
  

Abstract— In this paper, a surrogate-assisted differential 
evolution (DE) algorithm is proposed to solve the 
computationally expensive optimization problems. In it, the 
Kriging model is used to approximate the objective function, 
while DE employs a mechanism to dynamically select the best 
performing combinations of parameters (amplification 
factor, crossover rate and population size). The performance 
of the algorithm is tested on the WCCI2014 competition on 
expensive single objective optimization problems. The 
experimental results demonstrate that the proposed 
algorithm has the ability to obtain good solutions.  
 
Index Terms— differential evolution, parameter selection, 
surrogate models, Kriging model  

I. INTRODUCTION 

N many real-world applications, there exist many 
computationally expensive mathematical or physical 

models. To solve these computationally expensive 
problems, an enormous number of fitness function 
evaluations (performance evaluations) are required during 
the evolution process when evolutionary algorithms (EAs) 
are used. Any time limitation in solving these problems 
would limit the search space exploration. To tackle this 
problem, recently, EAs based surrogate model have 
attracted much attention [1]. In such algorithms, a 
surrogate model is used to estimate the objective function 
by constructing an approximate model [2]. Over the last 
few decades, many surrogate models have been proposed, 
such as, Kriging, polynomials, and radial-basis-function 
networks (RBFN) [3]. 

Beside using surrogate model with EAs, it is well-
known that the choice of control parameters in any EAs 
plays a critical role in its success [4].  In this paper, DE is 
used, as it has shown significant success in solving 
different numerical optimization problems (both 
constrained and unconstrained, and black-box ) [5, 6] .In 
DE, one tedious technique, to find the best parameters 
combination, is a trial-and-error approach [7].  However, 
the best set of parameters is problem dependent, because 
of the variability of the underlying mathematical 
properties of the optimization problems. This means that a 
fixed set of control parameters that suits well for one 
problem or a class of problems does not assure that it will 
work well for another class, or a range of problems. Not 
only this, it is confirmed that a set of parameters that 
works well at the early stages of the evolution process may 
not perform well at the later stages and vice versa [4].  

The idea of parameter adaptation was introduced at least 
two decades ago in the context of genetic algorithms [8]. 
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In DE, many different mechanisms have been introduced 
to select and/or manage the dynamic changes of the 
control parameters. Based on how the control parameters 
are adapted, the mechanisms can be classified into three 
classes[9]: (1) Deterministic Parameter Control [10]; (2) 
Adaptive Parameter Control [11, 12]; and Self-adaptive 
Parameter Control [11-13]. Some of these algorithms 
have been applied to unconstrained problems, where it 
dynamically adapted either one of the three control 
parameters (crossover rate, amplification factor, or the 
population size), or two of them together (crossover rate 
and amplification factor). To the best of our knowledge, 
only a few algorithms reported in literature adapted all 
three control parameters together [14, 15]. In addition, 
existing investigations usually suggested a single set of 
parameters for all the problems under consideration. Note 
that some of the investigations, that determine the 
parameters using the traditional parametric analysis 
concept, require a huge number of trials. 

Therefore, in this research, a surrogated assisted DE 
algorithm with dynamic selection is proposed for solving 
computationally expensive unconstrained problems. We 
introduce the algorithm as a surrogated-assisted DE with 
dynamic parameters selection (Sa-DE-DPS). In it, an 
initial sample is generated. A Kriging model is then used 
to build a model based on the initial sample. Once the 
model is built, DE-DPS is run to maximize the expected 
improvement. The best solution obtained from DE-DPS is 
evaluated on the exact fitness function and then added to 
the initial sample and a new model is rebuilt and so on.  
For a further improvement, after a predefined number of 
fitness evaluations, a local search is conducted. For clarity, 
in DE-DPS, three sets of parameters are considered: the 
first set is for the amplification factor, the second is for the 
crossover rate, while the third is for the population size. 
Each individual in the population is assigned a random 
combination of amplification factor (F) and crossover rate 
(Cr). The success rate of each combination is recorded for 
a certain number of generations and the better performing 
combinations are applied for a number of subsequent 
generations. This process is recognized as a cycle. Based 
on the success rate, the number of combination is reduced 
in subsequent cycles. At the beginning of each cycle, the 
success rates of the current combinations are re-initialized 
to zero and after every few cycles, the process restarts with 
all combination of parameters. 

