control problem, the concept of a cooperative coevo-
lution (CC) framework is incorporated with model predictive
control (MPC) such that candidates of all robots coevolve
toward a Nash equilibrium in a distributed way. Using the
Nash-equilibrium strategy, the robots can quickly move to a
desired formation from their initial locations. The stability is
guaranteed via a novel repair algorithm that enforces each
candidate to satisfy a derived condition for asymptotic stability.
The cooperative coevolutionary particle swarm optimization
(CCPSO) is adopted and modified to fit into the formation
control problem. Simulations are performed on a group of
nonholonomic mobile robots to demonstrate the effectiveness
of the CC-based MPC. Also, the proposed MPC shows a better
performance compared to sequential quadratic programming
(SQP)-based MPC.

I. INTRODUCTION

MODEL predictive control (MPC) has been success-

fully applied to control complex systems in industry

as one of the most popular optimal control techniques [1].

The control technique is derived on the basis of the prediction

of the future behavior estimated by the explicit model of

the system. However, application to nonlinear system is not

easy because the nonlinear optimization process should be

completed within a limited time.

In order to solve the optimization problem in MPC, there

have been many conventional techniques such as standard

gradient search [2]-[4], quadratic programming [5], and

mixed-integer linear programming [6]. However, the essential

drawback of the most existing techniques is the computa-

tional complexity, which increases the computation time as

the dimension of the system increases.

Recently, some researchers have studied the possibility

of applying evolutionary algorithms (EAs) to solve the

optimization problem in MPC. Onnen et al. [7] applied

a genetic algorithm (GA) in order to optimize a control

sequence in predictive control. They showed the effectiveness

of the GA compared to the branch-and-bound discrete search

algorithm. Similar algorithms that applied GA to MPC were
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presented in [8]-[10]. More recently, the modified particle

swarm optimization (PSO) algorithms have been combined

with MPC as presented in [11]-[14] because of the fact that

PSO algorithms provide quick results even with multiple ob-

jectives and constraints. However, there is a lack of research

on EAs applied to distributed MPC with its stability analysis.

In distributed MPC of multi-robot systems, one of the

key issues is to find conditions guaranteeing stability while

reducing the computational burden of optimization processes.

To guarantee the stability in the conventional distributed

MPC, it is assumed that each subsystem does not deviate

too far from its previous computed state trajectory, referred

to as the state compatibility constraint [15]-[19]. A drawback

of this approach is that the system responses can be slow.

A sufficiently short update period is used to relax the com-

patibility constraint, but the closed-loop control performance

tends to depend on the update period.

This paper proposes a cooperative coevolution (CC)-based

MPC framework to stabilize multi-robot formation. The

proposed CC-based MPC approach guarantees the asymp-

totic stability regardless of the optimality of the solution

that cooperative coevolutionary algorithm generates with a

small number of individuals and within a limited time while

conventional EA-based MPC approaches cannot guarantee

the stability. We find a terminal state constraint which can

guarantee the stability, and a repair algorithm is proposed

such that all candidate solutions satisfy the terminal state

constraint. The repair algorithm can handle the terminal state

constraint in a short time. In this paper, we adopt cooperative

coevolutionary particle swarm optimization (CCPSO) [20]-

[22] among CC-based EAs, and the CCPSO is modified to

fit on solving the distributed optimization problem.

To demonstrate the effectiveness of the proposed CCPSO-

based MPC, the control performance and stability are tested

through simulations. Also, the results of the proposed MPC

are compared to sequential quadratic programming (SQP)-

based MPC, which is one of the popular algorithms that are

suitable for solving nonlinear optimization problem.

The rest of this paper is organized as follows. In Section II,

the formation control problem is defined. Section III proposes

a novel CC framework-based MPC, and then Section IV

presents simulation results for the formation control problem.

Finally, conclusion is presented in Section V.

II. FORMATION CONTROL PROBLEM

A. Mathematical Formulation of Formation Control Problem

The formation control problem to be investigated in this

paper can be stated as follows: Consider a group of M
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identical differential drive mobile robots. The motion state of

the j-th robot defined by Xj = [xj , yj, θj ]
T can be described

by

ẋj = vj cos θj , ẏj = vj sin θj , θ̇j = ωj , (1)

where Xj is described by its position (xj , yj) and orientation

θj ; vj and ωj are the linear and angular velocities of each

robot, respectively.

