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Abstract—Quantum-behaved particle swarm optimization
(QPSO) has shown to be an effective algorithm for solving
global optimization problems that are of high complexity. This
paper presents a new QPSO algorithm, denoted LI-QPSO,
which employs a model-based linear interpolation method to
strengthen the local search ability and improve the precision and
convergence performance of the QPSO algorithm. In LI-QPSO,
linear interpolation is used to approximate the objective function
around a pre-chosen point with high quality in the search space.
Then, local search is used to generate a promising trial point
around this pre-chosen point, which is then used to update the
worst personal best point in the swarm. Experimental results
show that the proposed algorithm provides some significant
improvements in performance on the tested problems.

I. INTRODUCTION

In many real-world applications, for example, applied sci-
ences and engineering, the optimization function of interest
may be non-linear, non-smooth, or simulation-based. It is with
this view in mind that some search methods that do not require
much information about the function were developed. They
are known as meta-heuristic methods or nature-inspired algo-
rithms. Unlike traditional gradient-based methods, these search
methods use no properties of the function being optimized.
The only requirement on the problem is that the fitness value
f(z) can be computed for any solution z € (), where
represents the search space. Additionally, they are also easy
to implement. Thus, meta-heuristic algorithms are welcomed
to solve real-world complex optimization problems and have
received great popularity in the optimization arena.

Particle swarm optimization (PSO) is one among these
meta-heuristic methods. It is inspired by the idea of the flight
of birds and the way that they flock to find food that they have
no previous knowledge of its location. Its population is called
a swarm and each individual is called a particle [1]. Due to the
features of simple implementation and rapid convergence, PSO
has been widely used in a variety of optimization problems
[2]-[4].

Similar to other population-based algorithms, several param-
eters, e.g., the initial weight and acceleration coefficients, are
used to control the performance of PSO. However, a proper
parameter setting is always required if one wants to achieve
a desired optimization result, and this problem appears to be
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much more difficult to tackle for those who apply PSO to
real-world optimization problems but are lack of experience
in parameter settings. Another problem is that the global
convergence of PSO cannot always be guaranteed because
the diversity of population decreases with the evolution pro-
cess [5].

To address the above drawbacks, one of recent PSO vari-
ants is the introduction of quantum mechanics theories, i.e.,
quantum-behaved PSO (QPSO) [6], where a quantum model
is utilized to depict the state of particles, instead of po-
sition and velocity in the standard PSO algorithm. Unlike
traditional PSO, there is only one parameter (contraction-
expansion coefficient) in QPSO, which helps balance the local
and global search capacities during the optimization process.
As a consequence, QPSO is easier to implement in comparison
with PSO. More importantly, QPSO provides a good method
for avoiding getting trapped into local minima too early, thus
rendering it a global convergence algorithm, which has been
theoretically proved in [7]. In addition, some variants of QPSO
have been proposed in order to improve its performance [8]—
[10] further. Sun et al. [11] proposed a diversity-guided QPSO
which imposes a mutation operator on the global best point.
Wang and Zhou [12] developed a hybrid QPSO strategy to
enhance the search quality by incorporating a local version of
QPSO into a main QPSO. In [13], the influence of neighbours
on a particle, deriving from a fuzzy membership function,
was studied, thereby developing a fuzzy QPSO. Experimental
results showed that the fuzzy QPSO could efficiently improve
the population diversity. Coelho [14] studied that the chaos
mutation operation can diversify the population of QPSO and
thus improve its performance.

While existing empirical studies focus on the improvement
in the search ability of QPSO, it is worth noting that the
convergence speed of QPSO has been unexpectedly slowed
down as the above studies try to maintain high diversity in the
swarm. Therefore, a good version of QPSO with proper trade-
off between fast convergence speed and high optimization
precision is expected.

In this paper, we propose a new variant of QPSO, denoted
LI-QPSO, which employs the model-based linear interpolation
to update the personal best points by replacing the worst with
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a much better trial point close to the optimum in the swarm
during the evolution process, thercby exerting a beneficial
influence on the value of the mean best position in QPSO.
This modification helps in not only enhancing the local search
ability but also improving the convergence performance and
optimization precision. Experimental results show that the
proposed method provides significant improvements in com-
parison with other algorithms on tested benchmark functions.

The rest of this paper is organized as follows. The basic
PSO and QPSO algorithms are described in Section II. The
improved QPSO algorithm is given in Section III. Experi-
mental results are presented in Section IV. Finally, Section V
concludes this paper with some discussions on relevant future
work.