The performance of the proposed algorithm is tested the 
CEC2014 competition on computationally expensive 
single objective numerical optimization [16], with 
different mathematical properties.  From the results 
obtained, the proposed algorithm shows consistently 
ability to obtain good results.  
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This paper is organized as follows. After the 
introduction, section II presents the DE algorithm with an 
overview of its parameters. Section III describes the 
surrogate model used in this research, while Section IV 
describes the design of the proposed algorithm. The 
experimental results and the analysis of those results are 
presented in section V. Finally, conclusions are given in 
section VI. 

II. DIFFERENTIAL EVOLUTION 

In this section, the commonly used DE operators and 
parameters are discussed. 

Te stat with, we define the key terms that are used in this 
section. A target vector (ݔԦ௭,௧) is a parent vector in 
generation t of an individual z. A mutant vector (ݒԦ௭,௧) is 
the vector obtained through the mutation operation, which 
is also known as the donor vector. A trial vector (ݑሬԦ) is an 
offspring which is obtained by recombining the mutant 
vector with the parent vector. 

A. Mutation 

In the simplest form of mutation, ݒԦ௭,௧ is generated by 
multiplying the amplification factor ܨ by the difference of 
two random vectors selected from the current population, 
and the result is added to another third random vector from 
the current population. ݒԦ௭,௧ = Ԧ௥భ,௧ݔ ൅ Ԧ௥మ,௧ݔ൫ܨ െ  Ԧ௥య,௧൯             (1)ݔ

where ݎଵ, ,ଶݎ ଵݎ ,ଷ are random integer numbers [1,N]ݎ ଶݎ് ് ଷݎ ്  is a decision vector, PS is the population ݔ  ,ݖ
size and t is the current generation. Using a technique to 
handle bound constraints is indeed essential. 

This operation enables DE to explore the search space 
and maintain diversity. There are many strategies for 
mutation, such as DE/rand-to-best/2 [12], rand/2/dir [17], 
DE/current-to- best/1[18], and DE/Current-to-pbest [19]. 
For more details, readers are referred to Das and 
Suganthan [5]. 

B. Crossover 
In DE, two crossover operators (exponential and 

binomial) are commonly used. These crossover operators 
are briefly discussed below. 

In an exponential crossover, an integer l is randomly 
chosen within the range [20], where D is the number of 
decision variables. This integer acts as a starting point 
in ݔԦ௭,௧, from where the crossover or exchange of 
components with ݒԦ௭,௧ starts. Another integer L is chosen 
from the interval [1, D-l] [5]. 

The trial vector (ݑሬԦ) is formed by inheriting the values of 
variables in locations l to ݈ ൅  from the mutant vector and ܮ
the remaining ones from the parent vector.  

The binomial crossover is performed on each of the ݆௧௛variables whenever a randomly picked number 
(between 0 and 1) is less than or equal to a crossover rate 
(Cr). The generation number is indicated here by t. In this 
case, the number of parameters inherited from the donor 
has a (nearly) binomial distribution. 

௭௝,௧ݑ = ൜ ,௭௝,௧ݒ ݂݅ ሺ݀݊ܽݎ ൑ = ݆ ݎ݋ ݎܥ  (2)              ݁ݏ݅ݓݎ݄݁ݐ݋                                        ,௭௝,௧ݔ(݀݊ܽݎ݆ 

where ݀݊ܽݎ is a uniform random number א ሾ0,1ሿ, and ݆௥௔௡ௗ א {1, 2, … ,  is a  randomly chosen index, which {ܦ
ensures ݑሬԦ௭,௧ gets at least one component from ݒԦ௭,௧ 

During the last two decades, adapting DE parameters has 
taken a great attention. For example, Abbass [20] 
proposed a self-adaptive operator (crossover and mutation) 
for multi-objective optimization problems, where the 
amplification factor  ܨ is generated using a Gaussian 
distribution ܰሺ0, 1). This technique has been modified in 
[21]. Zaharie [22] proposed a parameter adaptation 
strategy for DE (ADE) based on the idea of controlling the 
population diversity, and implemented a multiple 
population approach.  