For each robot j, using its own state [xj , yj, θj ]
T and its

neighboring states [xi, yi, θi]
T , given a reference trajectory

Xr and a desired formation pattern P , find a controller such

that a group of robots maintain the desired formation pattern

P while the center of the formation tracks the reference

trajectory Xr.

A desired formation pattern defined by P =
{[p1x, p1y], [p2x, p2y], ..., [pMx, pMy]}, consisting of M

nodes, satisfies that
∑M

i=1 pix = 0 and
∑M

i=1 piy = 0, where

pix and piy are defined by an orthogonal coordinate such

that the center of the formation pattern is placed at the

origin of the orthogonal coordinate. A reference trajectory

Xr = [xr, yr, θr]
T is assumed to be continuously

differentiable at any time, and θr is tangential to the

reference trajectory defined by θr = arctan2(ẏr, ẋr).
In order to solve the formation control problem in a

distributed way, let us define the formation and tracking error

of the robot j as

ej =





ejx
ejy
ejθ



 =





cos θj sin θj 0
− sin θj cos θj 0

0 0 1



 zje, (2)

where zje =
∑

i∈Nj
{(Pj − Pi) − (Xj − Xi)} + µj(X̃j +

Pj), in which the former summation part is the formation

error and the latter part is the tracking error. Also, X̃j =
[x̃j , ỹj , θ̃j ]

T = Xr − Xj , Pj = [pjx, pjy , 0]
T , and µj = 1

if the reference Xr is available to robot j, and µj = 0 if

Xr is not available to robot j. The error ej is obtained by

multiplying a rotation matrix in a robot fixed frame with zje.

By differentiating ej with respect to time, and then substi-

tuting (1) into the resulting equation, the error state equation

can be obtained as follows:

ėjx = ωjejy +
∑

i∈Nj

(vi cos θij − vj) + µj(vr cos θ̃j − vj),

ėjy = −ωjejx + µjvr sin θ̃j +
∑

i∈Nj

vi sin θij , (3)

ėjθ =
∑

i∈Nj

(ωi − ωj) + µj(ωr − ωj),

where θij = θi − θj ; vr and ωr are the desired linear and

angular velocities of a group of robots, which can be derived

by differentiating Xr. Equation (3) can be generally rewritten

as a nonlinear nominal system as follows:

ėj(t) = f
(

ej(t), uj(t), uNj
(t)
)

(4)

where uNj
(t) = (..., ui, ...), i ∈ Nj , denotes the con-

catenated vector of the control inputs of the neighbors of

robot j, Nj denotes the set of neighbors of robot j, and

uj = [vj , ωj]
T .

The cost function to be minimized for each robot j is

designed as follows:

Jj(t, ej(t), uj(t))

= g(ej(t+ T )) +

∫ t+T

t

L(τ, ej(τ), uj(τ))dτ (5)

where g(ej(t + T )) = 1
2ej(t + T )T ej(t + T ) is a terminal

state penalty function, L(t, ej(t), uj(t)) = ej(t)
TQej(t) +

uj(t)
TRuj(t) is a running cost function, Q > 0 and R ≥ 0

are symmetric weight matrices, and T is a finite prediction

horizon.

At time t, the open-loop optimization problem in a dis-

tributed MPC framework can be formulated as a constrained

nonlinear optimization problem

min
uj

Jj (t, ej(t), uj(t)) (6)

subject to

ėj(τ) = f(ej(τ), uj(τ), uNj
(τ)),

0 ≤ vj(τ) ≤ Vmax,

|ωj(τ)| ≤ Ωmax,

ej(t+ T ) ∈ Ω,

where τ ∈ [t, t+T ], Ω is the terminal state region, and Vmax

and Ωmax are the maximum control signals.

B. Nash Equilibrium Strategy-based MPC Framework

The formation control problem can be solved in a MPC

framework where a Nash equilibrium strategy is used as

the formation control strategy. Brief explanations of the

distributed MPC and Nash equilibrium strategy are given

below.

The MPC [23]-[25] can be characterized by the following

features: an explicit model of the system, a finite prediction

horizon T , and an optimization process of the system behav-

ior. The explicit model of the system is used to predict the

behavior of a plant over a finite prediction horizon starting

from the current time t.

The general procedure of the MPC scheme is as follows:

1) Compute the internal model state error e(t) at the current

time t; 2) Optimize a control input sequence over the

prediction horizon T ; 3) Apply the optimized control input

u∗(t) to the plant in a time interval [t, t+δt), where δt < T ;

and 4) Repeat the procedure from step 1) to step 3) at the

next time instant, t ← t + δt, until a certain termination

condition is satisfied.

