
 
 

 

  

Abstract—Double-row layout problem (DRLP) is a new 
problem proposed in 2010. Different from single or multi-row 
layout problems, DRLP needs to determine not only the 
sequence of machines on both rows but also the exact location of 
each machine. Aiming at the dynamic environment of product 
processing in practice, in this paper we study DRLP under 
dynamic environment and propose a dynamic double-row 
layout problem (DDRLP) where the material flows may change 
over time. A mixed-integer programming model is established 
for the DDRLP. An improved simulated annealing (ISA) 
algorithm is proposed to for this problem. To represent a 
feasible solution, a mixed coding scheme is suggested to express 
the sequence of facilities and the exact location of each facility. 
Five operators are devised to make the ISA able to effectively 
solve this problem. Experiment results show that the proposed 
algorithm is able to find the optimal solutions for small size 
problem instances and outperform an exact approach (CPLEX) 
under limited run time for large size instances.  

I. INTRODUCTION 
Facility layout problems (FLP) drew much attention over 

the years. It is to place a number of facilities in a production 
workshop to achieve such objectives as saving operational 
cost, enhancing production efficiency and balancing device 
capabilities.   

For a manufacturing system, materials flows among 
facilities play an important role to achieve a superior layout. 
In a static facility layout problem (SFLP), the material flows 
between any two facilities are known and fixed. SRLP mainly 
includes two common types, namely single-row and 
multiple-row layout problems. Those two problems only need 
to determine the sequence of facilities and do not consider the 
exact location of each facility. In 2010, Chung el al. [1] first 
proposed double-row layout problem (DRLP) where facilities 
are placed on two parallel rows and the aisle width is assumed 
to be zero. They presented a mixed-integer programming 
model for the DRLP.  Zuo et al. [2] proposed an extend DRLP, 
in which the aisle width is assumed to be non-zero and the 
two objectives of minimizing layout area and material flow 
cost are optimized.  

In practical manufacturing environment, material flows 
among facilities may change over time because different 
product types are usually processed in different periods. This 
requirement leads to the problem of dynamic facility layout 
problem (DFLP), in which the processing time is divided into 
a number of periods and the material flows among facilities 
are fixed in one period but change over different periods. 
Each period of DFLP can be regarded as a SFLP. The cost 
objective of a dynamic layout is the sum of two types of costs, 
i.e., the material handling cost in all periods and the 

rearrangement cost of those facilities to be relocated.  
In this paper, we extend the DRLP in [2] to a dynamic 

environment and propose a dynamic double-row layout 
problem, in which the material flow among facilities may 
change over time and we need to determine the exact location 
of each facility in each period to minimize the total cost. A 
mixed-integer programming model is established for the 
DDRLP. An improved simulated annealing algorithm is 
proposed to solve this problem. To represent a solution to the 
DDRLP, we devise a mixed coding scheme to express the 
sequence of facilities as well as the exact location of each 
facility. Five operators of ISA are suggested to make the ISA 
able to effectively handle this problem.  

The structure of this paper is organized as follows. Section 
II gives a brief review of the related literatures. In Section III, 
a mathematical programming formulation of DDRLP is 
established. Section IV introduces the improved simulated 
annealing algorithm with its five operators. Experimental 
results are given in Section V. Finally Section VI concludes 
this paper.  

II. RELATED LITERATURES 
Rosenblatt [3] first proposed DFLP and a solution 

approach based on the dynamic programming model. This 
approach is computationally intractable and only suitable for 
small size problems. Due to the NP-hard property of DFLP, 
most of its solution approaches are heuristics. For example, 
Baykasoglu et al. [4] presented a simulated annealing 
algorithm for DFLP. McKendall et al. [5] proposed two 
improved SA for DFLP: the first one is the basic SA and the 
second one is a SA with a look-ahead/look-back strategy. 
McKendall et al. [6] presented a hybrid ant system for DFLP. 
Baykasoglu et al. [7] proposed an ant colony optimization 
algorithm to solve DFLP with budget constraints. Sahin et al. 
[8] proposed a simulated annealing algorithm for DFLP with 
budget constraints. Rezazadeh et al. [9] extended an 
improved version of the discrete particle swarm optimization 
algorithm for DFLP. . Pillai et al. [10] utilized a SA based 
meta-heuristic to produce a robust solution to DFLP. Chen 
[11] presented an approach to streamline the data structure of 
solution representation to improve the solution swapping and 
storing activities within a meta-heuristic framework.  

