
Variable Grouping Based Differential Evolution
Using An Auxiliary Function for Large Scale Global

Optimization

Fei Wei
School of Computer Science

and Technology
Xidian University, Xi’an, China

Email: feiweixjf@gmail.com

Yuping Wang
School of Computer Science

and Technology
Xidian University, Xi’an, China

Email: ywang@xidian.edu.cn

Tingting Zong
School of Computer Science

and Technology
Xidian University, Xi’an, China

Email: TingtZong@163.com

Abstract—Evolutionary algorithms (EAs) are a kind of effi-
cient and effective algorithms for global optimization problems.
However, their efficiency and effectiveness will be greatly reduced
for large scale problems. To handle this issue, a variable grouping
strategy is first designed, in which the variables with the interac-
tion each other are classified into one group, while the variables
without interaction are classified into different groups. Then,
evolution can be conducted in these groups separately. In this
way, a large scale problem can be decomposed into several small
scale problems and this makes the problem solving much easier.
Furthermore, an auxiliary function, which can help algorithm to
escape from the current local optimal solution and find a better
one, is designed and integrated into EA. Based on these, a variable
grouping based differential evolution algorithm (briefly, VGDE)
using auxiliary function is proposed. At last, the simulations are
made on the standard benchmark suite in CEC’2013, and VGDE
is compared with several well performed algorithms. The results
indicate the proposed algorithm VGDE is more efficient and
effective.

I. INTRODUCTION

Many real-world optimization problems involve a large
number of decision variables. How to handle this sort of
real-world large scale global optimization (LSGO) problems
efficiently still remains an open problem. In recent years,
many works have been reported for solving LSGO problems.
In these existing approaches, cooperative coevolution (briefly,
CC) [1]- [8], decomposition method [9] and estimation of
distribution algorithm [10], are the typical examples of the
most efficient and popular algorithms, where CC, proposed
by Potter and De Jong [1], adopted a divide-and-conquer
strategy and was especially attractive. In the early stage of the
development of CC, one-dimension based and splitting-in-half
methods were adopted, while the interaction between variables
had not been considered in these methods. Thus, they could not
solve problems consisting of non-trivial variable interactions
efficiently. In order to mitigate this problem, recently, some
effective grouping methods (e.g., random grouping method [3],
[4], variable interaction learning grouping strategy [5]) were
successively proposed. However, random grouping method just
increased the probability of two interacting variables being
allocated into the same group. Variable interaction learning
grouping strategy [5] considered the variable correlation, and
thus it performs better than random grouping method; however,
the condition used to verify the variable correlation is only a

sufficient condition (not a sufficient and necessary condition),
thus the variables with interactions in some cases can not be
correctly classified into one group, in other word, this strategy
will incorrectly group some interacting variables in some cases.

To overcome this shortcoming, in this paper, we propose a
novel variable grouping strategy that can more accurately and
efficiently group the variables according to their interaction.

Except for the novel grouping strategy, in order to further
improve the efficiency and effectiveness of the proposed al-
gorithm, an auxiliary function is also designed and combined
into the algorithm design. The auxiliary function can help the
algorithm to escape from the current local minimal solution,
and find a better local optimal solution.

Based on the above ideas, a variable grouping based
differential evolution algorithm (VGDE) is proposed, and
VGDE has the following advantages: 1) can decompose a
large scale problem to several small scale problems if variables
are separable; 2) can search for multiple areas in the search
space simultaneously (search for each decomposed problem
respectively); 3) can escape from the current best local optima
easily via the auxiliary function.

The simulations are made on 15 problems in CEC’2013
benchmark suite [12], and VGDE is compared with several
efficient algorithms. The results indicate that VGDE is more
efficient.

The reminder of the paper is organized as follows. In
section II, a variable grouping strategy is proposed. In section
III, an auxiliary function is introduced. Section IV presents
a novel algorithm framework VGDE. Numerical experiments
are given in Section V. Section VI presents conclusions and
future works.

In this paper, we adopt the following notations:
𝑘 : the generation number;
𝑥∗𝑘: the local minimizer of the objective function in the 𝑘-th
generation;
𝑓∗𝑘 : the function value at 𝑥∗𝑘;
𝑥∗: the global minimizer of the objective function;
𝑀𝑎𝑥𝐹𝐸𝑠: the maximum number of function evaluations.

1293

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

II. VARIABLE GROUPING STRATEGY

Decomposition of the original problem into several smaller
subcomponents is a critical step of the proposed algorithm.
The ideal goal of decomposition is that those decision vari-
ables with interaction are classified into one group, and those
decision variables without interactions are classified into dif-
ferent groups. At present, some grouping strategies have been
proposed, such as random grouping (DECC-G [3], MLCC
[4]), variable interaction learning grouping (CCVIL [5]), route
distance grouping [6], differential grouping [7], delta grouping
[8], and so on. However, these grouping strategies still cannot
realize accurate grouping for some problems. For example, ran-
dom grouping just increases the probability of two interacting
variables being allocated into the same group.