Our objective is to control a system consisting of multiple

robots toward an equilibrium state in a cooperative way using

the MPC scheme. In this paper, a Nash equilibrium strategy

is applied to the system in order to optimize the control

input over a finite prediction horizon. A Nash equilibrium

strategy is a collection of strategies of all robots, and each

strategy is the best response regarding the others’ strategies.

When the system reaches a Nash equilibrium, no robot can
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Fig. 1. General model predictive control (MPC) scheme.

further improve its cost by changing its strategy given that

all the others keep their strategies fixed or stationary. A

Nash equilibrium strategy (u∗
1, u

∗
2, ..., u

∗
M ) is defined by the

following condition:

Ji(u
∗
1, u

∗
2, ..., u

∗
i−1, u

∗
i , u

∗
i+1, ..., u

∗
M )

≤ Ji(u
∗
1, u

∗
2, ..., u

∗
i−1, ui, u

∗
i+1, ..., u

∗
M ) (7)

for i = 1, ...,M , where Ji is the cost function and ui is an

arbitrary control input of the i-th robot, and M is the number

of robots. Using the Nash strategy, each robot cooperates

with the others in order to move toward the Nash equilibrium

state.

Generally, it has been found that finding a Nash equilib-

rium strategy guaranteeing stability of the system is very

difficult when the system is nonlinear and the state vectors

are coupled in a cost function [26]. In [27], a receding hori-

zon Nash controller was developed for multi-agent systems,

but it has been limited to linear systems.

To cope with this problem, the concept of a coopera-

tive coevolution (CC) framework can be adopted such that

swarms of all robots coevolve toward a Nash equilibrium in a

distributed way. This paper applies CCPSO to the Nash equi-

librium strategy-based MPC framework. Since the CCPSO

coevolves the multiple particle swarms by exchanging the

global best particles with neighboring particle swarms, Nash

equilibrium strategies can be found. The stability also can

be simply guaranteed by a repair algorithm that enforces

each particle to satisfy a derived terminal state condition

using a small number of particles. Thus, the CCPSO can

be applied to the formation control problem in real-time

while guaranteeing stability. Therefore, we propose to use

the CCPSO as the optimizer in the MPC framework for the

multi-robot formation control problem.

III. MPC BASED ON COOPERATIVE COEVOLUTION

FRAMEWORK

A. CCPSO-based MPC

For each robot, a cost function defined as a coupled form

by the state variables and control inputs of the neighboring

Algorithm 1 The pseudocode of the proposed CCPSO

algorithm. In this pseudocode, the j-th robot is considered.

Create and initialize a swarm;

for each particle i ∈ [1, ...,swarmSize] do

Initialize particle;

end for

repeat

for each particle i ∈ [1, ...,swarmSize] do

if Jj(Sj .x
i
l) < Jj(Sj .y

i
l−1) then

Sj .y
i
l ← Sj .x

i
l

else

Sj .y
i
l ← Sj .y

i
l−1

end if

if Jj(Sj .y
i
l) < Jj(Sj .ŷl−1) then

Sj .ŷl ← Sj .y
i
l

else

Sj .ŷl ← Sj .ŷl−1

end if

end for

Update position and velocity of each particle in Sj using

(9);

Send Sj .ŷl to neighboring robots;

Receive Si.ŷl from neighboring robots where i ∈ Nj ;

l ← l + 1;

until Termination condition is satisfied;

robots is given, and a particle swarm is assigned to each

robot in order to optimize the cost function value.

Let Sj .x
i
l be the current position of the i-th particle of

the j-th swarm at generation l, Sj .y
i
l the personal best of

the i-th particle of the j-th swarm, and Sj .ŷl the global best

particle of the j-th swarm. Each particle Sj .x
i
l represents the

predicted control input sequence of robot j at update time

step tk, uj(τ ; tk) = [vj(τ ; tk), ωj(τ ; tk)]
T , over a prediction

horizon T as a sequence, i.e.,

Sj .x
i
l = [vj(tk; tk), vj(tk+1; tk), ..., vj(tk+N−1; tk),

ωj(tk; tk), ωj(tk+1; tk), ..., ωj(tk+N−1; tk)] (8)

subject to 0 ≤ vj(tk+m; tk) ≤ Vmax and |ωj(tk+m; tk)| ≤
Ωmax for m = 0, 1, 2, ..., N−1, where N= T

δt
is the number

of prediction steps. The update time step is tk = t0 + δt · k,

where k = 0, 1, 2, · · · .
The overall process of the proposed MPC consists of esti-

mating robots’ current states, predicting neighboring robots’

future states using received global best particles, optimization

process via PSO, and application of control input. The

procedure is similar to that of the conventional PSO-based

approach except for the method of exchanging global best

particles. While the conventional PSO exchanges global best

particles with neighbors only at once for one optimization

process, the CCPSO-based approach exchanges global best

particles at each generation for one optimization process.