Qin et al. [12] proposed a novel differential evolution 
algorithm (SaDE), where the choice of the learning 
strategy and the two control parameters F and  ݎܥ are not 
required to be pre-specified. The parameter F, in SaDE, is 
approximated by a normal distribution N (0.5, 0.3), and 
truncated to the interval (0, 2]. Such an approach could 
maintain both the intensification (with small F values) and 
diversity (with large F values) during the course of search. 
The crossover probabilities were randomly generated 
according to an independent normal distribution with 
mean ݎ݉ܥ  and standard deviation 0.1. The ݎ݉ܥ  values 
remain fixed for five generations before the next re-
generation. ݎ݉ܥ  was initialized to 0.5, and  it was updated 
every 25 generations based on the recorded successful Cr 
values since the last ݎ݉ܥ  update.  

Using fuzzy logic controllers, Liu and Lampinen [23] 
presented a fuzzy adaptive differential evolution, whose 
inputs incorporated the relative function values and 
individuals of successive generations to adapt the 
parameters for mutation and crossover. Brest et al. [11] 
proposed a self-adaptation scheme for the DE control 
parameters, known as jDE.  The control parameters were 
adjusted by means of evolution of F and Cr.  In jDE, a set 
of F and Cr values was assigned to each individual in the 
population, augmenting the dimensions of each vector.  

III. SURROGATE MODELS 

Surrogate models are (statistical) models that are built to 
approximate the actual model, i.e. if the true model of a 
problem can be presented as (ݕ = ݂ሺݔ)), then a surrogate 
model is an approximation of the form (ݕො = መ݂ሺݔ)), such 
that ݕ = ොݕ ൅  is a difference value between the ߝ where ,ߝ
two functions. Hence, using such model, instead of high 
fidelity optimization simulations, can reduce the 
computational cost [24]. 

There exist a range of procedures for building surrogate 
models, such as: Kriging models [25], radial basis function 
networks [26], and support vector machines [27]. In this 
paper, we consider the Kriging model as in it a confidence 
interval of the estimation can be obtained without much 
additional computational cost [24]. 

Kriging exploits the spatial correlation of data in order to 
predict the shape of the objective function [28]. The 
correlation function relies on the linear regression model 
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and the Gaussian correlation model, as shown in (3) and 
(4), respectively. ݕොሺݔ) = ∑ ௞ߚ ௞݂ሺݔ) ൅ ௠௞ୀଵ(ݔሺߝ                    (3) ܴ ቀߝሺݔ௜), ௝)ቁݔሺߝ = Π௞ୀଵே ݁ିఏೖቚ௫ೖ೔ ି௫ೖೕ ቚ೛ೖ

    (4) 

where ߚ௞ ௞݂ሺݔ) is the global function,  and  ߝሺݔ) Gaussian 
noise, ߠ௞ the correlation amongst the data in k-direction 
and ݌௞ = 2  corresponding to smooth functions and values 
near 1 corresponding to less smoothness [29]. The 
maximum likelihood estimation optimizes the value of ߠ 
and then the correlation model is brought into the 
regression model to evaluate the function with the best 
linear unbiased predictor [30].  

The expected improvement utility function [29] is used 
to select multiple designs. This utility function is based on 
the mean square error (MSE) generated by the Kriging 
model. Therefore, expected improvement can be seen as: ܫܧ = ൫ ௕݂௘௦௧ െ (൯Φ ሺ௙್೐ೞ೟ ି௬ොሺ௫)௦ሺ௫(ݔොሺݕ )  ൅ (ሺ௙್೐ೞ೟ ି௬ොሺ௫)௦ሺ௫ ߶(ݔሺݏ )  

                                                                                      (5) 

where ௕݂௘௦௧  is the best objective value obtained,  ݏሺݔ)  is 
the root mean squared error in the predicted objective 
function ݕොሺݔ), Φሺ·) and ߶ሺ·) are the standard normal 
density and distribution function, respectively. 

IV. SURROGATED-ASSISTED DE WITH DYNAMIC 
PARAMETERS SELECTION 

In this section, the proposed algorithm (Sa-DE-DPS) is 
described. 

A. The Algorithm 

The general framework of the proposed methodology is 
described in Algorithm I. 