To overcome this shortcoming, in this paper, we propose
a new adaptive variable grouping method (briefly, AVG). The
AVG framework is as follows: first, a set 𝑁 -𝑆𝑒𝑝 is built whose
elements are the factors determining variables interaction;
second, matching these elements to the test problem; finally,
if an element is matched, putting the variables connected by
the element into a group.

In the following, we explain how to build the set 𝑁 -𝑆𝑒𝑝.
Note that a general test function consists of a finite number
of four arithmetic operations ”+, -, × and ÷” and composite
operation of basic elementary functions (i.e., power function
𝑦𝑎, exponential functions 𝑎𝑦 and 𝑒𝑦 , logarithmic functions ln𝑦
and log𝑎𝑦, trigonometric functions sin𝑦, cos𝑦, tan𝑦, cot𝑦, sec𝑦
and csc𝑦, inverse trigonometric functions arcsin𝑦, arccos𝑦,
arctan𝑦, arccot𝑦, arcsec𝑦 and arccsc𝑦 and constant, where
𝑦 ∈ 𝑅). We build the set 𝑁 -𝑆𝑒𝑝 based on this formulation
characteristic of a general function in the following cases:

(1) Variables separability in four arithmetic operations. If
function 𝑝1(𝑥) = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋅ ⋅ ⋅+ 𝑎𝑚𝑥𝑚, then each 𝑎𝑖𝑥𝑖
in this function can be optimized independently and thus the
variables 𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑚 in this function are separable, where
𝑎𝑖 ∈ 𝑅, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚. While if a function contains ”×” or
”÷” of two variables, these two variables can not be optimized
independently and thus they are non-separable. We put ”×”
and ”÷” into a set 𝑁 -𝑆𝑒𝑝.

(2) Variables separability in a composite function. For
a basic elementary function 𝑔(𝑦) with 𝑦 ∈ 𝑅 and an 𝑛-
dimensional function ℎ(𝑥), if 𝑔(𝑦) is monotone and variables
in function ℎ(𝑥) are separable, then variables in composite
function 𝑔(ℎ(𝑥)) are also separable (e.g., if 𝑔(𝑦) = 𝑒𝑦 , and
ℎ(𝑥) = 𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥10, then variables in 𝑔(ℎ(𝑥)) =
𝑒𝑥1+𝑥2+⋅⋅⋅+𝑥10 are separable). Otherwise, variables in 𝑔(ℎ(𝑥))
are non-separable. We put the non-monotonic functions (e.g.,
trigonometric functions, inverse trigonometric functions, and
power function 𝑔(𝑦)𝑎 with 𝑦 ∈ 𝑅, where 𝑎 is an even number)
into 𝑁 -𝑆𝑒𝑝.

(3) Variables separability in a function obtained by one
operation of ”+”, ”−”, ”×” and ”÷” on two composite
functions in (2). The variables in ”×” or ”÷” of two composite
functions in (2) are non-separable except that both composite
functions are exponential functions. We put ”×” and ”÷”
into a set 𝑁 -𝑆𝑒𝑝 (except that both composite functions are
exponential functions).

These three cases can construct set 𝑁 -𝑆𝑒𝑝, and the vari-

ables can be classified into different groups by the following
algorithm 1.

Algorithm 1: The flow of the adaptive variable grouping
strategy AVG

1 The elements in 𝑁 -𝑆𝑒𝑝 can be seen as strings (such as
”cos” and ”sin”);

2 Using regular expressions to match these strings in
𝑁 -𝑆𝑒𝑝 for each problem in benchmark suite;

3 If a string is matched from the problem, then these
variables contained in this string will be classified into
a group, and so on;

4 If some variables are not matched, then they are
separable, and each variable is put into a group.

III. AN AUXILIARY FUNCTION

It is often occurred that the number of local optimal so-
lutions increases exponentially with respect to the dimensions
for many problems. This makes EAs be easy to be trapped
into local optimal solutions and makes global optimization
solving become a great challenge. Thus, one of the key issues
for the global optimization problem is effectively handling
a large number of local optimal solutions and finding the
global optimal solution as quickly as possible. To achieve this
purpose, we use an auxiliary function to help the proposed
algorithm to jump out the current local optimal solution and
arrive at a better one. An auxiliary function is used as follows
(for more details, please refer to literature [11]):

𝑃 (𝑥, 𝑥∗𝑘) = −∥𝑥− 𝑥∗𝑘∥2𝑔(𝑓(𝑥)− 𝑓(𝑥∗𝑘)), (1)

𝑔(𝑡) =

{
𝜋/2, 𝑡 ≥ 0,
𝑟 ⋅ arctan(𝑡2) + 𝜋/2, 𝑡 < 0.

where 𝑟 is an adjustable positive real number large enough,
used as the weight factor.