The exchanging of global best particles in the CCPSO

algorithm is a powerful strategy to obtain optimal control

input sequence that does not depend on the state computed
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at the previous time step and update period. Using the

exchanging strategy, robots can find optimal control input

sequences according to a Nash equilibrium strategy.

Algorithm 1 shows the pseudocode of the proposed

CCPSO algorithm. There is one loop in order to optimize

the control input according to a Nash equilibrium strategy.

At generation l, the j-th robot evaluates the cost function

value of Sj .x
i
l for all i using the global best particles Si.ŷl−1,

where i ∈ Nj . After evaluating the cost of Sj .x
i
l , its personal

best Sj .y
i
l is checked, and then the global best Sj .ŷl is

checked for update. After one generation of the process,

each robot transmits its global best particle to neighboring

robots. At each generation, the process of evaluating cost,

updating personal best and global best particles, and updating

the velocity and position of each particle is repeated based

on the updated global best particles of neighboring robots.

The update rule for the i-th particle in the j-th swarm is

given by

Sj .x
i
l+1 =Sj .x

i
l + Sj .v

i
l+1, (9a)

Sj .v
i
l+1 =wlSj .v

i
l + c1R1(Sj .y

i
l − Sj .x

i
l)

+ c2R2(Sj .ŷl − Sj .x
i
l). (9b)

This process is performed through all robots simultaneously.

When all the robots cannot further improve their cost evalu-

ation, the robots are considered to be in a Nash equilibrium.

When the robots reach a Nash equilibrium, the states of

the robots are updated using Sj .ŷl in the time interval

[tk, tk + δt).

B. Repair Algorithm for Stability

In order to assure the closed-loop stability, a terminal

state region is derived with its corresponding terminal state

controller. As stated in [24], [25], it has been proved that

the MPC algorithm is asymptotically stable if the following

condition is satisfied

ġ(ej(t)) + L(t, ej(t), uj(t)) ≤ 0. (10)

Considering the terminal state penalty function selected as

g(ej(t+T )) = 1
2ej(t+T )T ej(t+T ), the stability condition

(10) can be rewritten as

ġ(ej(t)) + L(t, ej(t), uTj(t))

=− (1− qx)e
2
jx − (1− qθ)e

2
jθ+ µjvr sin θ̃j

(

1−
ejθ

θ̃j

)

ejy

+
∑

i∈Nj

vi sin θij

(

1−
ejθ

θij

)

ejy + qye
2
jy.

(11)

If ‖ejy(t)‖ → 0, (11) converges to −(1 − qjx)e
2
jx − (1 −

qjθ)e
2
jθ . Thus the terminal state region Ω can be derived as

Ω= {qx∈R, qθ∈R, ejy(t)|qx<1, qθ<1, ‖ejy(t)‖=0}
(12)

where Nj is the number of robots belonging to the set of

neighbors Nj .

To guarantee the stability, the candidate solutions have

to satisfy the terminal state constraint. The terminal state

constraint can be handled by constraining the terminal state

variable of each particle Sj .x
l
i since the constraint is simply

derived as an equality condition at terminal state. As the

terminal state denotes the state at time t = tk + T predicted

at tk, the terminal state constraint ejy(t) = 0 can be rewritten

as ejy(tk + T ; tk) = 0.