II. QUANTUM-BEHAVED PARTICLE SWARM OPTIMIZATION
(QPSO)

A. Basic PSO Algorithm

Kennedy and Eberhart first developed a PSO algorithm
based on the behaviour of individuals, for example particles, in
a swarm [1]. In the PSO algorithm, each individual represents
a candidate solution to the optimization problem that needs
to be solved. The optimum of the problem can be searched
by employing the velocity and position of individuals in
a form of iteration. In each iteration, the velocity V; =
(v1,v9, -+ ,v,)T (n is the dimension of the search space)
and position X; = (x1,72, - ,2,)T of the ith individual
respectively are updated towards its personal best position
(pbest) and the global best position among the swarm (gbest)
as follows:

Vi(t +1) = wVi(t) + e1 Ry (Py(t) — Xi(t))
o2 Ro(Py(t) — Xi(t))
Xi(t+1) = X;(t) + Vi(t +1) ()

ey

where w represents the inertia weight factor, usually set to a
constant (e.g., 0.9), ¢; and ¢, are the acceleration constants
(commonly ¢; = ¢y = 2), and R1, and Ry are two uniformly
distributed random vector parameters in the range [0, 1]™.
The velocity update equation shows that the velocity of an
individual at the (¢ + 1)-th iteration depends on its previous
velocity, the distance that the individual is from its personal
best position (F;) and the distance that the individual is from
the global best position (F;) in the swarm at iteration ¢.

B. Basic QPSO Algorithm

To overcome the disadvantage that global convergence
cannot be guaranteed in PSO, Sun et al. proposed a variant
of PSO based on quantum mechanics, i.e., QPSO. In QPSO,
the particles are considered with quantum behaviour, and their
states are depicted by a wave function ¥(x,t). Each particle
only has its position information and no velocity information.
A particle updates its position at each iteration as follows:

Xit+1) =

p+B*|mbest — X;(t)] x In(1/u), if r > 0.5,  (3)
p+B*|mbest + X;(t)| * In(1/u), if r < 0.5.

p=axP+(1—a)xP, “4)

1 1Y 1 <
mbest:N;HZ(N;Pq,--.,N;Pm) 5)

where mbest is actually the mean of the pbest positions of
all particles, called the mainstream or mean best position. u, r
and « are random numbers uniformly distributed in the range
[0, 1], respectively. Parameter 3 is called contraction-expansion
coefficient, which helps to balance the local and global search
of the algorithm. P; and P, are pbest and gbest, respectively.
N is the population size and n is the dimension of the search
space.

III. PROPOSED QPSO ALGORITHM

The standard QPSO algorithm has good global search ability
at the early stage; however, its drawbacks are manifest as
the iteration increases, such as slow convergence speed, and
unexpected low convergence precision. To tackle these prob-
lems, a model-based linear interpolation scheme is introduced
into QPSO and the improved algorithm is denoted LI-QPSO.
In the following, we first give a brief introduction of linear
interpolation in Section III-A, and then present the LI-QPSO
algorithm in details in Section III-B.

A. Linear Interpolation Method

Linear interpolation is also called linear model and can be
used in model-based trust region methods [15]. So, it can
exploit the smoothness in the objective function and attempt
to preserve the convergence properties of its gradient-based
counterparts. A model s — m.(z. + s) is established to
approximate the objective function as follows:

where g. is a n-dimensional vector to be determined. The
model is also required to interpolate f at x., as well as at a
set Q. of n additional sample points, i.e., m.(z.) = f(z.)
and m.(z;) = f(z;) for all z; € Q.. These interpolation
conditions can be written as a linear system of equations as
follows:

T .
gcsi:f($i)_f('rc)al:1f"7n (7)
where s; is the displacement from . to x;, i.e., x; = z. +
s; (i=1,---,n), z. and x,, are the best point and worst point,

respectively. It then follows from Eq. (7) that the linear model
in Eq. (6) is uniquely determined if and only if the n+1 sample
points {x.}US,. are set such that the set {s; : ¢ =1,--- ,n}is
linearly independent. Therefore, the vector g. can be obtained
by solving the linear system of Eq. (7).

To compute a new iteration around the current iteration x.,
the model (6) should be minimized with respect to s subject
to ||s|l2 < pc, where the radius p, is defined by users. Thus,
we have

min = me(z. +8) = f(ze) + 9L s

8
st [lslla < p ®
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This problem can be easily solved, and the solution is s* =
—(pe/llgell)ge- Then, a step s. = s* is generated to give a
new trial point £ = . + S..