The auxiliary function 𝑃 (𝑥, 𝑥∗𝑘) has the following proper-
ties.

Theorem 1: Suppose that 𝑥∗𝑘 is a local minimizer of 𝑓(𝑥),
then 𝑥∗𝑘 is a strictly local maximizer of 𝑃 (𝑥, 𝑥∗𝑘); and for any
𝑥 ∈ Ω1 = {𝑥∣𝑓(𝑥) ≥ 𝑓(𝑥∗𝑘), 𝑥 ∈ Ω, 𝑥 ∕= 𝑥∗𝑘}, ∇𝑃 (𝑥, 𝑥∗𝑘) ∕= 0.

This theorem illustrates that any solution 𝑥, which is no
better than the current best solution 𝑥∗𝑘, can not be a local
optimal solution of auxiliary function.

Theorem 2: Suppose that 𝑥∗𝑘 is a local minimizer of 𝑓(𝑥),
and Ω2 = {𝑥∣𝑓(𝑥) < 𝑓(𝑥∗𝑘), 𝑥 ∈ Ω} is not empty, then there
exists a point 𝑥′𝑘 ∈ Ω2, such that 𝑥′𝑘 is a local minimizer of
𝑃 (𝑥, 𝑥∗𝑘).

This theorem illustrates that a better local optimal solution
than the current best solution of the original function can be
obtained by minizing the auxiliary function. Thus, we can jump
out the current best local optimal solution via minimizing the
auxiliary function at 𝑥∗𝑘.

The key issue for constructing the auxiliary function is
to know a local optimal solution 𝑥∗𝑘. How to get a local
optimal solution 𝑥∗𝑘? When a good solution 𝑥𝑘 is found in
the evolution process, it may not be a local optimal solution.

1294

However, a local optimal solution 𝑥∗𝑘 can be obtained by a
local search algorithm using 𝑥𝑘 as an initial solution. There
are many existing local search algorithms (e.g., Conjugate
Gradient Method, Newton Method and Quasi Newton Method,
etc.), but they require the gradients of the function, therefore,
these methods are not suitable for solving non-differentiable
problems. To be applicable to the non-differentiable problems
and avoid computing the gradients, a revised version of Quasi
Newton algorithm is designed as follows.

Algorithm 2: The pseudocode of the local search strategy

1 Initialization: Choose a tolerance 𝜀 > 0, e.g.
𝜀 = 1.0𝑒− 5, and a small constant 𝛿 ∈ (0, 1),
𝜎 ∈ (0, 0.5), and Δ𝑥 = 1.0𝑒− 1.

2 Give an initial point 𝑥0 and an approximate inverse of
the Hessian matrix 𝐵0,

3 𝑘 = 0.
4 Calculate 𝑔𝑘 = (𝑔1𝑘, 𝑔

2
𝑘, ⋅ ⋅ ⋅ , 𝑔𝑛𝑘)𝑇 , where

𝑔𝑖𝑘 = (𝑓(𝑥𝑘 +Δ𝑥𝑒𝑖)− 𝑓(𝑥𝑘))/Δ𝑥 and
𝑒𝑖 = (0, 0, ⋅ ⋅ ⋅ , 1, 0, ⋅ ⋅ ⋅ , 0)𝑇 with 1 being the 𝑖-th
component of 𝑒𝑖 for 𝑖 = 1 ∼ 𝑛.

5 repeat
6 Obtain a direction 𝑑𝑘 by solving 𝐵𝑘𝑑𝑘 = −𝑔𝑘.
7 Perform a line search based on the Armijo criterion

[16] to find an acceptable stepsize 𝜆𝑘 = 𝛿𝑚𝑘 , where
𝑚𝑘 is the smallest non-negative integer that satisfy
the following inequality:

𝑓(𝑥𝑘 + 𝛿𝑚𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝛿𝑚𝑘𝑔𝑇𝑘 𝑑𝑘.

8 Set 𝑠𝑘 = 𝜆𝑘𝑑𝑘, 𝑥𝑘+1 = 𝑥𝑘 + 𝜆𝑘𝑑𝑘 and 𝑘 = 𝑘 + 1,
then calculate 𝑔𝑘 according to Step 2 and set
𝑦𝑘−1 = 𝑔𝑘 − 𝑔𝑘−1, then⎧⎨
⎩

𝐵𝑘 = 𝐵𝑘−1 + (𝛽𝑘−1𝑠𝑘−1𝑠
𝑇
𝑘−1 −𝐵𝑘−1𝑦𝑘−1𝑠

𝑇
𝑘−1

−𝑠𝑘−1𝑦𝑇𝑘−1𝐵𝑘−1)/𝑠
𝑇
𝑘−1𝑦𝑘−1,

𝛽𝑘−1 = 1 + 𝑦𝑇𝑘−1𝐵𝑘−1𝑦𝑘−1/𝑠
𝑇
𝑘−1𝑦𝑘−1.

