

Abstract— In this paper, a surrogate-assisted differential
evolution (DE) algorithm is proposed to solve the
computationally expensive optimization problems. In it, the
Kriging model is used to approximate the objective function,
while DE employs a mechanism to dynamically select the best
performing combinations of parameters (amplification
factor, crossover rate and population size). The performance
of the algorithm is tested on the WCCI2014 competition on
expensive single objective optimization problems. The
experimental results demonstrate that the proposed
algorithm has the ability to obtain good solutions.

Index Terms— differential evolution, parameter selection,
surrogate models, Kriging model

I. INTRODUCTION

N many real-world applications, there exist many
computationally expensive mathematical or physical

models. To solve these computationally expensive
problems, an enormous number of fitness function
evaluations (performance evaluations) are required during
the evolution process when evolutionary algorithms (EAs)
are used. Any time limitation in solving these problems
would limit the search space exploration. To tackle this
problem, recently, EAs based surrogate model have
attracted much attention [1]. In such algorithms, a
surrogate model is used to estimate the objective function
by constructing an approximate model [2]. Over the last
few decades, many surrogate models have been proposed,
such as, Kriging, polynomials, and radial-basis-function
networks (RBFN) [3].

Beside using surrogate model with EAs, it is well-
known that the choice of control parameters in any EAs
plays a critical role in its success [4]. In this paper, DE is
used, as it has shown significant success in solving
different numerical optimization problems (both
constrained and unconstrained, and black-box) [5, 6] .In
DE, one tedious technique, to find the best parameters
combination, is a trial-and-error approach [7]. However,
the best set of parameters is problem dependent, because
of the variability of the underlying mathematical
properties of the optimization problems. This means that a
fixed set of control parameters that suits well for one
problem or a class of problems does not assure that it will
work well for another class, or a range of problems. Not
only this, it is confirmed that a set of parameters that
works well at the early stages of the evolution process may
not perform well at the later stages and vice versa [4].

The idea of parameter adaptation was introduced at least
two decades ago in the context of genetic algorithms [8].

The authors are with the School of Engineering and Information
Technology, University of New South Wales, ADFA Campus, Canberra
2600, Australia (e-mails: {s.elsayed, t.ray and r.sarker}@adfa.edu.au)

In DE, many different mechanisms have been introduced
to select and/or manage the dynamic changes of the
control parameters. Based on how the control parameters
are adapted, the mechanisms can be classified into three
classes[9]: (1) Deterministic Parameter Control [10]; (2)
Adaptive Parameter Control [11, 12]; and Self-adaptive
Parameter Control [11-13]. Some of these algorithms
have been applied to unconstrained problems, where it
dynamically adapted either one of the three control
parameters (crossover rate, amplification factor, or the
population size), or two of them together (crossover rate
and amplification factor). To the best of our knowledge,
only a few algorithms reported in literature adapted all
three control parameters together [14, 15]. In addition,
existing investigations usually suggested a single set of
parameters for all the problems under consideration. Note
that some of the investigations, that determine the
parameters using the traditional parametric analysis
concept, require a huge number of trials.

Therefore, in this research, a surrogated assisted DE
algorithm with dynamic selection is proposed for solving
computationally expensive unconstrained problems. We
introduce the algorithm as a surrogated-assisted DE with
dynamic parameters selection (Sa-DE-DPS). In it, an
initial sample is generated. A Kriging model is then used
to build a model based on the initial sample. Once the
model is built, DE-DPS is run to maximize the expected
improvement. The best solution obtained from DE-DPS is
evaluated on the exact fitness function and then added to
the initial sample and a new model is rebuilt and so on.
For a further improvement, after a predefined number of
fitness evaluations, a local search is conducted. For clarity,
in DE-DPS, three sets of parameters are considered: the
first set is for the amplification factor, the second is for the
crossover rate, while the third is for the population size.
Each individual in the population is assigned a random
combination of amplification factor (F) and crossover rate
(Cr). The success rate of each combination is recorded for
a certain number of generations and the better performing
combinations are applied for a number of subsequent
generations. This process is recognized as a cycle. Based
on the success rate, the number of combination is reduced
in subsequent cycles. At the beginning of each cycle, the
success rates of the current combinations are re-initialized
to zero and after every few cycles, the process restarts with
all combination of parameters.

The performance of the proposed algorithm is tested the
CEC2014 competition on computationally expensive
single objective numerical optimization [16], with
different mathematical properties. From the results
obtained, the proposed algorithm shows consistently
ability to obtain good results.

 Saber M. Elsayed, T. Ray and Ruhul A. Sarker

A Surrogate-assisted Differential Evolution Algorithm with
Dynamic Parameters Selection for Solving Expensive Optimization

Problems

I

1062

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

This paper is organized as follows. After the
introduction, section II presents the DE algorithm with an
overview of its parameters. Section III describes the
surrogate model used in this research, while Section IV
describes the design of the proposed algorithm. The
experimental results and the analysis of those results are
presented in section V. Finally, conclusions are given in
section VI.

II. DIFFERENTIAL EVOLUTION

In this section, the commonly used DE operators and
parameters are discussed.