B. QPSO with Linear Interpolation (LI-QPSO)

In this section, we propose a new version of QPSO, i.e., the
LI-QPSO, by introducing a local search technique based on
the linear interpolation scheme to improve the performance of
the basic QPSO algorithm. The main modification in QPSO is
that, in each iteration, n + 1 (n is the dimension of the search
space) distinct good points, say Z = {21,292, - ,2Zn+1}, are
chosen randomly from the current personal best positions in
the swarm. After that, the set of n + 1 distinct points is used
to find a model based on linear interpolation, which is to
approximate the objective function around the best points in Z.
This model is then minimized with respect to a given radius
to give a step x., which is then added to the best point to
generate a new trial point Z in the swarm. Here, if the trial
point Z obtained from the linear interpolation scheme gives
a function value f(Z) that is better than that of the worst of
the personal best points, denoted as Xyorst, then Tyorst 1S
replaced by Z.

The above idea is exactly in accordance with “survival
of the fittest” in Darwinian theory [16]. This modification
has an effect of adjusting the value of mbest reasonably,
thereby improving the local search ability and convergence
performance of the QPSO algorithm. The only constraint in
LI-QPSO is that the population size (/V) must be larger than
the dimension size of the search space, i.e., N > n+ 1. A
complete description of LI-QPSO is presented in Algorithm 1.

IV. EXPERIMENTAL STUDY
A. Experimental Settings

In this section, five benchmark functions, shown in Table I,
were used to test the performance of the proposed LI-QPSO
algorithm. These functions are commonly used benchmark test
functions from the literature of optimization. The first two
functions and the Schwefel function 2.22 are unimodal while
the rest are multimodal, containing a significant number of
local optima. The numerical results of LI-QPSO are compared
with the basic PSO and QPSO algorithms. The parameter
settings of the three algorithms are described as follows:
for PSO, the inertia weight was set to w = 0.729 and the
acceleration coefficients were set to ¢; = c3 = 2; for QPSO
and LI-QPSO, the contraction-expansion coefficient 5 was
recommended from Sun [6] with a linearly decreasing value
from 1.0 to 0.5. In LI-QPSO, for our implementation, we
calculated p. every time the linear interpolation strategy was
called. In particular, p. was found as follows:

pe = min |z, — x| ©
where x!, and 2% are the ith component of x,, and ., respec-
tively. z. and x,, are the best and worst points respectively as
defined in Section III-A. We also restricted p. to p. > 1073,

In the numerical experiments, three different dimension
sizes, 10, 20 and 30, were tested. Taking into account the
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Algorithm 1 LI-QPSO Algorithm
1: Initialize parameters of N, Iteration, p., and the popu-
lation.
2: Calculate the fitness of particles and generate pbest and
gbest
3: Create a set of distinct points (say Z) chosen randomly
from N pbests;
Select the best point in Z as x.;
5: Update the worst of pbests using the linear interpolation
model shown in Egs. (7) and (8);
6: for t := 1 to Iteration do

o

7. fori:=1to N do

8: Compute p and mbest based on Egs. (4) and (9),
respectively;

o: Update X;(t) with Eq. (3);

10: Evaluate the fitness f(X;(t + 1));

11: Update pbest;

12:  end for

13:  Update gbest;

14:  Create a set of n 4 1 distinct points chosen randomly
from N pbests;

15:  Select the best point in Z as x;

16:  Update the worst of pbests using the linear interpolation
model shown in Egs. (7) and (8);

17.  Update gbest;

18: end for

19: Output gbest.

constraint of LI-QPSO (N > n + 1), the population sizes
were set to 40, 60 and 80 and the maximum generation was
set to 1000, 1500, and 2000 corresponding to the dimensions
10, 20 and 30 for all functions and all three algorithms,
respectively. The statistics results of the mean best fitness
and standard deviation (St. Dev.) over a total of 30 runs on
a computer with an Intel(R) Core(TM)2 Duo CPU ES8135
@2.40GHz @2.40GHz, 4.00GB RAM and 64-bit Operating
System in the software environment of MATLAB2013a for
each experimental setting are reported in Tables II to VI. In
all tables, ‘N’ represents the population size, ‘n’ represents
the dimension, and ‘G’ represents the maximum allowable
number of generations.

In order to determine whether the proposed algorithm pro-
duces statistically significant improvements in the optimization
results. A t-test with a 95% significance level was performed
over pairs of 30 trials regarding the mean best values. In the
tables, ‘1’ (‘0’) supports (rejects) the hypothesis that LI-QPSO
has better performance than the compared algorithm.