9 until ∥𝑔𝑘∥ ≤ 𝜀;
10 𝑥∗ = 𝑥𝑘,
11 return 𝑥∗.

After a local optimal solution can be obtained by algorithm
2, in order to jump out this local optimal solution and go into
a deeper valley, we can minimize the auxiliary function as
shown in theorem 2. A pseudocode of minimizing the auxiliary
function is shown in algorithm 3.

The auxiliary function minimization algorithm can only
escape from the current local minimizer and reach to a lower
local minimizer, however, it cannot search multiple regions
simultaneously. To search multiple regions simultaneously, we
combine it with evolutionary algorithm and design a novel
algorithm in the next section.

IV. VARIABLE GROUPING BASED DIFFERENTIAL
EVOLUTION USING AUXILIARY FUNCTION (VGDE)

As mentioned before, a large scale optimization problem
can be decomposed into several small scale optimization
problems by algorithm1. In this paper, we use self-adaptive
differential evolution with neighborhood Search(SaNSDE) [15]
to optimize each sub-problem (corresponding to each group)

Algorithm 3: The pseudocode of minimizing the auxil-
iary function algorithm

Input: 𝑥0 is an initial point, and 𝜀 is a small constant
1 repeat
2 Minimize object function 𝑓(𝑥) from 𝑥0 by using

algorithm 2 to obtain a local minimizer 𝑥
′
;

3 Construct an auxiliary function 𝑃 (𝑥) at 𝑥
′
;

Minimize 𝑃 (𝑥) from 𝑥
′

by using algorithm 2 to
obtain a local minimizer 𝑥∗;

4 Calculate 𝜎 = 𝑓(𝑥0)− 𝑓(𝑥∗);
5 if 𝜎 > 𝜀 then
6 𝑥0 = 𝑥∗;
7 end
8 until 𝜎 ≤ 𝜀;
9 return 𝑥∗.

Algorithm 4: Pseudocode of VGDE

1 Initialization: let 𝐾 = 0, and 𝐹𝐸𝑠 = 0. Choose two
positive real numbers 𝜆, 𝑟 large enough, 𝜎 =∞,
𝑓(𝑥∗0) = 𝑓(𝑥

′

0) =∞, 𝜀 is a tolerance threshold.
2 Perform the algorithm 1, and obtained 𝑀 groups;
3 repeat
4 𝜎 =∞;
5 generate initial population 𝑃𝑂𝑃 via uniform

distribution, where the population size is 𝑁𝑃 ;
6 while 𝜎 > 𝜀 do
7 for 𝑗 ∈ [1, ⋅ ⋅ ⋅ ,𝑀] do
8 𝑘 = 1;
9 perform algorithm SaNSDE on each group;

10 output the iterations 𝑘1 in SaNSDE, the
current best solution 𝑥

′

𝑘 and second-best
solution 𝑥

′

𝑘−1, and the number of function
evaluation 𝑆𝐹𝐸𝑠 in SaNSDE, then update
FEs=FEs+SFEs, and 𝛿 = 𝑓(𝑥

′

𝑘−1)− 𝑓(𝑥
′

𝑘);
11 if 𝛿 ≤ 𝜀 then
12 perform algorithm 3 on the auxiliary

function at 𝑥
′

𝑘, then obtain a current best
solution 𝑥∗𝑘; update 𝛿 = 𝑓(𝑥

′

𝑘)− 𝑓(𝑥∗𝑘);
13 else
14 𝑥∗𝑘 = 𝑥

′

𝑘;
15 end
16 end
17 update current best solution 𝑥∗𝐾 = 𝑥∗𝑘, and

𝜎 = 𝑓(𝑥∗𝐾)− 𝑓(𝑥∗(𝐾−1));
18 𝐾 = 𝐾 + 1;
19 end
20 until the maximum number of function evaluations

MaxFEs is met;
21 𝑥∗ = 𝑥∗𝐾 , and 𝑓(𝑥∗) = 𝑓(𝑥∗𝐾);
22 return 𝑥∗ and 𝑓(𝑥∗).

separately. It has been indicated that SaNSDE performs sig-
nificantly better than other similar algorithms due to its self-
adapted crossover rate 𝐶𝑅 and scaling factor 𝐹 [15], and
SaNSDE has been successfully applied in a variety of problems
[3], [4]. Furthermore, in order to enhance this algorithm, we
integrate an auxiliary function into it. The pseudocode is given

1295

in Algorithm 4.

V. NUMERICAL EXPERIMENTS

A. Benchmark suite and parameters setting for VGDE

∙ In this section, the proposed algorithm VGDE is tested
on CEC’2013 benchmark suite [12].

∙ In experiments, VGDE was tested on an Intel(R)
Core(TM) i7 CPU 870 with 2.93GHz in Matlab
R2012a.