Te stat with, we define the key terms that are used in this
section. A target vector (ݔԦ௭,௧) is a parent vector in
generation t of an individual z. A mutant vector (ݒԦ௭,௧) is
the vector obtained through the mutation operation, which
is also known as the donor vector. A trial vector (ݑሬԦ) is an
offspring which is obtained by recombining the mutant
vector with the parent vector.

A. Mutation

In the simplest form of mutation, ݒԦ௭,௧ is generated by
multiplying the amplification factor ܨ by the difference of
two random vectors selected from the current population,
and the result is added to another third random vector from
the current population. ݒԦ௭,௧ = Ԧ௥భ,௧ݔ ൅ Ԧ௥మ,௧ݔ൫ܨ െ Ԧ௥య,௧൯ (1)ݔ

where ݎଵ, ,ଶݎ ଵݎ ,ଷ are random integer numbers [1,N]ݎ ଶݎ് ് ଷݎ ് is a decision vector, PS is the population ݔ ,ݖ
size and t is the current generation. Using a technique to
handle bound constraints is indeed essential.

This operation enables DE to explore the search space
and maintain diversity. There are many strategies for
mutation, such as DE/rand-to-best/2 [12], rand/2/dir [17],
DE/current-to- best/1[18], and DE/Current-to-pbest [19].
For more details, readers are referred to Das and
Suganthan [5].

B. Crossover
In DE, two crossover operators (exponential and

binomial) are commonly used. These crossover operators
are briefly discussed below.

In an exponential crossover, an integer l is randomly
chosen within the range [20], where D is the number of
decision variables. This integer acts as a starting point
in ݔԦ௭,௧, from where the crossover or exchange of
components with ݒԦ௭,௧ starts. Another integer L is chosen
from the interval [1, D-l] [5].

The trial vector (ݑሬԦ) is formed by inheriting the values of
variables in locations l to ݈ ൅ from the mutant vector and ܮ
the remaining ones from the parent vector.

The binomial crossover is performed on each of the ݆௧௛variables whenever a randomly picked number
(between 0 and 1) is less than or equal to a crossover rate
(Cr). The generation number is indicated here by t. In this
case, the number of parameters inherited from the donor
has a (nearly) binomial distribution.

௭௝,௧ݑ = ൜ ,௭௝,௧ݒ ݂݅ ሺ݀݊ܽݎ ൑ = ݆ ݎ݋ ݎܥ (2) ݁ݏ݅ݓݎ݄݁ݐ݋ ,௭௝,௧ݔ(݀݊ܽݎ݆

where ݀݊ܽݎ is a uniform random number א ሾ0,1ሿ, and ݆௥௔௡ௗ א {1, 2, … , is a randomly chosen index, which {ܦ
ensures ݑሬԦ௭,௧ gets at least one component from ݒԦ௭,௧

During the last two decades, adapting DE parameters has
taken a great attention. For example, Abbass [20]
proposed a self-adaptive operator (crossover and mutation)
for multi-objective optimization problems, where the
amplification factor ܨ is generated using a Gaussian
distribution ܰሺ0, 1). This technique has been modified in
[21]. Zaharie [22] proposed a parameter adaptation
strategy for DE (ADE) based on the idea of controlling the
population diversity, and implemented a multiple
population approach.

Qin et al. [12] proposed a novel differential evolution
algorithm (SaDE), where the choice of the learning
strategy and the two control parameters F and ݎܥ are not
required to be pre-specified. The parameter F, in SaDE, is
approximated by a normal distribution N (0.5, 0.3), and
truncated to the interval (0, 2]. Such an approach could
maintain both the intensification (with small F values) and
diversity (with large F values) during the course of search.
The crossover probabilities were randomly generated
according to an independent normal distribution with
mean ݎ݉ܥ and standard deviation 0.1. The ݎ݉ܥ values
remain fixed for five generations before the next re-
generation. ݎ݉ܥ was initialized to 0.5, and it was updated
every 25 generations based on the recorded successful Cr
values since the last ݎ݉ܥ update.

Using fuzzy logic controllers, Liu and Lampinen [23]
presented a fuzzy adaptive differential evolution, whose
inputs incorporated the relative function values and
individuals of successive generations to adapt the
parameters for mutation and crossover. Brest et al. [11]
proposed a self-adaptation scheme for the DE control
parameters, known as jDE. The control parameters were
adjusted by means of evolution of F and Cr. In jDE, a set
of F and Cr values was assigned to each individual in the
population, augmenting the dimensions of each vector.

III. SURROGATE MODELS

Surrogate models are (statistical) models that are built to
approximate the actual model, i.e. if the true model of a
problem can be presented as (ݕ = ݂ሺݔ)), then a surrogate
model is an approximation of the form (ݕො = መ݂ሺݔ)), such
that ݕ = ොݕ ൅ is a difference value between the ߝ where ,ߝ
two functions. Hence, using such model, instead of high
fidelity optimization simulations, can reduce the
computational cost [24].

