
A Weighting-Based Local Search Heuristic Algorithm for the Set
Covering Problem

Chao Gao, Thomas Weise, Jinlong Li

Abstract— The Set Covering Problem (SCP) is NP-hard and
has many applications. In this paper, we introduce a heuristic
algorithm for SCPs based on weighting. In our algorithm, a
local search framework is proposed to perturb the candidate
solution under the best objective value found during the search,
a weighting scheme and several search strategies are adopted
to help escape from local optima and make the search more
divergent. The effectiveness of our algorithm is evaluated on a
set of instances from the OR-Library and Steiner triple systems.
The experimental results show that it is very competitive, for
it is able to find all the optima or best known results with
very small runtimes on non-unicost instances from the OR-
Library and outperforms two excellent solvers we have found
in literature on the unicost instances from Steiner triple systems.
Furthermore, it is conceptually simple and only needs one
parameter to indicate the stopping criterion.

I. INTRODUCTION

THE SCP is a combinatorial optimization problem: Given
an universal set 𝑋 and a set 𝑆 which contains many

subsets of 𝑋 with
∪
∀𝑠∈𝑆 = 𝑋 . Each element in 𝑆 is

associated with a cost. The goal is to find a 𝐹 ⊆ 𝑆 of the
smallest total cost but still contains all elements in 𝑋 , i.e.,
(
∪
∀𝑠∈𝐹 = 𝑋). In literature, instances of this problem are

generally presented by a zero-one matrix 𝐴 = {𝑎𝑖𝑗}𝑚×𝑛
that contains 𝑚 = ∣𝑋∣ rows and 𝑛 = ∣𝑆∣ columns. Each
column 𝑗(𝑗 ∈ 𝑁, where 𝑁 is the set of all columns) has a
cost, and 𝑎𝑖𝑗 = 1 means column 𝑗 can cover row 𝑖. The
task is to find a set of columns that ensure all rows in
𝑀(𝑀 represents all the rows) are covered and minimize the
total cost. It can be formally written as follows:

min
∑
𝑗∈𝑁

𝑗.cost ⋅ 𝑥𝑗 (1)

subject to ∑
𝑗∈𝑁

𝑎𝑖𝑗 ≥ 1 (2)

𝑥𝑗 ∈ {0, 1},∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁 (3)

When all columns have the same cost, it is called the unicost
set covering problem (USCP). Otherwise, it refers to the non-
unicost SCP.

The SCP is NP-hard in the strong sense [1] and has many
applications, such as crew scheduling in railway and mass-
transit companies to job assignment in manufacturing and
service location [2, 3].
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In this paper, we propose a stochastic local search heuristic
algorithm [4] for SCPs based on weighting. There are three
major features of our algorithm.

1) A local search framework with upper bound restriction
to iteratively improve the candidate solution

2) Tabu strategies to avoid possible cycles during the
search

3) A weighting scheme to help escape from local optima
Experimental results show that our algorithm is very

competitive on the benchmark instances, for it is able to
find all the optima or best known solutions within short
runtimes. Moreover, it works very well both on unicost and
non-unicost problems and outperforms the state-of-the-art
methods discussed in the related work on the unicost Steiner
triple system instances.

The rest of this paper is organized as follows: In Section
II, we discuss the related work and state-of-the-art. Section
III presents our algorithm systematically. The experimental
results are given in Section IV. Finally, we conclude this
paper in Section V.

II. RELATED WORK

Many algorithms have been proposed over the years. The
exact algorithms [5, 6, 7, 8] are mostly based on branch-
and-bound or branch-and-cut. Caprara et al. [9] compared
different exact algorithms and pointed out that CPLEX has
the best performance. Though exact algorithms can guar-
antee the optimality of the found solutions, they always
require substantial computational efforts when facing large
scale problems, thus become infeasible [9]. Therefore, large
instances of SCP are typically solved using heuristic algo-
rithms.

The simplest approximation algorithm for SCP is the
greedy algorithm [10]. Due to the myopic and determin-
istic nature, greedy algorithms can rarely produce good
quality solutions, thus researchers have tried to improve
the solution quality of the greedy algorithm by introducing
randomness, and such randomized and probabilistic greedy
methods [11, 12] usually produce better results than the pure
greedy one.