B. Experimental Results and Analysis

Tables II to VI show the numerical results of the three algo-
rithms on the tested functions. In Table II, the computational
results indicate that LI-QPSO can find the optimal point of
the Sphere function with a higher precision than PSO and
QPSO and the standard deviation also shows that LI-QPSO
has better stability due to its local search. The t-test results



TABLE I
THE TESTED BENCHMARK FUNCTIONS

Functions | Formulae | Range [ Optimum
Sphere function file) =21 %7 [-100, 100] 0
Rosenbrock function f2(x) = S0 (100(ziq1 — 22)2 4 (z; — 1)2) [-30, 30] 0
Rastrigrin function f3(x) = Si @2 — 10cos(27z;) + 10) [-5.12, 5.12] 0
Schwefel function 2.22 | fa(z) =30 |os| + [T7; @4 [-100, 100] 0
Griewank function f5(x) = qo05 2ore1 @7 — [T7=y cos(Z£) +1 [-600, 600] 0
TABLE II
COMPARISON RESULTS ON FUNCTION f1
N | n G PSO QPSO LI-QPSO
t-test | Mean best | St. Dev. t-test | Mean best | St. Dev. Mean best | St. Dev.
10 | 1000 1 5.1994e-14 | 1.8135e-13 1 1.6488e-79 5.0220e-79 2.2444¢-88 5.5448¢-88
40 | 20 | 1500 1 0.1183 0.0464 1 5.3733¢-49 9.9638¢-48 1.8302e-55 4.1184e-55
30 | 2000 1 0.9548 0.4024 1 2.3771e-34 2.5671e-34 1.4891e-40 1.3858e-40
10 | 1000 1 4.4869e-27 | 2.5226e-27 1 1.0500e-97 6.8151e-98 6.8434e-104 | 1.5221e-103
60 | 20 | 1500 1 1.1908e-04 | 1.4598¢-04 0 4.1268e-65 1.2496e-67 3.1436e-68 4.3526e-68
30 | 2000 1 1.3972e-03 | 3.5199e-04 1 1.0015e-44 5.6882e-47 1.3786e-50 1.1001e-48
10 | 1000 1 9.8934e-31 | 4.1503e-31 1 3.0174e-107 | 2.8467e-104 | 2.2126e-111 | 5.3352e-111
80 | 20 | 1500 1 3.3873e-05 | 3.7078e-05 1 5.9596¢-74 8.4093e-75 4.0731e-77 2.0815¢e-77
30 | 2000 1 9.1224e-04 | 1.6837¢-03 1 1.6524e-50 1.0700e-53 1.1830e-57 2.4015¢-58
TABLE III
COMPARISON RESULTS ON FUNCTION f2
N n G PSO QPSO LI-QPSO
t-test | Mean best [ St. Dev. | t-test | Mean best | St. Dev. [ Mean best | St. Dev.
10 [ 1000 1 4.4231 2.3470 0 3.2511 1.1883 3.0884 0.7637
40 | 20 | 1500 1 52.5378 29.1033 1 19.9140 18.1376 16.5226 1.5967
30 | 2000 1 1.7999¢+02 | 98.2430 1 54.9156 30.2420 28.0759 0.1783
10 | 1000 1 3.3943 2.1508 1 2.9311 0.4745 1.9758 0.9411
60 | 20 | 1500 1 19.2339 1.1539 1 18.2442 17.8536 11.1841 3.2835
30 | 2000 1 33.0560 3.6313 1 36.3375 26.3983 24.1895 1.7889
10 | 1000 0 1.6959 1.9257 0 1.9715 1.0372 1.3115 0.7765
80 | 20 | 1500 1 18.4533 0.6591 1 11.9529 4.7639 7.9664 0.6772
30 | 2000 1 29.6262 1.6826 1 23.8999 18.3767 21.3158 0.4986

also show that LI-QPSO is significantly better than PSO for
all tested dimensions and better than QPSO for all tested
dimensions except the combination of N = 60 and n = 10.
As for the Rosenbrock function, whose statistics results are
listed in Table III, PSO presents the worst performance in
terms of the mean best fitness. However, LI-QPSO achieves
excellent performance with a high stability. Judging from
the t-test results, the use of linear interpolation seems to
provide statistically significant improvements for the 20 and
30 dimensional cases. With regard to the Rastrigrin function in
Table IV, LI-QPSO can still obtain the best results among the
three algorithms. QPSO ranks the second in optimizing this
problem, and PSO gets the worst performance. It means that
PSO with quantum behavior has a better search ability than
the standard PSO algorithm. The t-test results from Table IV
further confirm these conclusions, implying QPSO with linear
interpolation is significantly better PSO and QPSO.