There exist a range of procedures for building surrogate
models, such as: Kriging models [25], radial basis function
networks [26], and support vector machines [27]. In this
paper, we consider the Kriging model as in it a confidence
interval of the estimation can be obtained without much
additional computational cost [24].

Kriging exploits the spatial correlation of data in order to
predict the shape of the objective function [28]. The
correlation function relies on the linear regression model

1063

and the Gaussian correlation model, as shown in (3) and
(4), respectively. ݕොሺݔ) = ∑ ௞ߚ ௞݂ሺݔ) ൅ ௠௞ୀଵ(ݔሺߝ (3) ܴ ቀߝሺݔ௜), ௝)ቁݔሺߝ = Π௞ୀଵே ݁ିఏೖቚ௫ೖ೔ ି௫ೖೕ ቚ೛ೖ

 (4)

where ߚ௞ ௞݂ሺݔ) is the global function, and ߝሺݔ) Gaussian
noise, ߠ௞ the correlation amongst the data in k-direction
and ݌௞ = 2 corresponding to smooth functions and values
near 1 corresponding to less smoothness [29]. The
maximum likelihood estimation optimizes the value of ߠ
and then the correlation model is brought into the
regression model to evaluate the function with the best
linear unbiased predictor [30].

The expected improvement utility function [29] is used
to select multiple designs. This utility function is based on
the mean square error (MSE) generated by the Kriging
model. Therefore, expected improvement can be seen as: ܫܧ = ൫ ௕݂௘௦௧ െ (൯Φ ሺ௙್೐ೞ೟ ି௬ොሺ௫)௦ሺ௫(ݔොሺݕ) ൅ (ሺ௙್೐ೞ೟ ି௬ොሺ௫)௦ሺ௫ ߶(ݔሺݏ)

 (5)

where ௕݂௘௦௧ is the best objective value obtained, ݏሺݔ) is
the root mean squared error in the predicted objective
function ݕොሺݔ), Φሺ·) and ߶ሺ·) are the standard normal
density and distribution function, respectively.

IV. SURROGATED-ASSISTED DE WITH DYNAMIC
PARAMETERS SELECTION

In this section, the proposed algorithm (Sa-DE-DPS) is
described.

A. The Algorithm

The general framework of the proposed methodology is
described in Algorithm I.

To start with, an initial sample of an even size (ܰ) is
generated by a symmetric Latin hypercube design. Using
this sample of solutions, the Kriging model is then built.
Note that the parameters of the Kriging model are
generated by a simple DE (DE/߮ rand/1/bin [31]), such
that: ݑ௭௝,௧= ൝ݔఝ௝,௧ ൅ .௭ܨ ቀݔ௥భ௝,௧ െ ௥మೕ,௧ቁݔ , ݂݅ ሺ݀݊ܽݎ ൑ ݆ ݎ݋ ௭ݎܥ = ݁ݏ݅ݓݎ݄݁ݐ݋ ,௭௝,௧ݔ(݀݊ܽݎ݆

 (6)

where ݎܥ௭ is randomly selected from {0.4, 0.9 and 0.99},
while ܨ௭ א ሾ0.4, 0.95ሿ, ߮ is an integer random number א ቂ1, ேଶቃ, and ݎଵand ݎଶ are random integer numbers 1] א,
N], ݎଵ ് ଶݎ ് Based on the model built, DE-DPS is .ݖ
evolved to find the maximum expected improvement, and
the only best solution found is added to the initial sample
(after evaluating it on the true fitness function, i.e. increase
the objective function evaluations by one) and re-built the
model again. It must be mentioned here that if ܰ ൐ ߭, then
the best ߭ individuals in the sample are used to built the
model. In addition, to exploitation searching, a local
search is performed, up to sqpFEs, on the best solution

ALGORITHM I: GENERAL FRAMEWORK OF SA-DE-DPS

Step 1: Generate a population of solutions using the symmetric Latin
hypercube design. Calculate the fitness values of all points, based
on the true fitness function and hence update the fitness function
evaluations.

Step 2: Create the Kriging model. The parameters of the Kriging model
are identified using DE.

Step 3: Use DE-DPS to find the best ݔ location that gives the maximum
expected improvement and evaluate the expensive function there
only, and hence increase FFEs by 1.

Step 4: If condition is met, apply local search on the best solution found
so far and update the number of FFE.

Step 5: Add this solution to the list and retrain the Kriging model and go
to Step 2.

found so far. It is worthy to mention here that the local
search is applied only once, as a limited number of fitness
function evaluations (FFEs) is used, in the competition, as
a stopping criterion. The process continues till a
termination criterion is met. Note that the local search is
applied only once during the entire algorithm process.

B. DE-DPS

Here DE-DPS used to find the maximum expected
improvement is presented.