All DFLPs mentioned above only need to determine the 
sequence of facilities and do not consider the exact location of 
each facility. Although there exists few literatures devoted to 
DFLP with the consideration of exact locations of facilities, 
DFLP in those literatures are much different from the DDRLP.   
For example, McKendall et al. [12] proposed a tabu search 
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for DFLP using a continuous representation of layout with 
unequal-area departments and free orientations. Mazinani et 
al. [13] proposed a flexible bay structure and solved it by a 
genetic algorithm. To the best of our knowledge, there have 
been no studies on dynamic DRLP that involves both of 
combinatorial (sequence of facilities) and continuous (exact 
location of each facility) aspects.   

III. PROBLEM FORMULATION 
We formulate a mathematical model for DDRLP. In this 

problem, facilities are located on two parallel rows and a 
facility can be located at any position on a specific row. 
Location of each facility may vary from one period to another. 
If the locations of a facility in two adjacent periods are 
different, rearrangement of this facility is needed. The 
optimization objective is to find a facility layout for each 
period in the planning horizon such that the sum of the 
material handling cost and rearrangement cost are minimized. 

The problem parameters and decision variables are defined 
in Tables I and II, respectively. 
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The first term in objective function (1) is material handling 

cost and the second one is rearrangement cost. Constraint (2) 
is used to restrict the minimum distance from the most left 
position for each facility. Constraint (3) ensures that the 
absolute position of any facility on a row is zero if the facility 
is not located on this row. Constraint (4) ensures that one 
facility can only be located on one row. Constraints (5)-(7) 
are used to determine the relationship of decision variables 

tirY  and tijrZ . Constraint (8) is to determine whether any two 

facilities are on the same row. Constraints (9) and (10) ensure 
that any two facilities do not overlap and meet the minimum 
clearance constraint. Constraints (11)-(13) ensure a facility is 
rearranged if its exact position is different in two adjacent 
periods. M in constraint (3), (9), (10), (12) and (13) is a 
sufficiently large number. 

TABLE I 
PROBLEM   PARAMETERS  

Problem parameters Description 

N Number of facilities 

i, j Facility index. i, j ∈  {1, 2,…,N} 

T Number of periods 

t Period index. t ∈  {1, 2,…,T} 

r Row index, r ∈R = {1, 2} 

iW  Width of facility i 

ijC  Minimum clearance between facilities i and  j 

tijF  Material flow of an unit distance from facility i to j in 
period t 

c Width of corridor 

tiA  Rearrangement cost of facility i in period t 

TABLE II 
DECISION VARIABLES 

Decision variable Description 

tirX  Continuous variable representing absolute position 
of facility i in period t if located on row r; otherwise, 
0. 

tirY  Binary variable. 1: if facility i is located on row r in 
period t; 0: otherwise. 

tijrZ  
Binary variable. 1: if facilities i and j are located on 
row r in period t and facility i is to the left of facility 
j; 0: otherwise. 

tijQ  Binary variable. 1: if facilities i and j are located on 
the same row in period t ; 0: otherwise 

tiB
 

Binary variable. 1: if facility i is rearranged in 
period t where 2≥t ; 0 : otherwise. 
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IV. PROPOSED SIMULATED ANNEALING ALGORITHM 
SA, first proposed by Kirkpatrick et al. [14], is a stochastic 

neighborhood search algorithm for optimization problems. Its 
basic idea comes from the annealing process of solids, in 
which a solid is heated and its temperature is slowly 
decreased until it reaches the lowest energy state. 

SA has the capability of jumping out of local optima, 
which is achieved by accepting solutions worse than the 
current solution with certain probability. SA has been proved 
to be effective for facility layout problems [4-5]. Hence, in 
this paper we devise a SA to solve the DDRLP.  

The steps of proposed ISA are as follow.  
Step 1: Initialization. Initialize initial temperature Ti, 

termination temperature Te, annealing factor β and inner loop 
constants K. Set current temperature Tc as Ti. Randomly 
produce an initial solution s as current solution and calculate 
its cost f(s). Let Best be current optimal solution and it is 
initialized as s. Let inner loop counter k=0. 

Step 2: Find a neighbor of current solution s. For current 
temperature Tc and each inner loop k, a neighbor s’ of s is 
produced by one of the five operators to be introduced in 
Section IV B.  

Step 3: Update current and best solutions. If s’ is better 
than s, then s is replaced with s’, otherwise, let △f = (f(s) - 
f(s’)) / Tc and replace s by s’ if a randomly produced real 
number [0,1]rand ∈  satisfies rand  <  e△f. If s’ is better than 
Best, then replace Best with s’. 