To start with, an initial sample of an even size (ܰ) is 
generated by a symmetric Latin hypercube design. Using 
this sample of solutions, the Kriging model is then built. 
Note that the parameters of the Kriging model are 
generated by a simple DE (DE/߮ rand/1/bin [31]), such 
that: ݑ௭௝,௧= ൝ݔఝ௝,௧ ൅ .௭ܨ ቀݔ௥భ௝,௧ െ ௥మೕ,௧ቁݔ , ݂݅ ሺ݀݊ܽݎ ൑ ݆ ݎ݋ ௭ݎܥ = ݁ݏ݅ݓݎ݄݁ݐ݋                                                                              ,௭௝,௧ݔ(݀݊ܽݎ݆   

                                                                                         (6) 

where ݎܥ௭ is randomly selected from {0.4, 0.9 and 0.99}, 
while  ܨ௭ א ሾ0.4, 0.95ሿ, ߮ is an integer random number א ቂ1, ேଶቃ, and ݎଵand ݎଶ are random integer numbers 1] א, 
N], ݎଵ ് ଶݎ ്  Based on the model built, DE-DPS is  .ݖ
evolved to find the maximum expected improvement, and 
the only best solution found is added to the initial sample 
(after evaluating it on the true fitness function, i.e. increase 
the objective function evaluations by one) and re-built the 
model again. It must be mentioned here that if ܰ ൐ ߭, then 
the best ߭ individuals in the sample are used to built the 
model. In addition, to exploitation searching, a local 
search is performed, up to sqpFEs, on the best solution 

ALGORITHM I: GENERAL FRAMEWORK OF SA-DE-DPS 

Step 1: Generate a population of solutions using the symmetric Latin 
hypercube design. Calculate the fitness values of all points, based 
on the true fitness function and hence update the fitness function 
evaluations. 

Step 2: Create the Kriging model. The parameters of the Kriging model 
are identified using DE. 

Step 3: Use DE-DPS to find the best ݔ location that gives the maximum 
expected improvement and evaluate the expensive function there 
only, and hence increase FFEs by 1. 

Step 4: If condition is met, apply local search on the best solution found 
so far and update the number of FFE. 

Step 5: Add this solution to the list and retrain the Kriging model and go 
to Step 2. 

found so far. It is worthy to mention here that the local 
search is applied only once, as a limited number of fitness 
function evaluations (FFEs) is used, in the competition, as 
a stopping criterion. The process continues till a 
termination criterion is met. Note that the local search is 
applied only once during the entire algorithm process. 

B. DE-DPS 

Here DE-DPS used to find the maximum expected 
improvement is presented.  

The motivation behind DE-DPS is to find the most 
appropriate parameters (F, Cr, and PS) during the 
evolution process. The sets for the parameters F, Cr, and 
PS are defined as ܨ௦௘௧, ௦௘௧ and  ܲܵ௦௘௧ݎܥ  , where, ܨ௦௘௧ ,ଵܨ}= ,ଶܨ  … , ௦௘௧ݎܥ ,{௡௙ܨ  = ,ଵݎܥ} ,ଶݎܥ  … , ௡௖௥}, ܲܵ௦௘௧ݎܥ  ={ܲܵଵ,  ܲܵଶ, …,   ܲܵ௡௣௦}. Here ܲܵ௜ is assumed to be larger 
than ܲ ௜ܵିଵ, ׊ ݅ = ,ݏ݌݊ ݏ݌݊ െ 1, … , 2, and ݂݊,  refer to the cardinality of the set of amplification ݏ݌݊ and ݎܿ݊
factors, crossover rates, and population sizes, respectively. 
Note that the population size ሺܲ ௜ܵିଵ) is not only smaller 
than ሺܲܵ௜), but also a subset of  ܲ ௜ܵ. Similarly, ܲ ௜ܵିଶ is a 
subset of ܲܵ௜ିଵ and so on.  

The pseudo code of the algorithm is presented in 
Algorithm II. In the first step, ܲܵ௡௣௦ (i.e. the population 
with the largest size considered in this paper) random 
individuals are generated within the variable bounds. Each 
individual in the population ሺݔԦ௭) is assigned a random ܨ 
(Fz) and a random Cr (Crz). The number of combinations 
.ݐ݋ݐ) ݂݊ and Cr is equal to ܨ for (݉݋ܿ ൈ  Note that .ݎܿ݊
there are  ݊ݏ݌ population sizes.  