Now, we introduce a new method that repairs all candidate

solutions to satisfy ejy(tk + T ; tk) = 0. For simplicity, let

us denote Xj(tk+ δt ·m; tk) as Xj,m = [xj,m, yj,m, θj,m]T

for m = 1, ..., N , and the time index tk will be omitted for

brevity of presentation. For ejy(tk + T ; tk) = 0, the desired

heading angle at terminal state θΩ can be derived as follows:

ejy(tk + T ; tk) = 0⇔ − sin θΩ∆xj,N + cos θΩ∆yj,N = 0

⇔ θΩ=arctan 2(∆yj,N ,∆xj,N ) (13)

where ∆xj,N = xjd−xj,N , ∆yj,N = yjd−yj,N , and Xjd =
[xjd, yjd]

T denotes the desired position of robot j at time

tk + T , which is defined as

xjd=
1

Nj + µj





∑

i∈Nj

(xi,N − pix) + µx̃j,N



+ pjx, (14a)

yjd=
1

Nj + µj





∑

i∈Nj

(yi,N − piy) + µỹj,N



+ pjy, (14b)

where x̃j,N = xr − xj,N and ỹj,N = yr − yj,N . To satisfy

ejy(tk +T ; tk) = 0, the heading angle at terminal state θj,N
should be equal to θΩ. As the equality θj,N = θΩ would

require time consuming optimization process, a geometric-

based approach is used for handling the equality constraint

within a short time. The geometric-based algorithm repairs

ωj,m−1 in a backward manner from m = N − 1 step until

the condition θj,N = θΩ is met. Fig. 2 shows a repairing

process of ωj,m−1 when the angular control inputs from ωj,m

to ωj,N−1 are saturated by ±Ωmax. When the condition that

θj,N = θΩ is met, xj,N and yj,N can be calculated as

xj,N= xj,m +D1 cosα, (15a)

yj,N= yj,m +D1 sinα, (15b)

where D1 denotes the distance between Xj,m and Xj,N .

The angle α can be obtained by geometric relationship

of robot’s state trajectory. Using the relationship θj,N =

θj,m +
∑N−1

n=m ωj,nδt, θj,m that satisfies θj,N = θΩ can be

obtained as follows:

θj,m = θΩ −
N−1
∑

n=m

ωj,nδt. (16)

Based on (16) the angular velocity is repaired as

ωj,m−1 =

{

sign(ωjd) · Ωmax, if |ωjd| ≥ Ωmax,

ωj,m−1 = ωjd, otherwise,

where ωjd =
θj,m−θj,,m−1

δt
. If |ωjd| ≥ Ωmax, the repairing

process is repeated in a backward manner m← m− 1 until

|ωjd| is less than Ωmax.
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Fig. 2. Geometric representation for state trajectory of robot j. In order to satisfy the condition θj,N = θΩ, ωj,m is repaired in a backward manner from
m = N − 1 step until the condition is met. This figure shows a repairing process of ωj,m−1 when the angular control inputs from ωj,m to ωj,N−1 are
saturated by ±Ωmax.

This stability condition does not require the optimal con-

trol input. Any feasible control input sequence satisfying the

constraint of ejy(tk + T ; tk) = 0 would lead to stability.

It means that even though the CCPSO cannot reach an

equilibrium state within a limited time, the stability can be

achieved by applying the fittest control input sequence found

so far.

IV. SIMULATION RESULTS

In this section, an example is given to illustrate the

proposed method. A group of five robots is initially located

at X1 = [−0.5,−3.0, 0.0]T , X2 = [0.0,−3.0, π/2]T , X3 =
[0.5,−3.0, π/2]T , X4 = [−0.25,−3.0, π/2]T , and X5 =
[0.25,−3.0, π/2]T respectively. The reference trajectory used

in the test is defined as follows: xr(t) = 0.1t, yr(t) = 0
for 0 ≤ t < 50; xr(t) = 5, yr(t) = 0.1(t − 50) for

50 ≤ t < 100. We assume that the reference trajectory is

available only to robots 2 and 5. Also, it is assumed that each

robot communicates with two or three neighboring robots

to avoid communication traffic increase. The control inputs

for the five robots are computed at 5 Hz update rate (i.e.,

δt = 0.2 s) including the repair algorithm. The number of

prediction steps is selected as N = 10, i.e., T = N ·δt = 2 s.

For the optimization processes, each robot has a particle

swarm with a population size of 50, and the maximum

number of generations Lmax is limited to 100. The inertia

weight wl is determined as follows:

wl = wmax −
wmax − wmin

Lmax
× l (17)

where wmax = 0.9 and wmin = 0.4 are the upper and lower

bounds for wl, respectively. The search space is limited to

real values within [0, Vmax] and [−Ωmax,Ωmax] for vj and

ωj , respectively, where Vmax = 0.5m/s and Ωmax = π
2 rad/s.