The motivation behind DE-DPS is to find the most
appropriate parameters (F, Cr, and PS) during the
evolution process. The sets for the parameters F, Cr, and
PS are defined as ܨ௦௘௧, ௦௘௧ and ܲܵ௦௘௧ݎܥ , where, ܨ௦௘௧ ,ଵܨ}= ,ଶܨ … , ௦௘௧ݎܥ ,{௡௙ܨ = ,ଵݎܥ} ,ଶݎܥ … , ௡௖௥}, ܲܵ௦௘௧ݎܥ ={ܲܵଵ, ܲܵଶ, …, ܲܵ௡௣௦}. Here ܲܵ௜ is assumed to be larger
than ܲ ௜ܵିଵ, ׊ ݅ = ,ݏ݌݊ ݏ݌݊ െ 1, … , 2, and ݂݊, refer to the cardinality of the set of amplification ݏ݌݊ and ݎܿ݊
factors, crossover rates, and population sizes, respectively.
Note that the population size ሺܲ ௜ܵିଵ) is not only smaller
than ሺܲܵ௜), but also a subset of ܲ ௜ܵ. Similarly, ܲ ௜ܵିଶ is a
subset of ܲܵ௜ିଵ and so on.

The pseudo code of the algorithm is presented in
Algorithm II. In the first step, ܲܵ௡௣௦ (i.e. the population
with the largest size considered in this paper) random
individuals are generated within the variable bounds. Each
individual in the population ሺݔԦ௭) is assigned a random ܨ
(Fz) and a random Cr (Crz). The number of combinations
.ݐ݋ݐ) ݂݊ and Cr is equal to ܨ for (݉݋ܿ ൈ Note that .ݎܿ݊
there are ݊ݏ݌ population sizes.

For each zth individual in the population, a new offspring
is generated first via a mutation operator which is further
modified via a crossover operation. To perform mutation,
three individuals are used, two of which are randomly
selected from the population, while the third base parent is
selected from between [a, b], where a is set to 1 and b is
set to ௉ௌସ , in this study. Following the mutation operation,
the crossover is performed between the individual
generated via the above mutation process and the zth

individual in the population. Mathematically, the process
can be presented as follows: ݑ௭௝,௧ =

൞ݔ௭௝,௧ ൅ ఝ௝,௧ݔ௭൫ܨ െ ௭௝,௧൯ݔ ൅ ௭ܨ ቀݔ௥భ௝,௧ െ , ௥మೕ,௧ቁݔ ݂݅ ሺ݀݊ܽݎ ൑ ݆ ݎ݋ ௭ݎܥ = ݁ݏ݅ݓݎ݄݁ݐ݋ ,௭௝,௧ݔ(݀݊ܽݎ݆ (7)

 here, ߮ is a random integer number within a range [a, b].

1064

ALGORITHM II. DE-DPS ALGORITHM
STEP 1: At generation ݐ = 1, generate an initial random population of

size ܲܵ௡௣௦.
STEP 2: Set ܲ ௦ܵ௘௧ = {ܲ ଵܵ, ܲܵଶ, … , ܲܵ௡௣௦}, set 0 = ݀݋݅ݎ݁݌ ,

PS_period=0, ݅ = ܵܲ and ݏ݌݊ = ܲ ௜ܵ
STEP 3: Set ܨ௦௘௧ = ,ଵܨ} ,ଶܨ … , ௦௘௧ݎܥ ,{௡௙ܨ = ,ଵݎܥ} ,ଶݎܥ … , {௡௖௥ݎܥ
STEP 4: Generate new offspring as follows:

4.1 Each individual is assigned a random combination (ܿݎ)
of parameters, ܿݎ א ௦௘௧ is the combinationܿݎ ௦௘௧, andܿݎ
of all ܨ௦௘௧ and ݎܥ௦௘௧.

4.2 Generate the offspring vector ݒԦ௭, using mutation and
binomial crossover operators as in (7), and update the
FFEs.

4.3 If ݒԦ௭ is better than its parent, then:ܿ݉݋. ௥௖ܿݑݏ .݉݋ܿ= ௥௖ܿݑݏ ൅ 1
 ;1+ ݀݋݅ݎ݁݌ =݀݋݅ݎ݁݌ 4.4
 ;1+ ݀݋݅ݎ݁݌_ܵܲ =݀݋݅ݎ݁݌_ܵܲ 4.5

STEP 5: If period% CS=0 and period<(ࣁ×CS):
5.1 Select the best half combination to be used in the

evolution process [based on the rankings using
equation (8)] and update ܿݎ௦௘௧.

5.2 Set each ܿ݉݋. ௥௖ܿݑݏ = 0, and go to Step 4.
Else If ࢊ࢕࢏࢘ࢋ࢖%(ࣁ×CS) = 0

5.3 Set each ܿ݉݋. ௥௖ܿݑݏ = 0 and 0= ݀݋݅ݎ݁݌
STEP 6: If 0=ࡿ࡯ % ࢊ࢕࢏࢘ࢋ࢖_ࡿࡼ and ࢏ ൐ 0

6.1 calculate ܴܽ݊݇௉ௌ೔ using:

ܴܽ݊݇௉ௌ೔ = ∑ ∑ .݉݋ܿ ௖௬௧௢௧.௖௢௠௖௬ୀଵ஼ௌଵܿݑݏ ܲ ௜ܵ

If ݅ ൏ ݏ݌݊
6.2 archive the worst ሺܲ ௜ܵ െ ܲ ௜ܵିଵ) individuals
6.3 Set ࢏ = ࢏ െ ૚
6.4 Set ܲܵ=ܲ ௜ܵ