For each zth individual in the population, a new offspring 
is generated first via a mutation operator which is further 
modified via a crossover operation. To perform mutation, 
three individuals are used, two of which are randomly 
selected from the population, while the third base parent is 
selected from between [a, b], where a is set to 1 and b is 
set to ௉ௌସ , in this study. Following the mutation operation, 
the crossover is performed between the individual 
generated via the above mutation process and the zth 

individual in the population. Mathematically, the process 
can be presented as follows: ݑ௭௝,௧ =

൞ݔ௭௝,௧ ൅ ఝ௝,௧ݔ௭൫ܨ െ ௭௝,௧൯ݔ ൅ ௭ܨ ቀݔ௥భ௝,௧ െ ,                                        ௥మೕ,௧ቁݔ ݂݅ ሺ݀݊ܽݎ ൑ ݆ ݎ݋ ௭ݎܥ = ݁ݏ݅ݓݎ݄݁ݐ݋                                                  ,௭௝,௧ݔ(݀݊ܽݎ݆  (7) 

 here, ߮ is a random integer number within a range [a, b].  
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ALGORITHM II. DE-DPS ALGORITHM 
STEP 1: At generation ݐ = 1, generate an initial random population of 

size ܲܵ௡௣௦.  
STEP 2: Set ܲ ௦ܵ௘௧ = {ܲ ଵܵ, ܲܵଶ, … , ܲܵ௡௣௦}, set 0 = ݀݋݅ݎ݁݌ , 

PS_period=0,  ݅ = ܵܲ and ݏ݌݊ = ܲ ௜ܵ 
STEP 3: Set  ܨ௦௘௧ = ,ଵܨ} ,ଶܨ  … , ௦௘௧ݎܥ  ,{௡௙ܨ  = ,ଵݎܥ} ,ଶݎܥ  … ,  {௡௖௥ݎܥ 
STEP 4: Generate new offspring as follows: 

4.1 Each individual is assigned a random combination (ܿݎ) 
of parameters, ܿݎ א  ௦௘௧ is the combinationܿݎ ௦௘௧, andܿݎ
of all ܨ௦௘௧ and ݎܥ௦௘௧. 

4.2 Generate the offspring vector ݒԦ௭, using mutation and 
binomial crossover operators as in (7), and update the 
FFEs. 

4.3 If ݒԦ௭ is better than its parent, then:ܿ݉݋. ௥௖ܿݑݏ .݉݋ܿ= ௥௖ܿݑݏ ൅ 1 
  ;1+ ݀݋݅ݎ݁݌ =݀݋݅ݎ݁݌ 4.4
  ;1+ ݀݋݅ݎ݁݌_ܵܲ =݀݋݅ݎ݁݌_ܵܲ 4.5
 

STEP 5: If period% CS=0 and period<(ࣁ×CS): 
5.1 Select the best half combination to be used in the 

evolution process [based on the rankings using 
equation (8)] and update ܿݎ௦௘௧. 

5.2 Set each ܿ݉݋. ௥௖ܿݑݏ = 0, and go to Step 4. 
Else If ࢊ࢕࢏࢘ࢋ࢖%(ࣁ×CS) = 0  

5.3 Set each ܿ݉݋. ௥௖ܿݑݏ = 0 and 0= ݀݋݅ݎ݁݌ 
STEP 6: If 0=ࡿ࡯ % ࢊ࢕࢏࢘ࢋ࢖_ࡿࡼ and ࢏ ൐ 0 

6.1 calculate ܴܽ݊݇௉ௌ೔ using: 

ܴܽ݊݇௉ௌ೔ = ∑ ∑ .݉݋ܿ ௖௬௧௢௧.௖௢௠௖௬ୀଵ஼ௌଵܿݑݏ ܲ ௜ܵ  

If  ݅ ൏  ݏ݌݊
6.2 archive the worst ሺܲ ௜ܵ െ ܲ ௜ܵିଵ) individuals  
6.3  Set ࢏ = ࢏  െ ૚ 
6.4     Set  ܲܵ=ܲ ௜ܵ 