Besides greedy algorithms and their variants, some mod-
ern heuristics have also been proposed, such as Genetic
Algorithm [13], Simulated Annealing [14]. However, one
drawback of these meta-heuristics is that the cost information
plays an important role and thus they hardly work effectively
both on unicost and non-unicost problems. Lan et al. [15]
therefore proposed the Meta-RaPS approach. Meta-RaPS
works effectively for both the unicost and non-unicost SCP.
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Several very effective heuristics [16, 17, 18] for SCPs
are based on the linear programming relaxation (LP) or
Lagrangian relaxation. By using LP or Lagrangian relax-
ation, which can provide reliable information to evaluate the
goodness between columns, they usually adopt techniques to
reduce the problem size. For example, Caprara et al. [17]
defined a 𝑐𝑜𝑟𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 by fixing some variables 𝑥𝑗 to 0
and then updating it dynamically. Later, Yagiura et al. [19]
proposed a 3-flip local search algorithm (3-FNLS) based
on Lagrangian relaxation. Incorporating with the subgradient
method in [17] to solve the Lagrangian dual relaxation, 3-
FNLS conducts the local search many times and each time
the fixing variables and penalty weights are updated, thereby
realizing a strategic oscillation. With a sophisticated imple-
mentation, 3-FNLS achieves remarkable results on instances
from the OR-Library [20].

However, the effectiveness of the LP relaxation or La-
grangian relaxation based heuristics also decreases when
solving unicost problems or when facing problems with
more rows than columns, which would make the problem
size reduction techniques become almost useless. Recently,
Yelbay et al. [21] have revisited the value of the dual
information from LP or Lagrangian relaxation both in exact
or heuristic algorithms, they express similar opinion in their
article, see [21].

The weighting approach has been adopted in many heuris-
tic algorithms for different problems, such as clause weight-
ing in SAT [22, 23], and edge weighting in the minimum
vertex covering problems (MVC) [24, 25]. However, there
are no weighting related heuristics for the SCP so far. To
our best knowledge, our algorithm is the first heuristic of this
kind. The novelties of our algorithm are the propose of a local
search framework that iteratively improves the candidate
solution, which is realized by using two search operators
to perturb the candidate solution with the upper bound
restriction, and the successful hybridization of a weighting
scheme, two tabu strategies and a timestamp method into its
local search procedure.

III. OUR ALGORITHM

A. Preliminary Terminologies

Before describing our algorithm, we fist introduce some
necessary preliminaries related to our algorithm.

As the SCP can be presented as a 𝑚× 𝑛 zero-one matrix
𝐴, where 𝑚 is the number of rows and n is the number of
columns. Usually, 𝑀 is used to note as the set of rows, and
𝑁 is set of columns, thus, for 𝑖 ∈𝑀, 𝑗 ∈ 𝑁 , we define

𝜃(𝑖) = {𝑗 ∈ 𝑁 ∣𝑎𝑖𝑗 = 1} (4)

𝛿(𝑗) = {𝑖 ∈𝑀 ∣𝑎𝑖𝑗 = 1} (5)

Apparently, the definition of 𝜃(𝑖) indicates the set of columns
which are able to cover 𝑖, and 𝛿(𝑗) is the set of rows covered
by 𝑗.

A candidate solution is denoted by 𝐶, 𝐶 ⊆ 𝑁 . During the
search process, we say row 𝑖 is covered ⇐⇒ ∃𝑗 ∈ 𝐶 and
𝑖 ∈ 𝛿(𝑗).

For a column 𝑗 ∈ 𝑁 , an attribute score is defined and
calculated as Equation (6).

𝑗.𝑠𝑐𝑜𝑟𝑒 =

⎧⎨
⎩

∑
𝑖∈𝛿(𝑗)

𝜎(𝐶,𝑖)=0

𝑖.𝑤𝑒𝑖𝑔ℎ𝑡 i𝑓 𝑗 ∕∈ 𝐶

−
∑

𝑖∈𝛿(𝑗)
𝜎(𝐶,𝑖)=1

𝑖.𝑤𝑒𝑖𝑔ℎ𝑡 i𝑓 𝑗 ∈ 𝐶
(6)

In Equation (6), 𝑖.𝑤𝑒𝑖𝑔ℎ𝑡 is the weight of row 𝑖, and
𝜎(𝐶, 𝑖) = 𝐶∩𝜃(𝑖), which represents the number of columns
in 𝐶 covering row 𝑖.

