
Neural Network Ensembles For Image Identification
Using Pareto-optimal Features

Wissam A. Albukhanajer, Yaochu Jin and Johann A. Briffa
Department of Computing

Faculty of Engineering and Physical Sciences
University of Surrey

Guildford, Surrey, GU2 7XH, United Kingdom
Email: w.albukhanajer@surrey.ac.uk; yaochu.jin@surrey.ac.uk; j.briffa@surrey.ac.uk

Abstract—In this paper, an ensemble classifier is constructed for
invariant image identification, where the inputs to the ensemble
members are a set of Pareto-optimal image features extracted
by an evolutionary multi-objective Trace transform algorithm.
The Pareto-optimal feature set, called Triple features, gains
various degrees of trade-off between sensitivity and invariance.
Multilayer perceptron neural networks are adopted as ensemble
members due to their simplicity and capability for pattern
classification. The diversity of the ensemble is mainly achieved
by the Pareto-optimal features extracted by the multi-objective
evolutionary Trace transform. Empirical results show that the
general performance of proposed ensemble classifiers is more
robust to geometric deformations and noise in images compared
to single neural network classifiers using one image feature.

I. INTRODUCTION

IMAGE identification techniques are widely used in many
applications where accuracy and speed are highly important,

such as copyright protection [1], face authentication [2] and
object recognition [3]. In these applications, effective feature
extraction and classification techniques become essential, es-
pecially when noise and image deformation such as rotation,
scale and translation (RST) are present in the images.

Over the years, a variety of feature extraction techniques
have been developed. The Trace transform [4] has been of
interest as a feature extraction algorithm due to its attractive
ability to represent images in an invariant way. Recent work
aimed at improving the feature extraction process using Trace
transform was reported in [5]–[8]. Following effective feature
extraction, a powerful classification algorithm is also required
to accomplish the identification task.

Much research experience has been shown that classifica-
tion techniques that combine more than one classifier are an
effective way to enhance classification performance. These
techniques are widely known as ensemble classifiers, mixture
of experts or committee of learners [9]. A typical ensemble
classifier combines outputs of multiple base classifiers, called
members or individual learners to make a final decision. Over
the past decades, an increasing attention has been paid to
ensemble classifiers due to their success in improving robust-
ness and accuracy for solving complex machine learning tasks
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[10]–[16]. Hansen and Salamon [10] introduced an ensemble
of identical neural networks trained on subsets of the same
database. In that case, generalization is maintained by using
different training sets for each neural network, which has
shown to produce better results than using the same training
set for all nets. On the other hand, Bazell and Aha [11]
designed an ensemble of classifiers using a combination of
neural networks, naive Bayes and decision trees classifiers
for automated morphological galaxy classification using single
training set as well as several bootstrap datasets with 10-
fold cross-validation. In addition, an ensemble of several
neural networks has been built for handwritten digital number
recognition [15], where the network outputs are combined
using majority voting. To achieve generalization and fault-
tolerance, Yu et al. [16] proposed an effective Radial Basis
Function (RBF) neural network ensemble to improve foreign
exchange asset management and investment decision-making.

Generally, members (base classifiers) in an ensemble can
use the same type or different types of models. Therefore,
ensemble techniques can be largely divided into two categories,
homogeneous and heterogeneous ensembles. Homogeneous
ensembles consist of members with the same type of models
generated using the same or similar learning algorithms. By
contrast, heterogeneous ensembles have members of different
types of models [17], [18]. Usually, an ensemble performs no
worse than a single member learner under certain conditions
[19]. However, the performance of ensembles is heavily de-
pendent on the accuracy and diversity of their members [10],
[11]. Having both accurate and diverse members is key to the
success of ensembles [20]. Bhowan et al. [21] developed a
Pareto-based multi-objective genetic programming framework
to evolve diverse and accurate classifiers for imbalanced data
problem. The accuracy of the minority and majority class was
used as learning objectives where some classes represented by
a fewer training samples while other classes have more training
samples.

In this paper, an ensemble consisting of multilayer per-
ceptron (MLP) classifiers is generated for invariant image
identification. The main idea is to utilize diverse features
created using an evolutionary multi-objective Trace transform
algorithm. Three Pareto-optimal features around the knee point
in the Pareto front are employed as inputs to three base classi-
fiers, each of which is a neural network classifier. The Pareto-
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optimal features are all invariant to geometric deformations
and robust to additive noise, yet they are different by virtue
of the randomness in the selection process. Thus, even if
no particular measures are taken to obtain diversity in the
base neural network classifiers, diversity in the output of the
ensemble members can be guaranteed.

The remainder of this paper is organized as follows. The
Pareto-based evolutionary multi-objective Trace transform is
described in Section II. Section III presents details of the pro-
posed ensemble classifier. Section IV gives the evaluation of
the proposed method and the experimental results. Conclusions
and future work are given in Section V.