STEP 7: If i =0 and ࢙࢖࢔ =ࢊ࢕࢏࢘ࢋ࢖_ࡿࡼ ൈ  ܁۱
7.1 Set PS to the one with the best ܴܽ݊݇௉ௌ೔ 

STEP 8: If ࣁ  =ࢊ࢕࢏࢘ࢋ࢖_ࡿࡼ×CS  
8.1 Set ܲܵ_0=݀݋݅ݎ݁݌,  ݅ = ܵܲ and ݏ݌݊ = ܲ ௜ܵ 
7.2 Use individuals from the archive as required. 
7.3 Clear the archive 

STEP 8: Stop if the termination criterion is met; else, set ݐ = ݐ ൅ 1 
and go to STEP 4. 

The introduction of these parameters (߮, a, and b), and if ߮ = 1, the abovementioned mutation will be DE/current-
best/1 mutation, ݖ א {1, 2, … , ܲܵ} and ݎଵand ݎଶ are random 
integer numbers א [1, PS], ݎଵ ് ଶݎ ്   .ݖ

If the new offspring is better than its parent i.e. the ith 
individual in the population, it will be accepted and the 
success of a combination ܿݎ ሺܿ݉݋.  ௥௖ ) is increased byܿݑݏ
one, i.e. ܿ݉݋. = ௥௖ܿݑݏ .݉݋ܿ ௥௖ܿݑݏ ൅ 1, where ܿݎ =  1, 2,… , .ݐ݋ݐ   .݉݋ܿ

The above process is repeated for CS generations. At 
the end of CS generations, the better performing ܲܵ௡௣௦ିଵ 
individuals are kept in the population, while the remaining 
individuals are transferred to an archive. The number of 
combinations of ܨ and ݎܥ values is also reduced to half 
i.e. the better combinations of ܨ and ݎܥ are preserved 
based on the success of the combination. The ranking of 
any combination is calculated using the following 
equation. ܴܽ݊݇௥௖ = ௖௢௠.௦௨௖ೝ೎௧௛௘ ௡௨௠௕௘௥ ௢௙ ௜௡ௗ௜௩௜ௗ௨௔௟௦ ௨௦௘ௗ ௔ ௖௢௠௕௜௡௔௧௜௢௡ ௥௖    (8) 

where a higher value of ܴܽ݊݇௥௖ is a better performing 
combination. 

Individuals in the population of size PSnps-1 are randomly 
assigned ܨ and ݎܥ values from this reduced list. The 
process of evolution uses the same mutation and crossover 
strategy and is allowed to evolve for CS generations. This 
process is repeated until all population sizes are 
considered. At the end of this stage, the performance 
ranking of all population sizes are computed, using the 
equation shown in Step 6.1 in Table I, to decide the 
appropriate population size. The performance ranking of 
any population size represents the average performance 
per individual in the population for all parameter 
combinations over CS generations. 

In the event ܲܵ௡௣௦   is selected, the best individuals from 
the archive are added to make the current population size 
(ܲ ௜ܵ) equal to ܲܵ௡௣௦. The number of combinations of ܨ 
and ݎܥ values are also reduced to half based on the 
success as described earlier. The selected population of 
size (ܲ ௜ܵ) is allowed to evolve for ሺߟ െ  CS×(ݏ݌݊
generations wherein after every CS generations, the 
number of combinations of ܨ and ݎܥ are reduced to half 
until the number of combinations reaches 1. The above 
steps are referred to a cycle. At the end of each cycle, the 
success tables and the archives are reset to null, the total 
number of combinations is reset to tot.com, and the 
population size is reset to ܲܵ௡௣௦. The cycles continue until 
the termination criterion is met. To clarify, an example 
with two population sizes (100 and 75, i.e. nps = 2) and 64 
combinations of ܿݎ is considered. The population size 100 
will evolve for CS generations with 64 combinations, then 
the population size 75 will evolve for CS generations with 
32 combinations, and finally the selected population size 
(either 100 or 75) will be fixed for the next ሺߟ െ 2) ൈܵܥ =  .generations ܵܥ4

C.  Discussions on Related Issues 

In this section, we discuss few issues relevant to the 
algorithm design and implementation.  