The meaning of equation (6) is that when a column 𝑗 ∕∈ 𝐶,
its 𝑠𝑐𝑜𝑟𝑒 is the sum of all the weights of rows it is able to
cover and are still not covered by 𝐶. If a column 𝑗 ∈ 𝐶, it
means the negation of the sum of weights of rows 𝑗 covers
and are only covered by this only column in 𝐶. It can be
seen from Equation 6, if we move 𝑗 in or out from 𝐶, the
𝑠𝑐𝑜𝑟𝑒 of 𝑗 should be negated.

We also define neighborhood relations of columns, for
𝑗1, 𝑗2 ∈ 𝑁 , and 𝑗1 ∕= 𝑗2, if there is at least one row 𝑗1, 𝑗2
both can cover, we call 𝑗1 and 𝑗2 are mutually neighbors.
The set 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑗) holds all the neighbors of 𝑗, defined as

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑗) = {𝑑 ∈ 𝑁 ∣𝑑 ∕= 𝑗 ∧ 𝛿(𝑑) ∩ 𝛿(𝑗) ∕= ∅} 𝑗 = 1...𝑛 (7)

Each column has an additional Boolean attribute named
𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒, which is used to prevent a column from adding
back to 𝐶 when its 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 value is false.

During its process, our algorithm maintains several vari-
ables. The best solution discovered so far is always stored as
bestSol and its total cost is kept as UB=

∑
𝑗∈𝑏𝑒𝑠𝑡𝑆𝑜𝑙 j.cost.

Additionally, the set of uncovered rows is maintained in a
variable 𝐿.

B. Algorithm Description

Our algorithm follows the general local search procedure.
At first, an initial candidate solution 𝐶 is constructed greed-
ily, and then a local search improvement is conducted by a
perturbing method to improve the initial solution 𝐶.

Before constructing the initial solution, a preprocessing
step is necessary when there are rows which are only covered
by one column, and in this situation, such columns must
be selected into the solution and the rows covered by them
can be eliminated from the problem. This preprocessing has
a time complexity of 𝒪(𝑚). In other words, even in cases
where it cannot reduce the problem size, its required runtime
is negligible compared to the rest of the algorithm. If each
row is certainly covered by two or more columns in the
problem, preprocessing is unnecessary.

Let cost(C) denotes the cost of the candidate solution,
which is cost(C)=

∑
∀𝑗∈𝐶 𝑗.𝑐𝑜𝑠𝑡. The UB is initially set as

UB = cost(C). Therefore, if there are any better solutions,
they must have costs less than UB. As we always maintain
UB as the cost of the best solution we have found, then the
local search improvement can also be regarded as to solve a
series of new problems: given the original problem and an
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integer number UB, find a feasible solution whose cost is
smaller than UB but still be able to cover all the rows in 𝑀 .

The candidate solution becomes infeasible when it cannot
cover all rows in 𝑀 . Our algorithm repeatedly perturbs
infeasible solutions with smaller cost than UB. Thus, once the
initial candidate solution has constructed, at first, one more
columns are removed from 𝐶 until 𝐶 becomes an infeasible
solution under UB. In this process, if better solutions are
found, the UB and stored bestSol should be updated.

The weighting scheme is applied each iteration when the
candidate solution becomes infeasible. With this scheme, the
weights of uncovered rows are increased by 1, thus making
those “hard to cover” rows have a better chance to be covered
by the new 𝐶 in the following iterations.

Based on the explanations above, we outline our heuristic
algorithm as Algorithm 1.