II. EVOLUTIONARY MULTI-OBJECTIVE TRACE
TRANSFORM

Given a two-dimensional image I(x, y) with N ×N , real-
valued pixels, a new representation of I can be determined
by applying a specific functional T , called Trace functional,
along lines crossing the image I characterized along different
orientations θ and distance ρ. The new representation of I is
a two-dimensional array that is a function of two variables ρ
and θ. This process of converting the image I from the spatial
domain (x, y) into the transformed domain (ρ, θ) is called the
Trace transform [4]. Several Trace functionals can be used
to produce different transforms. If an appropriate functional
is used, very similar features may be extracted from the
original image regardless geometric transformations applied to
the original image. When the T functional is represented by
the line integral function, the Trace transform is equivalent to
the Radon transform [22], which is a popular tool in curve
detection in digital image processing and in reconstruction
of tomography images [23]. When applying the Diametric
functional along the columns of the array produced in the
previous step (i.e along ρ dimension), a sequence of numbers
will be generated with a length of nθ elements, where nθ is
the number of orientations considered for tracing lines. Finally,
applying an additional functional C, called Circus functional
on the sequence of numbers obtained in the previous step
will produce a real number, called a Triple feature, which can
characterize the original image I in an invariant way [4].

Kadyrov and Petrou [4] demonstrated that the traditional
Trace transform (TT) functionals can produce Triple features
invariant to different geometric transformations applied to the
image. Therefore, choosing the correct Trace functionals and
its combinations with the Diametric and Circus functionals
is an important task to produce Triple features capable of
discriminating an image among many other images. Following
this idea, we used an evolutionary multi-objective algorithm
to search for the optimal combinations of the functionals
to produce invariant Triple features [5], which is termed
Evolutionary Trace Transform (ETT). To achieve robustness to
noise, an improved version of the ETT, called ETTN, has been
proposed in [8]. The main difference between ETT and ETTN
is that in ETTN method, two extra samples for each class
are distorted by Gaussian noise and added during the process
of finding the nondominated solutions. In the evolutionary
optimization of the Trace transform, the first three images
(three classes only) from Fish-94 database [4] (see Fig. 1) are

chosen at random and five samples in each class are generated
(i.e. 15 samples in total). These image samples are then resized
to a lower resolution of 64× 64 to save computational time in
evolutionary optimization.

In the ETTN, the following two objective functions are
minimized:

min{f1, f2},
f1 = Sw,

f2 =
1

(Sb + ε)
,

(1)

where ε is a small constant to avoid division by zero. Sw
and Sb are within-class variance and between-class variance,
respectively, which are defined as follows:

Sw =
K∑
k=1

Ck∑
j=1

(Ξjk − µΞ
k )2,

Sb =
K∑
k=1

(µΞ
k − µΞ)2,

(2)

where

µΞ
k =

1

Ck

Ck∑
j=1

Ξjk, µ
Ξ =

1

K

K∑
k=1

µΞ
k

and K is the number of classes and Ck the number of samples
in class k. µΞ

k is the mean of class k of Ξ Triple features, Ξjk
is the jth Triple features of class k, and µΞ is the mean of all
classes of Ξ Triple features. It is worth mentioning that this
problem could be reduced to a single-objective optimization
(by multiplying the two objectives, f1 and f2). However, it
has been shown [24] that more than one objective should be
considered in most optimization and learning problems.

The elitist non-dominated sorting genetic algorithm, NSGA-
II for short [25], has been adopted in ETTN. In NSGA-II,
a two-step tournament selection is performed on solutions
depending on its dominance. At the first step, solutions are
ranked according to their fitness values and arranged in an
ascending order, i.e. solutions with a lower rank is preferred. If
two solutions have the same rank, then it is arranged according
to a crowding distance and solutions with a larger crowding
distance are preferred. Table I lists the parameter setup for the
evolutionary algorithm.

After running the evolutionary algorithm for 200 genera-
tions, a Pareto front consisting of six Pareto-optimal solutions
is obtained, see Fig. 2. Each solution on the Pareto front is a
distinct combination of the T , D, and C functionals, which

TABLE I: NSGA-II Parameters Set-up

Parameter Value

Population size Np 150

Mutation probability Pm 0.125

Crossover probability Pc 0.9

Number of generations 200

ε 10−5
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Fig. 1: Fish-94 database.
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Fig. 2: Pareto front composed of the corresponding solutions
representing functionals combinations of ETTN.