∙ Population size: 𝑁 = 50.

∙ Parameters in algorithm VGDE: 𝜆 = 100, 𝑟 = 100,
𝜀 = 1.0𝑒− 7.

B. The simulation results

To verify the efficiency of the proposed variable grouping
strategy and the auxiliary function, we replace the proposed
variable grouping strategy in VGDE by the randomly grouping
strategy [4] and deleting the auxiliary function, and the resulted
algorithm is denoted by RVGDE.

VGDE and RVGDE are executed 25 independent runs for
each test problem, respectively, and we record the results of
the best, the worst, the mean, and the median solutions as well
as the standard deviation in Table I with 𝑀𝑎𝑥𝐹𝐸𝑠 = 3.0𝑒6.
Table I also lists these results of three other compared algo-
rithms (SACC [17], MOS [18] and DECC-G [3]) on CEC’2013
benchmark suite. The only difference between VGDE and
SACC [17] is that the grouping strategy is different. The algo-
rithm MOS in [18] is one of the best algorithms in CEC’2013
competition. DECC-G [3] is a representative algorithms in
large scale global optimization.

In Table I, the function values at the best solution, the
worst solution, the median solution obtained in 25 runs are
denoted as ”Best”, ”Worst” and ”Median”, respectively. Also,
The mean value and the standard deviation of these function
values are denoted as ”Mean” and ”Std”, respectively. A two-
tailed t-test was only conducted between VGDE and MOS,
since VGDE clearly outperformed RVGDE, SACC and DECC-
G.

Note that the bold form of the results in Table I means
that the best result obtained by all algorithms listed. From
Table I, we can see that the all performance index values of
𝑓1, 𝑓2 and 𝑓3 obtained by VGDE are the best, and the mean
values obtained by VGDE on seven problems are better than
those obtained by the other four algorithms. which indicates
that the proposed VGDE are more efficient. Also, the mean
values obtained by VGDE on all problems are better than
those obtained by RVGDE, which indicates that the proposed
variable grouping strategy (AVG) and auxiliary function are
effective. The mean values of VGDE are better than those
of SACC, which also indicates that AVG in VGDE is very
effective. Moreover, the mean values of seven problems in
VGDE are better than those of MOS, and the mean values
of thirteen problems in VGDE are better than those in DECC-
G, which indicate that AVG and auxiliary function in VGDE
are effective.

From another point of view, first, for fully separable
functions 𝑓1, 𝑓2 and 𝑓3, the results show that VGDE is

more effective than other algorithms.This indicate the proposed
AVG is more effective. Second, for eight partially additively
separable problems 𝑓4-𝑓11, almost all of the mean values in
VGDE are better than those in RVGDE and SACC; the mean
values of five problems 𝑓5, 𝑓6, 𝑓7, 𝑓9, 𝑓10 in VGDE are
better than those in MOS; the mean values of six problems 𝑓4,
𝑓5, 𝑓7, 𝑓9, 𝑓10, 𝑓11 in VGDE are better than those in DECC-
G. Overall, VGDE is more effective to partially additively sep-
arable functions. Third, for overlapping functions 𝑓12-𝑓14 and
nonseparable function 𝑓15, the results of 𝑓12-𝑓15 in VGDE
are better than those in the other three algorithms(RVGDE,
SACC, DECC-G). It indicates that auxiliary function in VGDE
is effective for overlapping and nonseparable functions. In
addition, one of the main difference between SACC and
DECC-G is that SACC contain an auxiliary function, from
the table 1, we can seen that the results in SACC are better
than those in DECC-G, so the auxiliary function is effective.
However, the results of 𝑓12-𝑓15 in VGDE are worse than
those in MOS, this might be because the evolution algorithm
used in the proposed algorithm is easily trapped in the local
optimum and appeared premature convergence.

From the results of two tailed T-test, it can be seen that
the results between VGDE and MOS are nearly identical for
two problems 𝑓1 and 𝑓6; and the six problems’ results of
VGDE are obviously better than those of MOS. However, for
overlapping functions and nonseparable function, the results
of VGDE are worse than MOS, and this may be due to the
prematurity of evolutionary algorithm used, and this will be a
problem to be solved in the future.

In order to show the advantage of the proposed algorithm
VGDE more intuitively, we use the semilog line diagram to
plot the convergence curve of problems. Fig.1 to Fig.3 show
that the semilog line diagram of the three selected functions:
𝑓1, 𝑓7, and 𝑓11. Plotted by FEs on the horizontal axis and the
function value of each problem on the vertical one, where the
vertical one is logarithmic scale. For each selected function,
the convergence curves of three algorithms are plotted using
the average results over all 25 runs. The thick line represents
the convergence curve of VGDE, the thin line represents the
convergence curve of SACC, and the dotted line represents the
convergence curve of RVGDE.