STEP 7: If i =0 and ࢙࢖࢔ =ࢊ࢕࢏࢘ࢋ࢖_ࡿࡼ ൈ ܁۱
7.1 Set PS to the one with the best ܴܽ݊݇௉ௌ೔

STEP 8: If ࣁ =ࢊ࢕࢏࢘ࢋ࢖_ࡿࡼ×CS
8.1 Set ܲܵ_0=݀݋݅ݎ݁݌, ݅ = ܵܲ and ݏ݌݊ = ܲ ௜ܵ
7.2 Use individuals from the archive as required.
7.3 Clear the archive

STEP 8: Stop if the termination criterion is met; else, set ݐ = ݐ ൅ 1
and go to STEP 4.

The introduction of these parameters (߮, a, and b), and if ߮ = 1, the abovementioned mutation will be DE/current-
best/1 mutation, ݖ א {1, 2, … , ܲܵ} and ݎଵand ݎଶ are random
integer numbers א [1, PS], ݎଵ ് ଶݎ ് .ݖ

If the new offspring is better than its parent i.e. the ith
individual in the population, it will be accepted and the
success of a combination ܿݎ ሺܿ݉݋. ௥௖) is increased byܿݑݏ
one, i.e. ܿ݉݋. = ௥௖ܿݑݏ .݉݋ܿ ௥௖ܿݑݏ ൅ 1, where ܿݎ = 1, 2,… , .ݐ݋ݐ .݉݋ܿ

The above process is repeated for CS generations. At
the end of CS generations, the better performing ܲܵ௡௣௦ିଵ
individuals are kept in the population, while the remaining
individuals are transferred to an archive. The number of
combinations of ܨ and ݎܥ values is also reduced to half
i.e. the better combinations of ܨ and ݎܥ are preserved
based on the success of the combination. The ranking of
any combination is calculated using the following
equation. ܴܽ݊݇௥௖ = ௖௢௠.௦௨௖ೝ೎௧௛௘ ௡௨௠௕௘௥ ௢௙ ௜௡ௗ௜௩௜ௗ௨௔௟௦ ௨௦௘ௗ ௔ ௖௢௠௕௜௡௔௧௜௢௡ ௥௖ (8)

where a higher value of ܴܽ݊݇௥௖ is a better performing
combination.

Individuals in the population of size PSnps-1 are randomly
assigned ܨ and ݎܥ values from this reduced list. The
process of evolution uses the same mutation and crossover
strategy and is allowed to evolve for CS generations. This
process is repeated until all population sizes are
considered. At the end of this stage, the performance
ranking of all population sizes are computed, using the
equation shown in Step 6.1 in Table I, to decide the
appropriate population size. The performance ranking of
any population size represents the average performance
per individual in the population for all parameter
combinations over CS generations.

In the event ܲܵ௡௣௦ is selected, the best individuals from
the archive are added to make the current population size
(ܲ ௜ܵ) equal to ܲܵ௡௣௦. The number of combinations of ܨ
and ݎܥ values are also reduced to half based on the
success as described earlier. The selected population of
size (ܲ ௜ܵ) is allowed to evolve for ሺߟ െ CS×(ݏ݌݊
generations wherein after every CS generations, the
number of combinations of ܨ and ݎܥ are reduced to half
until the number of combinations reaches 1. The above
steps are referred to a cycle. At the end of each cycle, the
success tables and the archives are reset to null, the total
number of combinations is reset to tot.com, and the
population size is reset to ܲܵ௡௣௦. The cycles continue until
the termination criterion is met. To clarify, an example
with two population sizes (100 and 75, i.e. nps = 2) and 64
combinations of ܿݎ is considered. The population size 100
will evolve for CS generations with 64 combinations, then
the population size 75 will evolve for CS generations with
32 combinations, and finally the selected population size
(either 100 or 75) will be fixed for the next ሺߟ െ 2) ൈܵܥ = .generations ܵܥ4

C. Discussions on Related Issues

In this section, we discuss few issues relevant to the
algorithm design and implementation.

In the evolution process, for a given problem, the
relative performance of each combination may vary with
the progression of generations. This behavior means that
one combination may work well at the early (or some)
stages of the search process and may poorly perform at the
later (or some other) stages, or vice-versa. So, it is
inappropriate to give equal emphasis on all of the
combinations throughout the entire process of evolution.
To give a higher emphasis on the better performing
combinations in a given stage of the evolution process, it
is proposed that the random assignment of the parameter
combinations is applied for a fixed number of generations
(say CS).

The parameter combinations are assigned randomly to
individuals without replacement. That means, one
combination will be assigned strictly to one individual if
the population size is less than or equal to the number of
combinations. If the population size is larger than the
number of combinations, all combinations are assigned to
at least one individual. Depending on the number of
combinations and population size, one combination may
be assigned to more than one individual and there is a
possibility that some combinations may not be assigned at

1065

all. The ranking of any assigned combination is calculated
using (8) and the ranking of any unassigned combination
is set to zero.