are to be used to extract Triple features from the images. To
this end, some solutions need to be selected and evaluated on
the entire Fish-94 database. We performed several runs of the
multi-Objective optimization method and found out that the
final Pareto-front contains approximately the same solutions.
Solutions around the knee point of the Pareto front such as

solutions 2 and 3 in Fig. 2 are selected because, as suggested
in [24], these solutions can achieve the best trade-off between
two objectives. Intuitively, solutions having a larger between-
class variance (minimum f2) are preferred if their within-
class variance is adequately small to construct features for
efficient classification. Therefore, we selected an additional
solution with a minimum f2, i.e., solution 1. In general, it
is the user’s preference to choose solutions from the Pareto
front, which is one of the main advantages of using multi-
objective optimization over a single objective optimization.
The Pareto-optimal solutions used in this work are listed in
Table II, and the corresponding functionals are described in
Table III. A full list of T , D and C functionals that are used
in the entire evolutionary stage can be found in [8]. From
these solutions, we create three pairs of Triple features, termed
ETTN1, ETTN2 and ETTN3, respectively. The three pairs of
features are shown in Table IV, each of which will be used to
extract image features to be inputted to a member classifier in
the ensemble.

TABLE II: Triple Features Combinations From Evolutionary
Trace Transform Algorithm (ETTN) in Fig. 2

Solution No. Triple Features

1 T0D5C5

2 T0D3C2

3 T0D1C2

TABLE III: Functionals Description.

Functional Description1

T0

∑nt−1

i=0
τi

D1 max
nρ−1

i=0
δi

D3

(∑nρ−1

i=0
|δi|4
) 1

4

D5 max
nρ−1

i=0
δi −min

nρ−1

i=0
δi

C2

√
1
nθ

∑nθ−1

x=0
(ξi −M)2,M = 1

nθ

∑nθ−1

i=0
ξi

C5 max
nθ−1

i=0
ξi −min

nθ−1

i=0
ξi

1 nt is the total number of samples along the tracing line, τi
is the value of the ith pixel along the tracing line, nρ is the
total number of elements along the columns of Trace matrix,
δi is the value of the ith sample along the columns of the Trace
matrix, nθ is the total number of elements in the row direction
of Trace matrix (the number of orientations considered), and ξi
is the value of the ith sample along the row direction of Trace
matrix.

III. AN ENSEMBLE CLASSIFIER

Traditionally, an ensemble classifier consists of several base
learners (similar or different) combined using majority voting,
averaging, bagging or stacking [18]. In our work, the base
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TABLE IV: Pairs of Triple Features Combinations From ETTN
Algorithm

ETTN feature no. Triple features pairs

ETTN1 T0D5C5, T0D3C2

ETTN2 T0D5C5, T0D1C2

ETTN3 T0D3C2, T0D1C2

learners are feed-forward multilayer perceptron (MLP) neural
networks trained with the backpropagation algorithm. The
reason behind choosing identical MLP neural networks is that
this work focuses on the effectiveness of using Pareto-optimal
features to create diversity required by ensemble classifiers.
Each MLP neural network consists of an input layer, one
hidden layer and one output layer. The input layer consists
of two neurons receiving Triple features extracted from the
images using a corresponding pair of Trace functionals found
by the ETTN as discussed in the previous section. The number
of neurons in the hidden layer is often determined heuristically,
while the number of output neurons equals to the number of
classes in the database. For the fish database used in this work,
there are 94 classes.

Each base classifier is then trained with its own features
extracted from training images. The learning rate for each MLP
is 0.3 with training time of 5000 epochs. Each class contains
44 training samples, which include the original image, the
rotated, scaled and translated (RST) images. In the training, a
5-fold cross-validation is applied. Fig. 1 shows the 94 original
images of the Fish-94 database, which has 94 image classes
with size of 200×400 pixels as in [4] and we converted it to a
standard size of 256×256 pixels. Note that the training samples
contain no combined transformations, i.e., the 44 samples of
each image used for training the base classifiers are either a
rotated, scaled or translated version of the original image. Nev-
ertheless, the test images may be created with a combination of
RST transformations and two types of additive noise, namely
Gaussian noise and salt & pepper noise. After training, the
classifiers are combined together and a final decision is made
using majority voting. The test images contain a wide range of
geometric transformations and additive noise. Fig. 3 illustrates
the structure of the ensemble classifier proposed in this work.

IV. EXPERIMENTAL STUDY

In the experimental study we compare the performance of
each base classifier and the ensemble classifier using image
features extracted by ETTN1, ETTN2 and ETTN3, as well
as the performance of the traditional Trace Transform (TT)
described in [4]. In the experiments we present test images
generated from the Fish-94 database with random object
rotation and translation with a given scale factor and additive
noise (single image per class). The experiments are performed
on a PC with Intel Core 2 Duo E8500 3.1GHz processor and
3GB of RAM.