From Fig.1 to Fig.3, it can be seen that VGDE is much
better than two other algorithms: at the early stages of the
evolution, the decreasing degree of function value by VGDE
is larger than that of function value by other algorithms. The
reason may be that AVG in VGDE is very effective; at the
later evolution process, VGDE also has the very good results
compared with the other two algorithms, the reason may be
that the auxiliary function is effective.

However, at the later evolution process, the evolution
become slower and the global optimal solutions have not
been found, such as in Fig.3. One of the reasons is that
the population may be premature. In addition, because of the
difficulty of problems and the inappropriate parameters chosen,
the variable grouping strategy and the auxiliary function is
likely to become ineffective.

Overall, both the data in Table I and Figures 1-3 show that
the proposed algorithm VGDE is more effective and efficient.

Nevertheless, the results for partially additively separable

1296

functions 𝑓4 − 𝑓11 and overlapping nonseparable functions
𝑓12− 𝑓15 are far from their real global optimal values. This
may be caused by several reasons. Firstly, the parameters
are difficult to choose and they may be not appropriately
chosen. Secondly, for overlapping function and nonseparable
function, the grouping strategy AVG in VGDE has a little effect
on improving the performance of the algorithm. Finally, the
chosen number of function evaluations is not enough to get a
satisfied solution.

VI. CONCLUSIONS

In this paper, a variable grouping based differential evolu-
tion with an auxiliary function(briefly, VGDE) is proposed.
The variable grouping strategy can divide the interacting
variables into a group and to achieve the goal of becoming
large scale problems into several small scale problems, and the
auxiliary function can help the proposed algorithm to jump out
the current local optimal solution and reach to another better
local optimal solution. VGDE can search multiple regions
simultaneously and thus has more possibility to find a better
local optimal solution. The experiment results also indicate that
VGDE is efficient for large scale problems and more efficient
than the compared algorithms.

There are several relevant issues to be addressed further
in the future. Firstly, a variable grouping method for large
scale global optimization needs to be further explored. Sec-
ondly, self-adaptive mechanism for parameters in the various
evolution operators is also very worthy to study. Thirdly, it is
necessary to revise VGDE to be more efficient to the large
scale optimization problems.

0 0.5 1 1.5 2 2.5 3

x 10
6

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

f1

FEs

F
itn

es
s

va
lu

e

VGDE
RVGDE
SACC

Fig. 1. The convergence curve of three algorithms on f1

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (No. 61272119).

REFERENCES

[1] Mitchell A. Potter and Kenneth A. De Jong, ”A cooperative coevolution-
ary approach to function optimization,” in: Proceedings of International
Conference on Parallel Problem Solving from Nature, pp. 249-257, 1994.

[2] X. Li and X. Yao, ”Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 2, pp. 210-224, Apr. 2012.

TABLE I. COMPARISON BETWEEN VGDE AND OTHER ALGORITHMS

ON 1000-D FUNCTIONS

P VGDE RVGDE SACC MOS DECC-G p-value (VGDE-MOS)

f1

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.75e-13

NaN
Median 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.00e-13
Worst 0.00e+00 1.81e-03 6.81e-23 0.00e+00 2.45e-13
Mean 0.00e+00 2.58e-04 2.73e-24 0.00e+00 2.03e-13
Std 0.00e+00 6.84e-04 1.36e-23 0.00e+00 1.78e-14

f2

Best 5.97e+00 1.91e+02 2.88e+02 7.40e+02 9.90e+02

1.18e-30
Median 3.78e+01 1.15e+03 5.71e+02 8.36e+02 1.03e+03
Worst 1.55e+02 4.11e+03 2.72e+03 9.28e+02 1.07e+03
Mean 4.56e+01 2.11e+03 7.06e+02 8.32e+02 1.03e+03
Std 3.25e+01 1.73e+03 4.72e+02 4.48e+01 2.26e+01

f3

Best 3.69e-13 2.06e-13 9.24e-14 8.20e-13 2.63e-10

3.07e-20
Median 3.94e-13 2.70e-13 1.21e+00 9.10e-13 2.85e-10
Worst 4.30e-13 3.32e+00 3.76e+00 1.00e-12 3.16e-10
Mean 3.98e-13 3.76e-01 1.11e+00 9.17e-13 2.87e-10
Std 1.42e-14 9.96e-01 1.11e+00 5.12e-14 1.38e-11

f4

Best 6.07e+07 7.02e+09 8.48e+09 1.10e+08 7.58e+09

7.21e-06
Median 4.05e+08 2.79e+10 3.66e+10 1.56e+08 2.12e+10
Worst 2.18e+09 1.35e+11 1.71e+11 5.22e+08 6.99e+10
Mean 5.96e+08 6.09e+10 4.56e+10 1.74e+08 2.60e+10
Std 4.45e+08 5.46e+10 3.60e+10 7.87e+08 1.47e+10