Algorithm 1: Our Local Search Heuristic Algorithm
Input: A 𝑚× 𝑛 zero-one matrix to represent a SCP instance, each

column is associated with a cost
Output: A set of columns that ensure every row is covered and with the

minimal total cost
preprocessing to eliminate redundant rows and columns;1
initiate all rows have weight of 1;2
initiate all columns have 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 of 1, 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 of 𝑡𝑟𝑢𝑒;3
calculate 𝑠𝑐𝑜𝑟𝑒 of each column accordingly;4
initiate the set of uncovered rows 𝐿←𝑀 ;5
construct a 𝐶 as an initial solution greedily until 𝐿 becomes empty;6
UB← 𝑐𝑜𝑠𝑡(𝐶);7
bestSol← 𝐶;8
iteration← 1;9
while stop criterion not satisfied do10

while 𝐿 = ∅ do11
UB← 𝑐𝑜𝑠𝑡(𝐶);12
bestSol← 𝐶;13
select 𝑗 ∈ 𝐶 with the highest 𝑠𝑐𝑜𝑟𝑒/𝑐𝑜𝑠𝑡;14
𝑟𝑒𝑚𝑜𝑣𝑒(𝑗);15

end16
select 𝑗 ∈ 𝐶 ∧ 𝑗 ∕∈ 𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡 with highest 𝑗.𝑠𝑐𝑜𝑟𝑒/𝑗.𝑐𝑜𝑠𝑡 and17
oldest on tie;
𝑟𝑒𝑚𝑜𝑣𝑒(𝑗);18
𝑗.timestamp← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛;19
clear 𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡;20
while 𝐿 is not empty do21

𝑟 ← 𝑟𝑎𝑛𝑑(𝐿);22
select 𝑑 ∈ {𝑑1 ∈ 𝜃(𝑟)∣𝑑1.eligible = 𝑡𝑟𝑢𝑒} with the highest23
𝑗.𝑠𝑐𝑜𝑟𝑒/𝑗.𝑐𝑜𝑠𝑡 and oldest on tie;
if 𝑐𝑜𝑠𝑡(𝐶) + 𝑑.𝑐𝑜𝑠𝑡 ≥ UB then break;24
𝑎𝑑𝑑(𝑑);25
forall 𝑖 of 𝐿 do26

𝑖.weight← 𝑖.weight + 1;27
end28
put 𝑑 to 𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡;29
𝑑.timestamp← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛;30

end31
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1;32

end33
return bestSol;34

As the description of Algorithm 1, after necessary prepro-
cessing and initialization, a candidate solution is constructed
by a greedy procedure until 𝐿 becomes empty. Then, from
Line 10 to Line 33, in each iteration, 𝐶 becomes an infeasible
solution by using the 𝑟𝑒𝑚𝑜𝑣𝑒 operator consecutively delete
the columns with the highest negative score/cost.

Right after 𝐶 becomes infeasible, one column which is not
in the 𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡 is chosen to be removed again, and then a
row is randomly selected from the uncovered row set 𝐿, and
the best column with highest score/cost and eligible = 𝑡𝑟𝑢𝑒

is chosen to be added to 𝐶. While enforcing the upper bound
restriction in Line 24, more than one columns are permitted
to be added to 𝐶 each iteration until L becomes empty. The
tabu list keeps track the columns which are added in the last
iteration and is cleared before adding columns into C.

The eligible = 𝑡𝑟𝑢𝑒 restriction in Line 23 is a another kind
of tabu. We do not want a column which has been removed
from 𝐶 to be added back again if none of its neighbors’ state
have changed, so we set 𝑗.eligible = 𝑓𝑎𝑙𝑠𝑒 if 𝑗 leaves from
𝐶, which means 𝑗 is not eligible to be added to 𝐶. When
the state of one of 𝑗’s neighbors changes (due to removal or
addition), j.eligible changes back to 𝑡𝑟𝑢𝑒 again.

The timestamp method used in Algorithm 1 is used to
break ties. It makes sure that those columns, which have not
been selected for a longer time are preferred, for they have
smaller timestamps.

The 𝑎𝑑𝑑 and 𝑟𝑒𝑚𝑜𝑣𝑒 operators in our algorithm are quite
simple, whenever a column 𝑗 is added into or removed from
𝐶, 𝑗.𝑠𝑐𝑜𝑟𝑒 is negated and its neighbors’ score value are
updated as of Equation 6. Then its neighbors’ 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 are
set to 𝑡𝑟𝑢𝑒. Only when a column is just removed from 𝐶,
then its eligible is set to false.

Our algorithm only needs a parameter for termination.
It may be computational budget limit such as a maximum
search iteration number or an indicated maximum runtime.

IV. EXPERIMENTAL RESULTS

To show the effectiveness and efficiency of the proposed
heuristic algorithm, we test it both on unicost SCP instances
and non-unicost SCP instances. Then compare our algorithm
with two excellent solvers in literature, which are 3-FNLS
and Meta-RaPS.