Step 4: Inner loop. If k < K, then let k=k + 1 and return to 
Step 2; otherwise, go to Step 5. 

Step 5: Outer loop. If Tc < Te, then let Tc= Tc × β and return 
to Step 2; otherwise, the algorithm stops and output Best as 
the found solution.  

A. Representation of solution 
A coding scheme needs to be devised to represent a 

solution able to express the sequence of facilities as well as 
the exact position of each facility. To do this, we devise a 
mixed coding scheme that involves a sequence matrix and an 
addition matrix, each of which is a three-dimensional matrix 
denoted by {t, i, r}, where t ∈ {1,…,T}, i ∈ {1,…,N} and 
r∈{1,2} represents the period, facility and row, respectively.  
Sequence matrix represents the sequence of facilities on both 
rows and addition matrix donates the additional distance to 
the left of a facility (not including the minimum clearance 
between the facility and the one to the left of it).  For example, 
if facilities i and j on row r are adjacent in period t and facility 
j is to the left of facility i, then their distance is (Wi  +  Wj  ) / 2 
+ Cij + add [t][r][i], where add [t][r][i] is an element of 
addition matrix and denotes the additional distance of i . If 
there exists no facility to the left of facility i, then add [t][r][i]  
represents the distance between the most left position to the 
left side of facility i.   

For instance, Figure 1 shows a layout (solution) with one 
period and five facilities. Facility 3 is located at the most left 
position of the upper row. The sequence matrix of this layout 
is [[[3,1,5,0,0],[4,2,0,0,0]]] and addition matrix is [[[0 , b - 
C31, c - C15, 0 , 0 ],[ d , e - C42, 0 , 0 , 0 ]]].  

B. Searching neighboring solution 

In step 2 of ISA, a neighbor of the current solution is 
produced by one operator randomly chosen from the 
following five operators.  

 1) Swap operator. Randomly select a period t from T 
periods and two facilities in this period, and then swap the 
locations of the two facilities. For the solution shown in 
Figure 1, if facilities 1 and 2 are chosen to swap their 
locations, a new solution can be produced whose sequence 
and addition matrixes are [[[3,2,5,0,0],[4,1,0,0,0]]] and [[[0 , 
e - C42, c - C15, 0 , 0 ],[ d , b - C31 , 0 , 0, 0]]], respectively.  

2) Insert operator. Randomly select a period t from T 
periods and one facility in this period, and then the facility is 
inserted into any position on another row. For instance, in the 
solution in Figure 1, if facility 1 is selected and  inserted into 
the position between facilities 4 and 2 on the lower row, then 
a new solution is produced whose two matrixes are  
[[[3,5,0,0,0],[4,1,2,0,0]]] and [[[0 , c - C15, 0, 0 , 0 ], [ d , b - 
C31, e - C42, 0 , 0 ]]], respectively. 

3) Tuning operator. Randomly select a period t from T 
periods and one facility in this period, and then tune the exact 
position of this facility. For example, in the solution shown in 
Figure 1, assume facility 1 is selected. Generate a random real 
number rand in [-1, 1], and then a new solution is created by 
adding rand to the additional distance of facility 1. In this 
case, the addition matrix of the new solution is  [[[0 , b - C31+ 
rand , c -C15, 0 , 0 ],[ d , e - C42, 0 , 0 , 0 ]]] and its sequence 
matrix maintains unchanged. If b - C31 + rand < 0, reproduce 
a random real number rand to satisfy b - C31 + rand > 0.  

4) Reverse operator.  Randomly select a period t from T 
periods and reverse the sequence of all facilities while 
maintain the distance between any two facilities unchanged. 
For the solution in Figure 1, the sequence and addition 
matrixes of the new produced solution by the reverse operator 
are [[[5,1,3,0,0],[2,4,0,0,0]]] and [[[0 , c - C15, b - C31, 0 , 
0 ],[ X151 + W5 / 2- ( X122 + W2 / 2), e - C42, 0 , 0 , 0 ]]], 
respectively, where Xtir is the exact position of facility i on 
row r in period t in the solution in Figure 1.  

Reverse operator is devised to handle the symmetry case in 
Figure 2. The relative positions of three facilities in period t 
and t +1 are identical, but all of them need to be rearranged in 

 
Fig. 1 A layout with five facilities and one period, where b is the gap 
between facilities 3 and 1 such that the additional distance of facility 1 
is b - C31. 
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period t + 1 because the absolute position of each facility is 
different in the two periods. When apply reverse operator to 
the facilities in period t or t + 1, those facilities do not need to 

be rearranged, such that the rearrangement cost is saved. 
5) Consistent operator. Randomly select a period t from 2 

to T and a facility in this period, and then let the location of 
the facility in period (t+1) be the same as that in period t. 