f5

Best 2.07e+06 1.46e+06 3.36e+06 5.25e+06 7.28e+14

3.97e-17
Median 3.05e+06 1.02e+07 6.95e+06 6.79e+06 7.28e+14
Worst 4.19e+06 1.37e+07 1.40e+07 8.56e+06 7.28e+14
Mean 3.00e+06 8.31e+06 7.74e+06 6.94e+06 7.28e+14
Std 5.29e+05 4.90e+06 3.22e+06 8.85e+05 1.51e+05

f6

Best 1.06e+04 1.12e+05 1.57e+05 1.95e+01 6.96e-08

4.16e-01
Median 1.29e+05 1.38e+05 2.07e+05 1.39e+05 6.08e+04
Worst 1.59e+05 1.82e+05 6.00e+05 2.31e+05 1.10e+05
Mean 1.31e+05 1.46e+05 2.47e+05 1.48e+05 4.85e+04
Std 1.74e+04 2.56e+04 1.02e+05 6.43e+04 3.98e+04

f7

Best 2.27e+01 2.44e+07 1.72e+06 3.49e+03 1.96e+08

3.52e-09
Median 6.42e+02 3.13e+08 1.58e+07 1.62e+04 4.27e+08
Worst 1.52e+04 1.02e+09 1.18e+09 3.73e+04 1.78e+09
Mean 1.85e+03 4.65e+08 8.98e+07 1.62e+04 6.07e+08
Std 3.39e+03 4.22e+08 2.48e+08 9.10e+03 4.09e+08

f8

Best 2.95e+14 5.33e+13 1.47e+14 3.26e+12 1.43e+14

4.32e-16
Median 5.89e+14 1.57e+15 9.86e+14 8.08e+12 3.88e+14
Worst 1.80e+15 5.62e+15 3.08e+15 1.32e+13 7.75e+14
Mean 7.00e+14 2.14e+15 1.20e+15 8.00e+12 4.26e+14
Std 3.29e+14 1.77e+15 7.63e+14 3.07e+12 1.53e+14

f9

Best 1.44e+08 2.54e+08 2.29e+08 2.63e+08 2.20e+08

1.50e-09
Median 2.33e+08 4.04e+08 5.77e+08 3.87e+08 4.17e+08
Worst 3.08e+08 4.89e+08 1.01e+09 5.42e+08 6.55e+08
Mean 2.31e+08 3.75e+08 5.98e+08 3.83e+08 4.27e+08
Std 4.01e+07 7.97e+07 2.03e+08 6.29e+07 9.89e+07

f10

Best 1.17e+02 5.92e+06 1.38e+07 5.92e+02 9.29e+04

1.26e-11
Median 1.51e+02 1.09e+07 2.11e+07 1.18e+06 1.19e+07
Worst 2.26e+02 1.59e+07 7.75e+07 1.23e+06 1.73e+07
Mean 1.57e+02 1.02e+07 2.95e+07 9.02e+05 1.10e+07
Std 2.51e+01 3.16e+06 1.93e+07 5.07e+05 4.00e+06

f11

Best 3.89e+07 3.35e+08 8.12e+07 2.06e+07 4.68e+10

1.82e-04
Median 7.26e+07 1.88e+10 5.30e+08 4.48e+07 1.60e+11
Worst 1.14e+08 2.93e+11 2.30e+10 9.50e+07 7.16e+11
Mean 7.52e+07 1.01e+11 2.78e+09 5.22e+07 2.46e+11
Std 2.16e+07 1.28e+11 5.90e+09 2.05e+07 2.03e+11

f12

Best 2.09e+03 2.48e+03 2.43e+02 2.22e-01 9.80e+02

4.97e-34
Median 2.51e+03 2.71e+03 8.74e+02 2.46e+02 1.03e+03
Worst 3.37e+03 3.00e+03 1.72e+03 1.17e+03 1.20e+03
Mean 2.52e+03 2.71e+03 8.73e+02 2.47e+02 1.04e+03
Std 2.81e+02 1.81e+02 3.71e+02 2.54e+02 5.76e+01

f13

Best 5.15e+08 3.86e+09 6.72e+08 1.52e+06 2.09e+10

1.05e-14
Median 1.29e+09 4.78e+09 1.51e+09 3.30e+06 3.36e+10
Worst 3.78e+09 7.45e+09 3.40e+09 6.16e+06 4.64e+10
Mean 1.36e+09 5.21e+09 1.78e+09 3.40e+06 3.42e+10
Std 7.01e+08 1.30e+09 8.05e+08 1.06e+06 6.41e+09

f14

Best 2.22e+09 3.91e+08 8.21e+07 1.54e+07 1.91e+11

2.20e-08
Median 1.66e+10 7.96e+09 7.34e+09 2.42e+07 6.27e+11
Worst 6.87e+10 2.52e+11 1.10e+11 4.46e+07 1.04e+12
Mean 2.29e+10 4.75e+10 1.75e+10 2.56e+07 6.08e+11
Std 1.91e+10 9.21e+10 2.87e+10 7.94e+06 2.06e+11

f15

Best 2.92e+06 3.91e+08 1.26e+06 2.03e+06 4.63e+07

4.99e-16
Median 3.49e+06 6.22e+06 1.88e+06 2.38e+06 6.01e+07
Worst 3.92e+06 7.56e+06 4.90e+06 2.88e+06 7.15e+07
Mean 3.44e+06 5.32e+06 2.01e+06 2.35e+06 6.05e+07
Std 2.43e+05 2.06e+06 7.23e+05 1.94e+05 6.45e+06