D. Sequential Quadratic Programming (SQP)

SQP has become a powerful method for solving for
constrained optimization problems (COPs) [32], a COP
can be represented as:

݁ݖ݅݉݊݅݉ ݂ሺݔ)

subject to: ܾሺݔ) ൒ 0,
 ܿሺݔ) = 0 (9)

However, it can be successfully applied for unconstrained
problems. The main idea of SQP is to model a problem at
the current point ݔ௞ by a quadratic sub-problem of (9),
such as: ݉݅݊ ݂ሺݔ௞) ൅ ்݀(௞ݔሺ݂׏ ൅ 12 ௞݀ܪ்݀
subject to ܾሺݔ௞) ൅ ்݀(௞ݔሺܾ׏ ൒ 0 ܿሺݔ௞) ൅ ்݀(௞ݔሺܿ׏ = 0 (10)

and to use the solution of this sub-problem to find the new
point ݔ௞ାଵ.

As SQP may be viewed as an extension of Newton and
quasi-Newton methods to the constrained optimization
setting, SQP methods could share the characteristics of
Newton-like methods, such as when the iterates are close
to the solution a rapid convergence can be achieved, when
the iterates are far from a solution a possible eccentric
behaviour can be happened that needs to be carefully
controlled [33]. Note that this research is only for
unconstrained problems.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed
algorithm is discussed and analyzed by solving a set of
problems presented in the CEC2014 competition on
computationally expensive single objective numerical
optimization [16], which contains 8 test problems with 10,
20 and 30 dimensions, with different mathematical
properties (unimodal, multi-modal, continuous, discrete,
separable and non-separable). To add to this, the optimal
solutions (݂כ = 0) are shifted and/or rotated. The
algorithm was run 20 times for each test problem, where
the stopping criterion was to run for up to 500, 1000 and
1500 FFEs, respectively, or ݂ሺݔ௕௘௦௧) െ ݂ሺכݔ)) ൑ 10ି଼.

The algorithm was coded using Matlab R2012b, and
was run on a PC with a 3.4 GHz Core I7 processor with 16
GB RAM, and windows 7. The parameter values are
shown in Table I. The detailed results (best, median,
worst, mean and standard deviations) of (݂ሺݔ௕௘௦௧) െ ݂ሺכݔ)) are shown in Table II.

From results obtained, it is clear that Sa-DE-DPS’s was
robust in F01-F03. Sa-DE-DPS’s performance was good
for F04, while it was very close to the optimal solutions
for F05 and F06. Sa-DE-DPS’s performance in F07-F09

TABLE I. DETAILS OF ALL PARAMETERS VALUES

Kriging: ܰ = 25, points used to build the model are the best ݉݅݊ ሺܰ, ߭) solutions, where ߭ = 50, the initial boundary for ߠ is ሾെ3,3ሿ, initial population for DE used in likelihood estimation to
optimize ߠ is 50 and runs for 50 generations, while the DE parameters
are shown in IV.A.

DE-DPS: ܨ௦௘௧ = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}, ݎܥ௦௘௧= {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}), ܲܵ௦௘௧ = {75,100}, CS=25, and ߟ = 4 ,
stopping criteria are to run it up to 10,000D fitness evaluations or the
best solution does not change for 100 generations, to find the maximum
expected improvement.

SQP: sqpFEs = 25D, and done only once after 10D fitness evaluations.

did not differ much from those results of F04-F07, as Sa-
DE-DPS was able to reach the optimal solutions in 10D
and obtained close results in the 20D and 30D instances,
i.e. F08 and F09, respectively.

Based on the results reached in 4th problem, Sa-DE-DPS
was able to obtain the optimal solution for 10D (F10), but
not over all runs, while its average performance in 20D
(F11) was good, and the results were far from the optimal
solution in the 30D (F12).

For the 5th problem, although the results obtained were
not too far from the optimal solution, Sa-DE-DPS was
found to converge to a single local solution over all runs.

 Sa-DE-DPS’s in the 6th problem was quite good, as it
converged to a very close solution in 10D (F16) in all
runs, and was consistently able to reach the optimal
solution for 20D (F17) and 30D (F18).

In regards to 7th problem, Sa-DE-DPS was able to
obtain a very close solution to the optimal in the 10D
instances (F19), while all results were not too far from the
optimal in 20D (F20) and 30D (F21). Similarly, in the last
problem, Sa-DE-DPS obtained not too far solutions from
the optimal results for all dimensions.

The convergence plots of the proposed algorithm for all
test problems with 10 and 20D are presented in Fig.1. It
appears from this figure that using SQP on the true
function may lead the algorithm to get trapped in local
optima, but this not the case for the unimodal problems as
the valleys of the optimal solutions are rather steep.

To this end, the complexity of the proposed algorithm is
calculated based on all problem dimensions. A summary
of the results is shown in Table III.