Figure 3 shows the case that needs this operator. In Figure 
3 a), the exact positions of three facilities are the same in 
periods 2 and 3 but the position of facility 3 in period 1 is 
different from that in the following two periods. The solution 
shown in Figure 3 b) is the optimal one. Apparently, it is not 
easy to find the optimal solution from Figure 3 a) via previous 
four operators. For example, if we want to apply the tuning 
operator to facility 3 in period 2, the material flow cost may 
be decreased and at the same time facility 3 needs to be 
rearranged from period 2 to 3. If the rearrangement cost is 
greater than the reduction of materials flow cost, it is difficult 
to find the optimal solution by the tuning operator. When 
apply the consistent operator to facility 3 in period 2, we can 
easily find the optimal layout in Figure 3 b). We observe that 
the optimal solutions of some problem instances (e.g., P2 and 

P3 in Section V) cannot be found without the consistent 
operator.  

V. EXPERIMENTAL RESULTS 
The DDRLP includes parameters N, T, c, Ftij, Wi, Cij and Ati. 

19 problem instances are created randomly, namely P1~P19. 
The number of periods and facilities in each instance are 
listed in Table III. The width of corridor is given by 1.5 or 2. 
In each period t, the number of product types is p～unif[8,10]; 
the percentage of facilities visited by each product type is r～
unif[0.25,0.75] and n～unif[20,50] is the number of products 
for each type. Parameter Ftij is calculated as the sum of 
products whose routes include facility i immediately 
preceding facility j in period t. Other parameters are: iw ～

unif[0.5,2.5], Cij～unif[0.25,2.25]  and Ati～unif[30, 80].  
The ISA is coded in Microsoft Visual Studio C++ 2010 and 

executed in Windows operation system on a desktop PC with 
Pentium Dual-core E2140 1.6GHz CPU and 1GB RAM. 

Parameters of ISA are obtained by brief experiments and 
given in Table III. For each problem instance, five 
independent runs of ISA are done to obtain the average cost 
and standard deviation of the found solutions, as shown in 
Table IV. For P1 and P2, ISA only uses operators 1-4 in 
Section IV B because the fifth operator is used for problem 
instances involving more than one period.  

For P1 and P2, five runs of ISA obtain the same results and 
each run takes about 2 minutes. For P3 and P4, each run of 
ISA is able to find the same or similar results within one 
minute. The results found by ISA for other large size problem 
instance are also given in Table IV. We can see that the ratio 
of standard deviation to average cost is less than one percent, 
which means the performance of ISA is stable for this 
problem. 

Since there exists no solution approaches for this new 
defined problem in this paper, we compare the ISA with an 
exact approach -- a popular mathematical programming 
solver -- CPLEXL 12.4. CPLEX is used to solve the model in 
Section III and able to find the optimal solution for small size 
problems. Table V gives the comparison of the results 
obtained by ISA and CPLEX. For P1 and P2, CPLEX can’t 
produce an optimal solution within ten hours, such that we 
restrict the runtime of CPLEX as one hour. For the two 
instances, ISA can find much better solutions than CPLEX. 
For P3 and P4, CPLEX is able to find their optimal solutions 
and ISA is able to find the optimal solution for P3 and the 
suboptimal solution (very close to the optimal one) for P4. 

CPLEX can’t find the optimal solutions for P5-P9 under a 
reasonable computational time, such that the runtime of 
CPLEX is restricted as one hour for those instances. We can 
see from Table V that the solutions of ISA are far better than 
those of CPLEX. For P10 and P11, CPLEX can’t find a 
feasible solution for each of them within one hour, such that 
the run time of CPLEX is increased to 6 and 10 hours for P10 
and P11, respectively. We find that the solutions obtained by 
CPLEX are much worse than those found by ISA for the two 
instances. Due to the NP-hard property of DDRLP, CPLEX 
cannot produce feasible solutions for P12-P19 even if its 
runtime is increased to ten hours.  