First, we test the performance of the classifiers against
robustness to scale deformation only (i.e., no rotation, transla-

Majority 
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Classifier 2
(MLP NN)

Classifier 1
(MLP NN)

Classifier 3
(MLP NN)

Image

Final 
Decision

Pareto-front

Multi-Objective Evolutionary Trace 
Transform with Noise (ETTN)

f 2

f1

1

2
3

Fig. 3: The structute of the ensemble classifier using a Pareto-
optimal feature set.

tion or noise). Fig. 4 shows the classification accuracy of the
compared classifiers when the test images are scaled with a
scaling factor from 0.9 down to 0.1. We can clearly see that
the average classification accuracy of the ensemble is much
better than that of the member classifiers and the traditional
Trace transform. Moreover, the individual members exhibit
a competitive performance compared to the traditional Trace
transform, despite the fact that the traditional Trace transform
uses many features, whereas each member classifier uses a
pair of Triple features only. This suggests that compared to
the traditional Trace algorithm, the single classifiers using the
features extracted by the evolutionary Trace transform can
perform comparably well at a much lower computational cost.
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Fig. 4: Robustness to scale only (one test sample per class for
each scale factor).
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(a) σ2 = 0.
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(b) σ2 = 2.
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(c) σ2 = 4.
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(d) σ2 = 6.
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(e) σ2 = 8.
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(f) σ2 = 10.

Fig. 5: Robustness to Gaussian noise of zero mean and standard deviation σ2 = 0, 2, 4, 6, 8 and 10, of each approach, (Fish-94
database). Performance are shown when the object is scaled from 1 to 0.3, rotated and translated in a random way, and Gaussian
noise has been added to the whole image with standard deviation values corresponds to each figure (one test sample per class
for each scale factor).
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(a) 0% noise.
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(b) 1% noise.
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(c) 2% noise.
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(d) 3% noise.
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(e) 4% noise.
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(f) 5% noise.
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(g) 6% noise.

Fig. 6: Robustness to additive salt & pepper noise with percentage of altered pixels % = 0, 1, 2,...,6 of each approach, (Fish-94
database). Performance are shown when the object is scaled from 1 to 0.3, rotated and translated in a random way, and noise
has been added to the whole image with noise levels corresponds to each figure (one test sample per class for each scale factor).
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Second, we examine the performance of the compared
classifiers using test images having more severe deformations
and noise. In these test samples, the images are subject to
random rotation and translation with a range of Gaussian
noise and a given scaling factor. The Gaussian noise has
zero mean and standard deviation ranging from 0 to 10 with
an increment of 2. Noise is added to the whole image (i.e.
to the object and the background) after RST transformation.
Fig. 5 presents the classification accuracy when the test images
are subject to Gaussian noise for different scaling factors. In
Fig. 5(a), the ensemble classifier is assessed with noiseless
test samples deformed by a combination of random rotations
and translation. We can see that there is a slight drop in
classification accuracy compared to the results on test images
transformed with scale only. These results give an idea on
how the system holds against RST deformation. However,
ETTN2 seems to be less sensitive to the increase in noise (c.f.
Figs. 5(b)-(f)). Generally, classifiers ensemble exhibits better
average performance than individual (base) classifiers.

Finally, we test the system with image samples polluted with
salt & pepper noise. Similar to Gaussian noise, salt & pepper
noise is also added to the whole image with a percentage of
altered pixels from 0% to 6%. Fig. 6 shows the performance
of the compared classifiers when the test images are polluted
with salt & pepper noise in addition to random rotation and
translation with a given scaling factor. From these figures,
the classification accuracy of the traditional Trace transform
(TT) deteriorate rapidly compared to the classifiers using
features extracted by ETTN1, ETTN2 and ETTN3. ETTN1
appears to be more robust to salt & pepper noise than to
Gaussian noise. However, the performance of ETTN2 drops
more rapidly with an increasing noise level. In most cases, the
ensemble classifier shows better performance throughout the
tests with and without additive noise. Although the member
classifiers are of a similar MLP structure which has a small
diversity, the input features to each member are extracted using
Pareto-optimal pairs of functionals chosen by the ETTN. This
enhances diversity of the ensemble classifier and thereby the
classification performance.

V. CONCLUSIONS

This paper has presented an ensemble classifier using a set
of Pareto-optimal Trace transform features. Compared to the
traditional Trace transform that uses thousands of features,
the single or ensemble classifiers using the features extracted
by the evolutionary multi-objective Trace transform are able
to accurately classify noisy RST deformed images with a
much lower computational cost. Our results indicate that
diversity in the Pareto-optimal features can introduce diversity
in the ensemble classifier. As a result, no particular effort is
needed to generate diverse base classifiers. Future work will
consider using different types of base classifiers to further
enhance diversity in the ensemble. It is hoped that compared
to the ensemble classifier proposed in this work, where the
diversity is mainly imposed by the Pareto-optimal features,
heterogeneous ensembles using Pareto-optimal features will
create an additional level of diversity, thereby increasing the
overall accuracy of the ensemble classifiers.
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