TABLE III. COMPUTATIONAL
COMPLEXITY

Func.
 .૙ Funcࢀ෡૚ࢀ

 ૙ࢀ෡૚ࢀ

F01 6738.802 F13 2611.59
F02 12306.46 F14 5767.83
F03 17497.59 F15 8819.89
F04 4995.90 F16 11641.44
F05 52275.51 F17 17010.39
F06 53535.52 F18 43071.99
F07 3435.38 F19 16276.15
F08 14623.68 F20 53015.62
F09 55018.92 F21 114725.8
F10 5977.595 F22 15661.55
F11 26966.43 F23 51592.41
F12 55144.1 F24 117955.5

1066

(a) 10D

(b) 20D
Fig. 1. Convergence plots of Sa-DE-DPS obtained for each test
problem with 10 and 20D. The y-axis is in a log scale of ݂ሺݔ௕௘௦௧) െ ݂ሺכݔ)) and the difference is set to 0 if it is ൑ 10ି଼. FFEs refer to the
maximum number of fitness evaluations and a solution

VI. CONCLUSIONS AND FUTURE WORK

During the last few decades, using evolutionary
algorithms for solving optimization problems has shown
good performance. However, in solving computationally
expensive problems, EAs suffer from excessive evaluation
of the objective function of a problem on hand. Therefore,
using surrogate models to built approximate models of the
objective functions has taken much attention during the
least decades.

In this paper, a surrogate-assisted differential evolution
was proposed, in which a Kriging model was employed to
built an approximation model of the objective function
during the evolution process, while DE was used to
optimize the approximated model. In DE, three sets of
parameter values were initialized one each for the
amplification factor, crossover rate and population size.
For a defined number of generations, each individual in
the population was assigned to a random combination, and
the normalized success for each combination was
recorded. Subsequently, the number of combinations was
reduced until a restart point, where the success counters
were reset. To add to this, a local search was applied to
exploit the search space on the true objective function

The performance of the proposed algorithm was tested
on the WCCI2014 competition on computationally
expensive single objective numerical optimization and
showed good performance.

For future work, we would like to analyze each
parameter of the proposed algorithm and test it on real-
world applications.

REFERENCES

[1] Y. S. Ong, P. B. Nair, and A. J. Keane, “Evolutionary optimization
of computationally expensive problems via surrogate modeling,”
AIAA journal, vol. 41, pp. 687-696, 2003.

[2] Y. Jin, “Surrogate-assisted evolutionary computation: Recent
advances and future challenges,” Swarm and Evolutionary
Computation, vol. 1, pp. 61-70, 2011.

TABLE III. RESULTS FOR 10D
Best Median Worst Mean Std

F01 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
F02 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
F03 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
F04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
F05 1.349093E-03 1.298536E-02 2.224439E+00 3.006592E-01 6.471878E-01
F06 4.819746E+00 1.068824E+01 2.369976E+01 1.196645E+01 4.300321E+00
F07 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
F08 1.183037E-03 1.960552E-02 6.860622E-01 5.699681E-02 1.494529E-01
F09 1.460981E+01 1.460981E+01 5.175838E+01 1.908386E+01 1.033298E+01
F10 0.000000E+00 1.000000E+00 5.000000E+00 9.000000E-01 1.209611E+00
F11 2.000000E+00 9.500000E+00 3.000000E+01 1.030000E+01 6.122435E+00
F12 4.900000E+01 9.865000E+02 1.005000E+03 8.625000E+02 2.934618E+02
F13 1.277693E+01 1.277693E+01 1.277693E+01 1.277693E+01 0.000000E+00
F14 1.275559E+01 1.275559E+01 1.275559E+01 1.275559E+01 0.000000E+00
F15 1.176758E+01 1.176758E+01 1.176758E+01 1.176758E+01 0.000000E+00
F16 3.450218E-02 3.450218E-02 3.450218E-02 3.450218E-02 0.000000E+00
F17 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
F18 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
F19 1.422114E-05 1.830841E+00 7.557295E+00 3.145679E+00 3.116599E+00
F20 2.705425E+00 1.569212E+01 6.893425E+01 2.092630E+01 2.052821E+01
F21 2.700339E+01 2.700339E+01 3.791911E+01 2.868610E+01 3.546546E+00
F22 6.964708E+00 1.840671E+01 3.979822E+01 1.974990E+01 8.104135E+00
F23 2.686387E+01 4.974788E+01 7.763040E+01 4.830880E+01 1.332292E+01
F24 7.896960E+01 1.030690E+02 1.224382E+02 1.025888E+02 7.163882E+00

1067

[3] Y. Jin, “A comprehensive survey of fitness approximation in
evolutionary computation,” Soft Computing, vol. 9, pp. 3-12, 2005.

[4] R. Sarker, S. Elsayed, and T. Ray, “Differential Evolution with
Dynamic Parameters Selection for Optimization Problems,”
Evolutionary Computation, IEEE Transactions on, vol. PP, pp. 1-1,
2013.

[5] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of
the State-of-the-Art,” IEEE Transactions on Evolutionary
Computation, vol. 15, pp. 4-31, 2011.

[6] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter black-
box optimization benchmarking: Noiseless functions definitions,”
INRIA, Tech. Rep. 2009.