In the evolution process, for a given problem, the 
relative performance of each combination may vary with 
the progression of generations. This behavior means that 
one combination may work well at the early (or some) 
stages of the search process and may poorly perform at the 
later (or some other) stages, or vice-versa. So, it is 
inappropriate to give equal emphasis on all of the 
combinations throughout the entire process of evolution. 
To give a higher emphasis on the better performing 
combinations in a given stage of the evolution process, it 
is proposed that the random assignment of the parameter 
combinations is applied for a fixed number of generations 
(say CS).  

The parameter combinations are assigned randomly to 
individuals without replacement. That means, one 
combination will be assigned strictly to one individual if 
the population size is less than or equal to the number of 
combinations. If the population size is larger than the 
number of combinations, all combinations are assigned to 
at least one individual. Depending on the number of 
combinations and population size, one combination may 
be assigned to more than one individual and there is a 
possibility that some combinations may not be assigned at 
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all. The ranking of any assigned combination is calculated 
using (8) and the ranking of any unassigned combination 
is set to zero. 

D. Sequential Quadratic Programming (SQP) 

SQP has become a powerful method for solving for 
constrained optimization problems (COPs) [32], a COP 
can be represented as: 

݁ݖ݅݉݊݅݉  ݂ሺݔ)  

subject to: ܾሺݔ) ൒ 0, 
 ܿሺݔ) = 0                                        (9) 

However, it can be successfully applied for unconstrained 
problems. The main idea of SQP is to model a problem at 
the current point ݔ௞ by a quadratic sub-problem of (9), 
such as: ݉݅݊ ݂ሺݔ௞) ൅ ்݀(௞ݔሺ݂׏ ൅ 12  ௞݀ܪ்݀
subject to  ܾሺݔ௞) ൅ ்݀(௞ݔሺܾ׏ ൒ 0 ܿሺݔ௞) ൅ ்݀(௞ݔሺܿ׏ = 0                     (10) 

and to use the solution of this sub-problem to find the new 
point ݔ௞ାଵ.  

As SQP may be viewed as an extension of Newton and 
quasi-Newton methods to the constrained optimization 
setting, SQP methods could share the characteristics of 
Newton-like methods, such as when the iterates are close 
to the solution a rapid convergence can be achieved, when 
the iterates are far from a solution a possible eccentric 
behaviour can be happened that needs to be carefully 
controlled [33]. Note that this research is only for 
unconstrained problems. 

V. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed 
algorithm is discussed and analyzed by solving a set of 
problems presented in the CEC2014 competition on 
computationally expensive single objective numerical 
optimization [16], which contains 8 test problems with 10, 
20 and 30 dimensions, with different mathematical 
properties (unimodal, multi-modal, continuous, discrete, 
separable and non-separable). To add to this, the optimal 
solutions (݂כ = 0) are shifted and/or rotated. The 
algorithm was run 20 times for each test problem, where 
the stopping criterion was to run for up to 500, 1000 and 
1500 FFEs, respectively, or ݂ሺݔ௕௘௦௧) െ  ݂ሺכݔ))  ൑ 10ି଼.  

The algorithm was coded using Matlab R2012b, and 
was run on a PC with a 3.4 GHz Core I7 processor with 16 
GB RAM, and windows 7.  The parameter values are 
shown in Table I. The detailed results (best, median, 
worst, mean and standard deviations) of (݂ሺݔ௕௘௦௧) െ ݂ሺכݔ))  are shown in Table II.  

From results obtained, it is clear that Sa-DE-DPS’s was 
robust in F01-F03. Sa-DE-DPS’s performance was good 
for F04, while it was very close to the optimal solutions 
for F05 and F06. Sa-DE-DPS’s performance in F07-F09 

TABLE I. DETAILS OF ALL PARAMETERS VALUES 

Kriging: ܰ = 25, points used to build the model are the best ݉݅݊ ሺܰ, ߭) solutions, where ߭ = 50, the initial boundary for ߠ is ሾെ3,3ሿ,  initial population for DE used in likelihood estimation to 
optimize ߠ is 50 and runs for 50 generations, while the DE parameters 
are shown in IV.A. 