The acceleration coefficients are c1 = 2.0 and c2 = 2.0. The

weight matrix Q is set to Q = diag[0.1, 0.1, 0.001].
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(a) Without repair process
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(b) With repair process (proposed)

Fig. 3. Trajectories and sampled positions of five robots. The black dots
denote the positions of five robots, the light squares denote the reference
trajectory, and the black squares denote the center of the formation. The
positions are sampled at every 20 s.
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Fig. 4. Mean and maximum values of e(t) with δt = 0.2 s for 30 runs.

To test the switching formation, the following two different

desired formation patterns are used:

P =























{[0.5, 0], [0.1545, 0.4755], [−0.4045, 0.2939],
[−0.4045,−0.2939], [0.1545,−0.4755]},

for 0 ≤ t < 50
{[0, 0], [0, 0.4], [0, 0.8], [0,−0.8], [0,−0.4]},

for 50 ≤ t < 100.

To measure the performance of the algorithm, two perfor-

mance indices are defined as follows:

ET =

∫ tf

t0

√

√

√

√

1

M

M
∑

j=1

eTj (t)Qej(t)dt (18)

where e(t) refers to the error generated at time t and ET

denotes the total amount of e(t) in the running time from the

starting time t0 = 0 s through to the final time tf = 100 s.

A. Control Performance and Stability

To investigate how the repair algorithm affect the control

performance and stability, the results of the proposed MPC

with the repair process are compared to the results without

the repair process. The simulation is run 30 times for each

case using the same simulation parameters. Fig. 3 shows the

resulting trajectories computed by the CCPSO-based MPC

without and with the repair process, respectively. Fig. 4

shows average and maximum values of the performance

index defined in (18) for 30 runs. The results show that

the repair algorithm is effective in stabilizing multi-robot

formation. Without the repair process, the stability cannot be

guaranteed when the robots converge to the desired formation

from initial positions or the desired formation pattern is

changed at 50 s as shown in Fig. 4(a). However, the errors

converge to zero for 30 runs when the MPC accompanied

by the repair algorithm as shown in Fig. 4(b). Therefore,

the asymptotic stability can be guaranteed by the repair

algorithm.

B. Comparison with SQP

To show the benefit of the proposed MPC, an MPC with

SQP, which is one of the popular algorithms that are suitable

for solving nonlinear optimization problems, is applied to the

formation control problem and compared with the proposed

approach when δt = 0.2 s. The results are shown in Fig. 5.

As shown in the results, e(t) of the proposed algorithm

converges to zero faster than the SQP-based MPC. As the

SQP methods provide local optimal solutions, the system

responses can be slow and the state error may not converge

to zero.

Compared with SQP, the advantages of the proposed

approach can be summarized as follows: First, the implemen-

tation of the proposed algorithm is much easier and simpler

than the classical optimization-based approaches. For exam-

ple, SQP needs to compute the Hessian of the Lagrangian

consisting of an objective function and constraints. In the

formation control problem, the computation of the Hessian

is quite complex due to the high nonlinearity. However, the

proposed MPC is very easy and simple to implement without

the computation of the Hessian.

Second, the proposed MPC with the repair algorithm can

always provide the solution that satisfies the given constraints

within a limited time when accompanied by the repair algo-

rithm. The optimization problem for the formation control is

formulated as a nonlinear constrained optimization problem

with various equality and inequality constraints that should

be handled simultaneously. The classical optimization-based

approaches have difficulties due to the computational com-

plexity. Also, due to their non-constant computation time

for each time step, especially when the robots reconfigure

their formation, the irregular delays between the time the

control inputs are calculated and the time the control inputs

are applied can degrade the performance of the system in

practice.

Third, the proposed MPC finds the Nash-equilibrium

strategy among multiple robots, which is the best control

input of each robot for the formation control, whereas the

most classical optimization methods such as SQP provide

local optimal solutions. Using the Nash-equilibrium strategy,

the robots can thus quickly move into a desired formation

from their initial locations and switch their formation during

maneuvers.
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V. CONCLUSION

In this paper, a novel CCPSO-based MPC was proposed

for multi-robot formation control. The stability was guaran-

teed by a novel repair algorithm that enforces all candidates

to satisfy the terminal state constraint. For the optimization

process in the MPC, a Nash equilibrium strategy was used

to solve the optimization problem by exchanging information

that has the best experience among neighboring robots. Thus,

the robots can quickly move to a desired formation from their

initial locations using the Nash-equilibrium strategy. Through

the simulations, it was found that the robots could track a

given reference path, while maintaining a desired formation

pattern successfully.
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