In Table V, LI-QPSO achieves again the best results of
the mean best fitness and standard deviation on Schwefel
problem 2.22, and PSO performs the worst. The 10 and 20
dimensional cases show statistically significant improvements

in the performance of LI-QPSO. The numerical results on the
last function f5 are given in Table VI, where we can find
that all the three algorithms cannot get an excellent precision
towards the optimal value, even though LI-QPSO achieves sort
of better results than the other two algorithms. In the cases
of N = 60, n 20 and N = 80, n 20 and n 30,
according to Table VI, QPSO fails to give better results than
PSO, although QPSO has a strong search ability [7]. For fs,
according to the t-test results, QPSO with linear interpolation
seems to have significantly better performance for the 20- and
30-dimensional cases but no statistical difference for the 10-
dimensional case.

Figures 1-5 describe the dynamic performance regarding
the mean best fitness from 50 to 1000 generations for five
functions, where the population size was set to 40 and the
dimension was 10. For a better visualization of the optimiza-
tion process, log-lin plots are drawn in Figures 1 and 4, and
a lin-lin plot is drawn in Figure 2 for a partial and enlarged
view. As illustrated in Figures 1, 2 and 4, LI-QPSO apparently
converges faster to the optimum and gets a higher precision
than PSO and QPSO, and QPSO has a faster convergence
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TABLE IV
COMPARISON RESULTS ON FUNCTION f3

N N G PSO QPSO LI-QPSO
t-test | Mean best [ St. Dev. | t-test | Mean best | St. Dev. [ Mean best | St. Dev.
10 | 1000 1 20.4961 8.5357 1 3.2879 2.6646 1.9379 1.1874
40 | 20 | 1500 1 66.8054 11.0462 1 9.8447 2.8617 3.1959 1.8592
30 | 2000 1 1.2110e+02 | 29.4380 1 18.7965 49188 7.6020 34911
10 | 1000 1 5.3728 2.3545 1 2.5681 1.8227 0.8492 0.7616
60 | 20 | 1500 1 18.3658 7.4149 1 8.8537 2.3232 1.5415 0.8844
30 | 2000 1 33.8217 8.4177 1 17.7346 4.8200 5.2559 3.1343
10 | 1000 1 4.9748 24371 1 1.5358 0.7289 0.5768 0.4461
80 | 20 | 1500 1 18.2640 4.6801 1 10.7128 11.6441 0.8205 0.6394
30 | 2000 1 25.6144 5.9568 1 12.6360 2.8932 2.2086 1.0293
TABLE V
COMPARISON RESULTS ON FUNCTION fy
N n G PSO QPSO LI-QPSO
t-test | Mean best | St. Dev. t-test | Mean best | St. Dev. Mean best | St. Dev.
10 | 1000 1 2.3124e-11 | 6.6416e-11 1 6.5064e-77 2.0574e-76 1.2455e-86 2.7363e-86
40 | 20 | 1500 1 0.1544 0.1156 1 5.6298e-46 9.3446¢-46 5.2300e-50 1.6167e-49
30 | 2000 1 0.9942 1.0506 0 2.3258e-32 4.1158e-32 2.2365e-37 5.1728e-37
10 | 1000 1 9.7147e-25 | 1.1412e-24 1 4.7024e-95 1.4627e-94 2.3957e-101 | 7.4797e-101
60 | 20 | 1500 1 0.0177 0.0287 1 1.5497e-61 3.8374e-61 2.4980e-64 4.8512e-64
30 | 2000 1 0.2989 0.1835 1 1.4181e-44 1.6147e-44 9.1514e-48 2.8753e-47
10 | 1000 1 6.5675e-29 | 1.8672e-28 1 5.3575e-105 | 1.5900e-104 | 1.5640e-110 | 2.6335e-110
80 | 20 | 1500 1 5.0293e-03 | 4.6196e-03 1 3.7647e-69 1.1874e-68 2.2150e-74 3.6790e-74
30 | 2000 1 0.1556 0.1024 0 1.1054e-53 1.5494e-53 2.8033e-56 5.0096e-56
TABLE VI
COMPARISON RESULTS ON FUNCTION f5
N n G PSO QPSO LI-QPSO
t-test | Mean best [ St.Dev. | t-test | Mean best | St.Dev. | Mean best [  St.Dev.
10 | 1000 1 0.0485 0.0293 0 0.0274 0.0238 0.0221 0.0189
40 | 20 | 1500 1 0.0632 0.0573 1 0.0495 0.0406 0.0391 0.0189
30 | 2000 1 0.1076 0.1237 1 0.0713 0.0461 0.0593 0.0242
10 | 1000 1 0.0272 0.0113 1 0.0259 0.0179 0.0103 0.0128
60 | 20 | 1500 1 0.0362 0.0207 1 0.0412 0.0494 0.0191 0.0277
30 | 2000 1 0.0871 0.0740 0 0.0635 0.0222 0.0572 0.0498
10 | 1000 1 0.0189 0.0154 1 0.0285 0.0203 | 2.5568e-03 | 3.3201e-03
80 | 20 | 1500 1 0.0238 0.0217 1 0.0314 0.0147 | 7.6753e-03 0.0126
30 | 2000 1 0.5485 0.6112 1 0.0448 0.0162 0.0343 0.0229
speed than PSO. However, this trend seems to change in
Figures 3 and 5, where PSO appears to get trapped into local
minimum (due to premature convergence) at the early stage. 04 750
While PSO converges to a local optimal point, QPSO and LI- o4r Rl
QPSO continue their convergence towards the global optimum 035 1
and LI-QPSO has an obvious advantage over the QPSO 4 03l |
algorithm regarding the convergence speed. In addition, the %’0257 |
introduction of linear interpolation into QPSO helps enhance 3 '
the local search ability so that LI-QPSO can achieve a higher g o2r |
precision, which can be clearly observed in Figures 3 and 5. = 0151 1
The above experimental results show the improvement in the o |
performance of the proposed LI-QPSO algorithm in compari- 005 400 600 800 1000
sgn w%th PSQ and QPSO algorithms. Whll.e LI-QPSO uses.no o S —————————
diversity-maintenance methods, e.g., mutation operator, during Generation
the optimization process, it can still achieve encouraging
results in terms of the given benchmark problems. This is Fig. 1. The convergence characteristics of algorithms on function fi.