DE-DPS: ܨ௦௘௧ = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}, ݎܥ௦௘௧= {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}), ܲܵ௦௘௧ = {75,100}, CS=25, and ߟ = 4 , 
stopping criteria are to run it up to 10,000D fitness evaluations or the 
best solution does not change for 100 generations, to find the maximum 
expected improvement. 

SQP: sqpFEs = 25D, and done only once after 10D fitness evaluations.  

did not differ much from those results of F04-F07, as Sa-
DE-DPS was able to reach the optimal solutions in 10D 
and obtained close results in the 20D and 30D instances, 
i.e. F08 and F09, respectively. 

Based on the results reached in 4th problem, Sa-DE-DPS 
was able to obtain the optimal solution for 10D (F10), but 
not over all runs, while its average performance in 20D 
(F11) was good, and the results were far from the optimal 
solution in the 30D (F12). 

For the 5th problem, although the results obtained were 
not too far from the optimal solution, Sa-DE-DPS was 
found to converge to a single local solution over all runs. 

 Sa-DE-DPS’s in the 6th problem was quite good, as it 
converged to a very close solution in 10D (F16) in all  
runs, and was consistently able to reach the optimal 
solution for 20D (F17) and 30D (F18). 

In regards to 7th problem, Sa-DE-DPS was able to 
obtain a very close solution to the optimal in the 10D 
instances (F19), while all results were not too far from the 
optimal in 20D (F20) and 30D (F21).  Similarly, in the last 
problem, Sa-DE-DPS obtained not too far solutions from 
the optimal results for all dimensions. 

The convergence plots of the proposed algorithm for all 
test problems with 10 and 20D are presented in Fig.1. It 
appears from this figure that using SQP on the true 
function may lead the algorithm to get trapped in local 
optima, but this not the case for the unimodal problems as 
the valleys of the optimal solutions are rather steep.  

To this end, the complexity of the proposed algorithm is 
calculated based on all problem dimensions.  A summary 
of the results is shown in Table III. 

TABLE III. COMPUTATIONAL 
COMPLEXITY 

Func. 
 .૙ Funcࢀ෡૚ࢀ

 ૙ࢀ෡૚ࢀ

F01 6738.802 F13 2611.59 
F02 12306.46 F14 5767.83 
F03 17497.59 F15 8819.89 
F04 4995.90 F16 11641.44 
F05 52275.51 F17 17010.39 
F06 53535.52 F18 43071.99 
F07 3435.38 F19 16276.15 
F08 14623.68 F20 53015.62 
F09 55018.92 F21 114725.8 
F10 5977.595 F22 15661.55 
F11 26966.43 F23 51592.41 
F12 55144.1 F24 117955.5 
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(a) 10D 

(b) 20D 
Fig. 1.  Convergence plots of Sa-DE-DPS obtained for each test 
problem with 10 and 20D. The y-axis is in a log scale of ݂ሺݔ௕௘௦௧) െ ݂ሺכݔ)) and the difference is set to 0 if it is ൑ 10ି଼. FFEs refer to the 
maximum number of fitness evaluations and a solution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSIONS AND FUTURE WORK 

During the last few decades, using evolutionary 
algorithms for solving optimization problems has shown 
good performance. However, in solving computationally 
expensive problems, EAs suffer from excessive evaluation 
of the objective function of a problem on hand.  Therefore, 
using surrogate models to built approximate models of the 
objective functions has taken much attention during the 
least decades. 

In this paper, a surrogate-assisted differential evolution 
was proposed, in which a Kriging model was employed to 
built an approximation model of the objective function 
during the evolution process, while DE was used to 
optimize the approximated model. In DE, three sets of 
parameter values were initialized one each for the 
amplification factor, crossover rate and population size. 
For a defined number of generations, each individual in 
the population was assigned to a random combination, and 
the normalized success for each combination was 
recorded. Subsequently, the number of combinations was 
reduced until a restart point, where the success counters 
were reset. To add to this, a local search was applied to 
exploit the search space on the true objective function 

The performance of the proposed algorithm was tested 
on the WCCI2014 competition on computationally 
expensive single objective numerical optimization and 
showed good performance. 

For future work, we would like to analyze each 
parameter of the proposed algorithm and test it on real-
world applications. 
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