Our algorithm is programmed with C++, compiled with
g++ with -O2 option, run on a Intel i3-3220 3.3GHz CPU
with 4GB RAM machine under Linux system. Time is
measured in CPU seconds in all experiments. Because of the
randomness of our algorithm, usually 10 trials are performed
for each instances with different seeds. More exactly, we use
10 consecutive integer numbers as random seeds.

A. Test on non-unicost instances from the OR-Library

The OR-Library is a collection of test data sets for a variety
of Operations Research (OR) problems, which was originally
described by J.E.Beasley [20].

There are totally 70 randomly generated non-unicost in-
stances in the OR-Library, which are divided into 12 problem
sets. One such set of instance is known to be very simple
and a greedy procedure can easily obtain its optima. Thus we
only test our algorithm on the remaining 65 harder instances.

Table I contains the details of the 65 hard random prob-
lems, in which Density is the percentage of non-zero entries
in the matrix. The Range of cost column gives the cost range
in corresponding problem set. Problem sets 4 and 5 have ten
instances, the rest all have five instances. Problems from set
4 to 6 and A to D are those whose optima are known. For
the large-sized SCPs in sets NRE to NRH are unknown.
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TABLE I

THE PROBLEM DETAILS

Problem set m n Range
of cost

Density(%)
Number
of
problems

4 200 1000 1–100 2 10
5 200 2000 1–100 2 10
6 200 1000 1–100 5 5
A 300 3000 1–100 2 5
B 300 3000 1–100 5 5
C 400 4000 1–100 2 5
D 400 4000 1–100 5 5

NRE 500 5000 1–100 10 5
NRF 500 5000 1–100 20 5
NRG 1000 10000 1–100 2 5
NRH 1000 10000 1–100 5 5

TABLE II

SOLUTIONS BY OUR ALGORITHM ON INSTANCES FROM 4-6, A-D

Inst opt best #best Avg Time Inst opt best #best Avg Time

4.1 429 429 10 0.01 6.4 131 131 10 0.01
4.2 512 512 10 0.02 6.5 161 161 10 0.01
4.3 516 516 10 0.00 A1 253 253 10 0.23
4.4 494 494 10 0.07 A2 252 252 10 0.07
4.5 512 512 10 0.01 A3 232 232 10 0.03
4.6 560 560 10 0.01 A4 234 234 10 0.03
4.7 430 430 10 0.06 A5 236 236 10 0.04
4.8 492 492 10 0.01 B1 69 69 10 0.01
4.9 641 641 10 0.01 B2 76 76 10 0.01
4.10 514 514 10 0.02 B3 80 80 10 0.01
5.1 253 253 10 0.01 B4 79 79 10 0.02
5.2 302 302 10 0.01 B5 72 72 10 0.01
5.3 226 226 10 0.01 C1 227 227 10 0.09
5.4 242 242 10 0.01 C2 219 219 10 0.07
5.5 211 211 10 0.01 C3 243 243 10 0.08
5.6 213 213 10 0.01 C4 219 219 10 0.02
5.7 293 293 10 0.01 C5 215 215 10 0.06
5.8 288 288 10 0.01 D1 60 60 10 0.04
5.9 279 279 10 0.01 D2 66 66 10 0.03
5.10 265 265 10 0.01 D3 72 72 10 0.05
6.1 138 138 10 0.01 D4 62 62 10 0.03
6.2 146 146 10 0.01 D5 61 61 10 0.02
6.3 145 145 10 0.01

Table II contains our experimental results of these prob-
lems whose optima are known. The second column 𝑜𝑝𝑡
gives the optimum of the corresponding instances. For each
instance, we present the best solution (best) obtained during
the ten trials, as well as the number #best and average
runtime (Avg Time) of the trials discovering that best solution.

From Table II we can see that for instances from 4 to 6
and A to D, our algorithm has found the optima for every
instance on every trial using almost negligible time.