[7] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Self-Adaptive
Multimethod Search for Global Optimization in Real-Parameter
Spaces,” IEEE Transactions on Evolutionary Computation, vol.
13, pp. 243-259, 2009.

[8] L. Davis, “Adapting operator probabilities in genetic algorithms,”
presented at the Proceedings of the third international conference
on Genetic algorithms, George Mason University, United States,
1989.

[9] A. E. Eiben and J. E. Smith, Introduction to Evolutionary
Computing: Springer, 2003.

[10] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control and
Artificial Intelligence. Ann Arbor. Michigan: University of
Michigan Press, 1975.

[11] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
Adapting Control Parameters in Differential Evolution: A
Comparative Study on Numerical Benchmark Problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, pp. 646-657,
2006.

[12] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential
Evolution Algorithm With Strategy Adaptation for Global
Numerical Optimization,” IEEE Transactions on Evolutionary
Computation, vol. 13, pp. 398-417, 2009.

[13] V. L. Huang, A. K. Qin, and P. N. Suganthan, “Self-adaptive
Differential Evolution Algorithm for Constrained Real-Parameter
Optimization,” in proceeding IEEE Congress on Evolutionary
Computation, 2006, pp. 17-24.

[14] J. Teo, “Exploring dynamic self-adaptive populations in
differential evolution,” Soft Computing, vol. 10, pp. 673-686,
2006/06/01 2006.

[15] J. Brest and M. Sepesy Maučec, “Population size reduction for the
differential evolution algorithm,” Applied Intelligence, vol. 29, pp.
228-247, 2008/12/01 2008.

[16] Q. C. a. Q. Z. B. Liu, J. J. Liang, P. N. Suganthan, B. Y. Qu,
“Problem Definitions and Evaluation Criteria for Computationally
Expensive Single Objective Numerical Optimization,”
Computational Intelligence Laboratory and Nanyang
Technological University, Zhengzhou and Singapore, Tech. Rep.
2013.

[17] V. Feoktistov and S. Janaqi, “Generalization of the strategies in
differential evolution,” in proceeding Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International,
2004, p. 165.

[18] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential
evolution: a practical approach to global optimization. Berlin:
Springer, 2005.

[19] Z. Jingqiao and A. C. Sanderson, “JADE: Adaptive Differential
Evolution With Optional External Archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, pp. 945-958, 2009.

 [20] H. A. Abbass, “The self-adaptive Pareto differential evolution
algorithm,” in proceeding IEEE Congress on Evolutionary
Computation., 2002, pp. 831-836.

[21] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Multi-operator
based evolutionary algorithms for solving constrained optimization
Problems,” Computers and Operations Research, vol. 38, pp.
1877-1896, 2011.

[22] D. Zaharie, “Control of population diversity and adaptation in
differential evolution algorithms,” in proceeding the 9th
International Conference on Soft Computing, 2003, pp. 41–46.

[23] J. Liu and J. Lampinen, “A Fuzzy Adaptive Differential Evolution
Algorithm,” Soft Computing - A Fusion of Foundations,
Methodologies and Applications, vol. 9, pp. 448-462, 2005.

[24] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V.
Torczon, and M. W. Trosset, “A rigorous framework for
optimization of expensive functions by surrogates,” Structural
optimization, vol. 17, pp. 1-13, 1999/02/01 1999.

[25] D. Buche, N. N. Schraudolph, and P. Koumoutsakos,
“Accelerating evolutionary algorithms with gaussian process
fitness function models,” Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, vol. 35, pp. 183-
194, 2005.

[26] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural computation, vol. 3, pp. 246-257,
1991.

[27] J. A. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle,
“Weighted least squares support vector machines: robustness and
sparse approximation,” Neurocomputing, vol. 48, pp. 85-105,
2002.

[28] S. Xiao, M. Rotaru, and J. K. Sykulski, “Adaptive Weighted
Expected Improvement With Rewards Approach in Kriging
Assisted Electromagnetic Design,” Magnetics, IEEE Transactions
on, vol. 49, pp. 2057-2060, 2013.

[29] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
Optimization, vol. 13, pp. 455-492, 1998.

[30] L. Lebensztajn, C. A. R. Marretto, M. C. Costa, and J.-L.
Coulomb, “Kriging: a useful tool for electromagnetic device
optimization,” Magnetics, IEEE Transactions on, vol. 40, pp.
1196-1199, 2004.

[31] R. A. Sarker, S. M. Elsayed, and T. Ray, “Differential Evolution
with Dynamic Parameters Selection for Optimization Problems,”
IEEE Transactions on Evolutionary Computation, in press, 2013.

[32] M. Powell, “A fast algorithm for nonlinearly constrained
optimization calculations.,” in Numerical Analysis. vol. 630, G.
Watson, Ed., ed: Springer Berlin / Heidelberg, 1978, pp. 144-157.

[33] P. T. Boggs and J. W. Tolle, “Sequential Quadratic Programming,”
Acta Numerica, vol. 4, pp. 1-51, 1995.

1068