probably due to the fact that LI-QPSO employs a strategy
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to improve the worst of the personal best particles by the
trial point generated by the model-based linear interpolation.
Another contributing factor may be that model-based linear
interpolation helps QPSO in not only enhancing the local
search ability, but also accelerating a particle to converge to
its local attractor.

C. Discussions

In this section, we discuss the computational cost and
convergence performance of the proposed LI-QPSO.

1) Computational cost: Let G be the maximum generation
and N be the population size. In each generation, the linear
interpolation model provides a trial point for the population,
which requires only one more function evaluation. Thus, the
overall time-complexity of LI-QPSO is O(G(N + 1)), which
is slightly higher than that of QPSO (O(GN)). Besides, the
calculation of g. in Eq. (7) may be the main time-consuming
component of linear interpolation since it is closely associated
with the efficiency of solving the linear system of equations.
Thus, the processing time of LI-QPSO is higher than that of
PSO and QPSO.

2) Convergence performance: As has been illustrated
above, the convergence characteristics of LI-QPSO seems to
be statistically better than QPSO on five tested functions.
One possible reason is that QPSO has strong randomicity so
that it may perform excessive exploration and probably miss
the chance of exploitation during the evolution. LI-QPSO,
however, can save some redundant exploration and improve the
exploitation due to the use of linear interpolation. Therefore,
LI-QPSO can achieve better convergence performance than
QPSO. The analysis also suggests that linear interpolation may
be applicable to algorithms with strong randomicity.

V. CONCLUSIONS

In this paper, we propose an improved quantum-behaved
particle swarm optimization algorithm, denoted LI-QPSO,
where the model-based linear interpolation is introduced to

774



enhance local search by generating a trial point to update
the personal best points at present. The proposed LI-QPSO
algorithm was tested on several standard benchmark problems
and the experimental results were compared with the basic
PSO and QPSO algorithms.

The results from 30 runs presented in this paper demon-
strated that the proposed LI-QPSO algorithm provides signif-
icantly better improvements regarding the convergence per-
formance and precision. However, LI-QPSO is only applied
to numerical optimization and has not been extended to
real-world engineering optimization problems. Moreover, the
completely theoretical analysis of LI-QPSO is also absent in
our work. These issues will be our future research on LI-
QPSO.
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