Table III contains the comparison of our algorithm and
3-FNLS. The source code of 3-FNLS are provided by the
author Yagiura [19]. It is written in C++, too, so we can
compare it with our algorithm directly. 3-FNLS is also com-
piled with the same options and run on the same machine as
our method under Linux system. As the explanation in [19],
the parameter settings of 3-FNLS are 𝛼 = 3,𝑚𝑖𝑛𝑖𝑡𝑟 𝑙𝑠 =
100,𝑚𝑎𝑥 𝑟𝑐𝑜𝑠𝑡 = 0.1 for all the instances tested in this
paper.

Table III contains the comparison on random instances
from NRE to NRH. Time limits for both algorithms are set
to 10 seconds. The first column of Table III is the problem
instance and the second column ’BKS’ is the best known

TABLE III

COMPARISON WITH 3-FNLS ON INSTANCES FROM NRE - NRH

Inst. BKS 3-FNLS Our algorithm
best #best Avg Time best #best Avg Time

NRE1 29 29 10 0.20 29 10 0.03
NRE2 30 30 3 5.46 30 10 0.62
NRE3 27 27 10 0.22 27 10 0.10
NRE4 28 28 10 0.20 28 10 0.05
NRE5 28 28 10 0.20 28 10 0.04
NRF1 14 14 10 0.26 14 10 0.10
NRF2 15 15 10 0.20 15 10 0.06
NRF3 14 14 10 0.21 14 10 0.11
NRF4 14 14 10 0.28 14 10 0.14
NRF5 13 13 10 0.23 13 10 1.49
NRG1 176 176 10 0.56 176 10 0.14
NRG2 154 154 10 0.70 154 10 0.96
NRG3 166 166 8 2.56 166 7 2.98
NRG4 168 168 10 1.24 168 10 3.46
NRG5 168 168 10 0.88 168 10 1.22
NRH1 63 63 10 1.13 63 4 3.51
NRH2 63 63 10 1.26 63 10 0.89
NRH3 59 59 10 0.55 59 10 1.18
NRH4 58 58 10 0.62 58 10 0.72
NRH5 55 55 10 0.45 58 10 0.32
SUM 1342 1342 191 17.41 1342 191 18.12

TABLE IV

RESULTS OF META-RAPS ON INSTANCES FROM NRE–NRH

Instance best #best mean best time total time
NRE1 29 80 29.58 0.01 141.83
NRE2 30 9 33.40 6.09 95.61
NRE3 27 27 28.82 1.61 120.01
NRE4 28 35 29.89 2.50 125.09
NRE5 28 71 29.63 1.12 108.33
NRF1 14 50 15.17 0.93 194.70
NRF2 15 74 15.87 0.09 213.30
NRF3 14 24 15.50 0.54 21.53
NRF4 14 39 15.46 3.46 165.32
NRF5 13 2 14.49 16.18 222.34
NRG1 176 4 180.02 68.12 232.95
NRG2 155 11 157.93 10.31 212.96
NRG3 166 1 171.41 95.99 224.41
NRG4 168 1 173.38 144.83 223.38
NRG5 168 10 172.09 1.56 221.57
NRH1 63 1 66.17 251.96 387.68
NRH2 63 1 67.38 32.14 354.68
NRH3 59 1 63.35 58.73 356.84
NRH4 58 3 60.87 181.61 370.53
NRH5 55 14 57.64 86.60 358.38

solution for the corresponding instance. From Table III,
we can see that our algorithm is comparable with 3-FNLS
on most instances. For one instance, NRE2, our algorithm
performs better than 3-FNLS, because it can find the BKS all
runs with less runtime. But for instance NRH1, our algorithm
is slightly inferior to 3-FNLS. From the summarization at
the bottom of Table III, we can conclude that these two
algorithms are comparable on these instances.

We also report the results of Meta-RaPS on instances from
NRE to NRH. The source code of Meta-RaPS is provided
by the author Lan [15]. It is written in Borland C++, thus
we can only run Meta-RaPS on Windows system. For this
purpose, we installed Windows on the same machine from
above and then run Meta-RaPS with the default parameter
settings, as below:

max iterations: 100,
priority: 5%,
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TABLE V

COMPARISON WITH 3-FNLS ON STS INSTANCES

Inst. BKS 3-FNLS Our algorithm
best #best Avg Time best #best Avg Time

STS135 103 103 10 134.64 103 10 3.97
STS243 198 198 10 48.66 198 10 0.07
STS405 335 336 10 137.54 335 3 436.55
STS729 617 617 2 182.25 617 10 20.03

restriction: 20%,
improvement: 15%,
penalty:2%.
Table IV contains the results of Meta-RaPS. Column best

holds the best solution obtained within the 100 iterations,
#best is the number iterations until that the best is hit, mean
is the mean value of solutions among the 100 iterations, best
time is the shortest time cost to find the best among the 100
iterations, and total time is the total time cost of the 100
iterations.