 
Fig. 2. An example that needs the reverse operator 

 
a) 

 
b) 

Fig. 3. a): A solution of the problem with three periods and three 
facilities. Each facility in the three periods has the same position except 
facility 3 in period 1. b).The optimal solution of the problem. 
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TABLE III 
PROBLEM AND ALGORITHM PARAMETERS 

 Problem parameters Algorithm paramters 
Problem 
instances Number of 

periods (T) 
Number of 

facilities (N) 
Initial 

temperature (Ti) 
Terminal  

temperature (Te) 
Annealing 
factors (β) Iterations(K) 

P1-P2 1 10 100 0.001 0.99 19000 
P3-P4 3 3 100 0.01 0.99 10000 
P5-P6 5 10 100 1 0.99 10000 

P7 6 10 100 1 0.99 10000 
P8 7 10 100 1 0.99 9500 
P9 8 10 100 1 0.99 9500 

P10 5 20 100 1 0.99 9000 
P11 6 20 100 1 0.99 9000 
P12 7 20 100 1 0.99 8900 
P13 8 20 100 1 0.99 8600 
P14 9 20 100 1 0.99 8000 
P15 5 30 100 1 0.99 7200 

P16-P17 6 30 100 1 0.99 7200 
P18 7 30 100 1 0.99 6500 
P19 8 30 100 1 0.99 6500 

TABLE IV 
EXPERIMENTAL RESULTS OF ISA 

Problem 
instances 1st 2rd 3rd 4th 5th Average 

values 
Standard 

deviations 
P1 4947.41 4947.41 4947.41 4947.41 4947.41 4947.41 0 
P2 2991.79 2991.80 2991.79 2991.79 2991.79 2991.79 0 
P3 1755.47 1755.36 1755.51 1755.56 1755.38 1755.45 0.1 
P4 1683.69 1683.69 1683.69 1683.69 1683.69 1683.69 0 
P5 25008.0 24978.8 25006.4 24985.2 24980.1 24991.7 14 
P6 26084.3 25746.0 26075.3 25826.8 25707.2 25887.9 180 
P7 28334.1 28246.1 28109.0 28069.0 28169.7 28185.6 106 
P8 32571.2 31652.7 32370.5 33575.8 32196.7 32475.4 704 
P9 44967.5 44729.1 45619.3 45043.4 45930.3 45257.9 498 

P10 75180 76069 75050 75276 74205 75155 663 
P11 89562 88781 87876 88401 86921 88309 989 
P12 100603 99485 101060 101551 99916 100523 836 
P13 139856 137373 139263 136610 142465 139113 2297 
P14 135589 135662 136505 138768 138273 136959 1480 
P15 177951 179245 174831 178807 180898 178347 2238 
P16 229776 230203 229433 225286 227980 228535 1999 
P17 222799 215148 220157 219013 217288 218881 2892 
P18 250528 253656 251003 249934 251377 251300 1423 
P19 293166 295804 296451 296250 290482 294431 2572 

 
TABLE V 

COMPARISION OF ISA AND CPLEX 
Problem  
instances 

ISA CPLEX 
Average cost Time (min) Cost Time(min) 
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P1 4947.41 2.60 5326.16 60 
P2 2991.79 2.70 3649.85 60 
P3 1755.45 <1.00 1755.32(optimal) 8  
P4 1683.69 <1.00 1683.69(optimal) 12.12 
P5 24991.7 5.17 38867.9 60 
P6 25887.9 5.50 42886.2 60 
P7 28185.6 6.17 49801.8 60 
P8 32475.4 6.83 71667.4 60 
P9 45257.9 7.00 1074822 60 

P10 75155 18.75 300861 360 
P11 88309 22.83 299798 600 
P12 100523 26.00 --- 600 
P13 139113 28.67 --- 600 
P14 136959 30.00 --- 600 
P15 178347 35.08 --- 600 
P16 228535 42.17 --- 600 
P17 218881 44.33 --- 600 
P18 251300 45.50 --- 600 
P19 294431 49.83 --- 600 

 

I. CONCLUSIONS 
In this paper, a dynamic double-row layout problem 

(DDRLP) is proposed, which involves multiple periods and in 
each period facilities are located at any position on two 
parallel rows. A mixed-integer programming mode is 
established for this DDRLP and an improved simulated 
annealing (ISA) algorithm is proposed to resolve it. To 
express the sequence of facilities and their exact locations, a 
mixed encoding scheme is devised to represent a feasible 
solution. Five effective operators of ISA are suggested to 
produce a neighbor from the current solution. The ISA is 
compared with an exact approach (CPLEX). Experimental 
results show that for small-scale problem instances ISA is 
able to find the optimal solutions in most cases and for 
large-scale instances ISA outperforms CPLEX under a 
limited run time.   
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