[3] Z. Yang, K. Tang, and X. Yao, ”Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2986-2999, Aug. 2008.

[4] Z. Yang, K. Tang, and X. Yao, ”Multilevel cooperative coevolution
for large scale optimization,” in: Proceedings of IEEE Congress on
Evolutionary Computation, pp. 1663-1670, 2008.

[5] Wenxiang Chen, Thomas Weise, Zhenyu Yang, Ke Tang, ”Large-Scale
Global Optimization Using Cooperative Coevolution with Variable Inter-
action Learning,” PPSN, vol. 6239, pp. 300-309, 2010.

[6] Mei, Y., Li, X., Yao, X., ”Cooperative Co-evolution with Route Distance
Grouping for Large-Scale Capacitated Arc Routing Problems,” IEEE
Transactions on Evolutionary Computation, (accepted on July 2013).

[7] Omidvar, M., Li, X. Mei, Y. Yao, X., ”Cooperative Co-evolution with
Differential Grouping for Large Scale Optimization,” IEEE Transactions
on Evolutionary Computation, (accepted on 21 May 2013).

[8] Mohammad Nabi Omidvar, X. Li, and X. Yao, ”Cooperative co-evolution
with delta grouping for large scale non-separable function optimization,”

1297

0 0.5 1 1.5 2 2.5 3

x 10
6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

f7

FEs

F
itn

es
s

va
lu

e

VGDE
RVGDE
SACC

Fig. 2. The convergence curve of three algorithms on f7

0 0.5 1 1.5 2 2.5 3

x 10
6

10
6

10
8

10
10

10
12

10
14

10
16

10
18

f11

FEs

F
itn

es
s

va
lu

e

VGDE
RVGDE
SACC

Fig. 3. The convergence curve of three algorithms on f11

in: Proceedings of IEEE Congress on Evolutionary Computation, pp.
1762-1769, 2010.

[9] R. Rach, J. S. Duan, ”Near-field and far-field approximations by the
Adomian and asymptotic decomposition methods,” Applied Mathematics
and Computation, vol. 217, no. 12, pp. 5910-5922, Feb. 2011.

[10] S. Ivvan Valdez, Arturo Hernndez, Salvador Botello, ”A Boltzmann
based estimation of distribution algorithm,” Information Sciences, vol.
236, no. 1, pp. 126-137, Jul. 2013.

[11] Fei Wei and Yuping Wang, A new filled function method with one pa-
rameter for global optimization, Mathematical Problems in Engineering,
vol. 2013, pp. 1-12, 2013.

[12] X. Li, K. Tang, M. Omidvar, Z. Yang and K. Qin, ”Benchmark
Functions for the CEC’2013 Special Session and Competition on Large
Scale Global Optimization,” Technical Report, Evolutionary Computation
and Machine Learning Group, RMIT University, Australia, 2013.

[13] J. Vesterstrom and R. Thomsen, ”A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical,” in: Proceedings of the 2004 Congress on Evolutionary
Computation, pp. 1980-1987, 2004.

[14] R. Gamperle, S. Muller, and P. Koumoutsakos, ”A parameter study for
differential evolution,” in: Proceedings of WSEAS International Confer-
ence on Advances in Intelligent Systems, Fuzzy Systems, Evolutionary
Computation, pp. 293-298, 2002.

[15] Z. Yang, K. Tang, and X. Yao, ”Self-adaptive differential evolution
with neighborhood search,” in: Proceedings of IEEE World Congress on
Computational Intelligence, pp. 1110-1116, 2008.

[16] J. Nocedal, and S. J. Wright, Numerical Optimization. Springer-Verlag,
New York, 1999.

[17] F. Wei, Y. P. Wang and Y.l. Huo, ”Smoothing and Auxiliary Functions
Based Cooperative Coevolution for Global Optimization,” in: Proceed-
ings of IEEE Congress on Evolutionary Computation, pp. 2736-2741,
2013.

[18] Antonio LaTorre, Santiago Muelas, Jos Marła Peña, ”Large scale global
optimization: Experimental results with MOS-based hybrid algorithms,”
in: Proceedings of IEEE Congress on Evolutionary Computation, pp.
2742-2749, 2013.

1298