As the stopping criteria are different, we do not give direct
comparison between our algorithm and Meta-RaPS, but from
Table IV, we can see that the best times of Meta-RaPS are
generally larger than the average times of our algorithm. For
one instance NRG2, Meta-RaPS fails to obtain the BKS 154.

B. Test on the unicost STS instances

In order to show the effectiveness of our algorithm for
unicost problems, we also test our algorithm and 3-FNLS on
the STS instances, which are from Steiner triple systems [26].
The STS instances are unicost problems with special struc-
ture and are considered difficult to solve. Another obvious
feature of the STS problem is that the number of rows is
much bigger than the number of columns, as below:

STS135 n: 135, m: 3015, Density: 2.2%
STS243 n: 243, m: 9801, Density: 1.2%
STS405 n: 405, m: 27270, Density: 0.7%
STS729 n: 729, m: 88452, Density: 0.4%
We can see that different with the OR-Library instances,

the number of rows (m) in STS instances are always more
than one magnitude than the number of columns (n). Gener-
ally, the cost of all columns in unicost problems are regarded
as 1.

Table V contains the BKS of the STS instances. Cur-
rently, the BKS of STS135 and STS243 has been proven
optimality, see [27]. Recently, the BKS of STS405 is im-
proved by [28] from 336 to 335 using a biased random-key
genetic algorithm. However, the biased random-key genetic
algorithm [28] is dedicated for the STS problems, thus we
do not compare it with our algorithm here.

Time limits are set to 1000 seconds for each run on
these STS instances for both the two algorithms. Table V
contains the results of our algorithm and 3-FNLS. From
Table V, it is easy to notice that our algorithm is better
than 3-FNLS, for it is able to achieve the same best solution
with less runtimes. For one instance STS405, our algorithm
has achieved the state-of-the-art result, whereas 3-FNLS can
only find a solution of 336 within 1000 seconds. Moreover,

TABLE VI

RESULTS OF META-RAPS ON STS INSTANCES

Inst. BKS best #best mean best time total time
STS135 103 104 4 105.23 3.98 15.63
STS243 198 203 6 204.64 6.04 49.91
STS405 335 343 1 345.88 112.74 139.38
STS729 617 650 4 651.76 61.59 505.95

we emphasize the solution of 336 for STS405 can be easily
achieved by our algorithm in all the 10 trials with an average
time of 7.27s.

We further compare our algorithm with Meta-RaPS, which
also work effectively both on the unicost and non-unicost
problems. The parameters of Meta-RaPS are still set as
default, which is indicated by the program.

Table VI contains the results obtained by Meta-RaPS. The
results of Meta-RaPS are presented by the best objective
value, the number of iterations until that best is hit, the mean
result of the 100 iterations, the best solution time, and the
total time of the 100 iteration. We can see that Meta-RaPS
did not achieve the best for all these four STS instances.
Combined with the results in Table IV, we can conclude that
our algorithm is more effective than Meta-RaPS on these STS
instances.

V. CONCLUSIONS

In this paper, we have introduced a local search heuristic
algorithm based on weighting. The effectiveness of our
algorithm has been tested on the instances from OR-Library
and the STS. The experimental results show that our new
algorithm is comparable with 3-FNLS on instances from
OR-Library, for it is able to find all the optima or BKS in
very short times. Besides, our algorithm is also very effective
on the unicost STS instances, which are generally regarded
hard. Therefore, we believe our algorithm is very competi-
tive. Furthermore, our algorithm only needs a parameter for
termination, thus we believe our algorithm is very practical
and worth existing for further study.

As the experiment has shown, most of the random in-
stances from the OR-Library are not challenging any more.
In the future, we will try collect more SCP instances, both
non-unicost and unicost, then test them with our algorithm.
Thus, we can have further study on the relationship between
the effectiveness of our algorithm and the instance features.
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