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Abstract—Portfolio optimization is an important problem
based on the modern portfolio theory (MPT) in the finance field.
The idea is to maximize the portfolio expected return as well
as minimizing portfolio risk at the same time. In this work, we
propose a combinatorial algorithm for the portfolio optimization
problem with the cardinality and bounding constraints. The
proposed algorithm hybridizes a metaheuristic approach (particle
swarm optimization, PSO) and a mathematical programming
method where PSO is used to deal with the cardinality constraints
and the math programming method is used to deal with the rest
of the model. Computational results are given for the benchmark
datasets from the OR-library and they indicate that it is a useful
strategy for this problem. We also present the solutions obtained
by the CPLEX mixed integer program solver for these instances
and they can be used as the criteria for the comparison of
algorithms for the same problem in the future.

Index Terms—Cardinality Constrained Portfolio Optimization;
Constrained problem; Particle swarm optimization.

I. INTRODUCTION

One of the practical problems in fund management is how
to allocate the limited capital to invest in a number of potential
assets (investments) in order to achieve investors risk appetites
and the return objectives. This often refers to the portfolio
selection problem or the portfolio optimization problem. In the
1950s, Harry Markowitz proposed the foundations of modern
portfolio theory (MPT) [1], [2]. In his work, the selection of
the portfolio can be viewed as a mean-variance optimization
problem with two criteria: to maximize the return of a portfolio
and to minimize its risk. The portfolios meet both criterions
are known as the efficient portfolios. Compared to an efficient
portfolio, there should be no other portfolio with a higher
expected return for a certain level of risk, or given the certain
return level, there should be no other portfolio with a lower
risk. For a particular universe of assets, the set of efficient
portfolios forms the efficient frontier which represents the best
trade-offs between the expected return and the risk.

The basic Markowitz mean-variance model needs to be
expanded as it omits some real-world constraints. For example,
it assumes that there exists a perfect market with no tax or
transaction cost and short selling is not allowed. Also the assets
should be infinitely divisible (i.e. they can be traded in any
non-negative proportion). Normally, two common constraints
in the real world problems need to be added: the cardinal-
ity constraint and the bounding constraints. The cardinality
constraint specifies the total number of the held assets in a

portfolio in order to reduce the tax and the transaction costs.
The bounding constraints specify the lower and upper bound
of the proportion of each held asset in a portfolio in order to
avoid unrealistic holdings.

The closed form solution of the basic Markowitz mean-
variance model can be efficiently found by common quadratic
programming (QP). Some researchers try to apply the exact
methods [3], [4] to the extended constrained model but they
fail to obtain the optimal solutions in a reasonable computing
time. The reason is that the introduction of the cardinality
constraint changes the problem from a quadratic optimization
model to a quadratic mixed-integer problem (QMIP). And as
it has been proved in [5], it is an NP-hard problem.

Therefore, many researchers applied different heuristics
and metaheuristic optimization techniques for the constrained
model. Some classical methods have been adopted. For exam-
ple Fernández et al. [6] applied the neural network method,
Chang et al. [7] used simulated annealing (SA), tabu search
(TS) and genetic algorithms (GA) and Woodside et al. [8]
investigated the same three methods but used a revised neigh-
borhood in order to get a better performance. Some hybrid
methods also have been proposed. Di Gaspero et al. [9] com-
bined the local search and quadratic programming together.
Lwin et al. [10] integrated the population based incremental
learning (PBIL) and differential evolution (DE). The experi-
mental results of the hybrid approaches were competitive with
the classical metaheuristics methods in terms of accuracy and
speed.

In this work, we combine the strengths of the metaheuristic
technique (namely particle swarm optimization, PSO) with
the mathematical programming method and propose a com-
binatorial algorithm for the cardinality constrained portfolio
optimization problem. PSO is applied for the assets selection
(i.e. cardinality constraint) while a mathematical method is
used to solve the rest of the model (i.e. bounding constraints,
budget constraint). There are many kinds of variants of PSO
algorithms for the same problem in the literature, the main
difference here is that, other works apply PSO for the whole
problem while we only use PSO to handle the cardinality
constraint and the rest of the model can be solved in an
exact manner. Therefore our method can guarantee the optimal
allocation for a given assets combination.

The outline of the rest parts is as follows: in section II we
give the statement of the problem and in section III we provide

491

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



a detailed description of our combinatorial algorithm. We give
the datasets and our parameter settings in section IV and the
computational results in section V. Section VI presents the
results obtained by CPLEX for this problem and conclusions
are given in section VII.

II. PROBLEM STATEMENT

A. The basic unconstrained mean-variance model

The basic Markowitz mean-variance model is formulated as
the follows [1]:

minimize
N∑
i=1

N∑
j=1

wiwjσij

subject to
N∑
i=1

wiµi = R∗

N∑
i=1

wi = 1

0 ≤ wi ≤ 1, i = 1, ⋅ ⋅ ⋅ , N

where N is the number of assets available, µi is the expected
return of the asset i (i = 1, . . . , N), σij is the covariance
between assets i and j (i = 1, . . . , N ; j = 1, . . . , N), R∗ is the
given expected return and wi is the proportion (0 ≤ wi ≤ 1)
of asset i (i = 1, . . . , N) held in the portfolio.

Based on the concept of Pareto optimality [11], a portfolio
is called the efficient portfolio if for a given level of expected
return, there is no other portfolio with a lower risk or for a
given level of risk, there is no other portfolio with a higher
expected return. The whole set of efficient portfolios forms
the efficient frontier which represents the best possible mean
returns for its risk levels. This efficient frontier is often referred
to as the unconstrained efficient frontier (UEF) (see Figures
1,2,3,4).

B. The extended mean-variance model with the cardinality
and bounding constraints

The basic Markowitz mean-variance model in the previous
section omits some real world constraints and therefore it
does not have too much use in practice. As the result, the
basic model needs to be extended to address the real world
problems. Usually, two types of trading constraints need to be
added, which are the cardinality constraint and the bounding
constraints. The cardinality constraint limits the maximum
number of the assets within in a portfolio in order to reduce
tax or transaction costs and the bounding constraints are the
upper and lower bounds of the proportion of held assets within
a portfolio.

Formally, the extended mean-variance model can be formu-

lated as follows [7]:

minimize
N∑
i=1

N∑
j=1

wiwjσij

subject to
N∑
i=1

wiµi = R∗

N∑
i=1

wi = 1 (1)

N∑
i=1

si = K (2)

ϵisi ≤ wi ≤ δisi, i = 1, ⋅ ⋅ ⋅ , N (3)
si ∈ {0, 1}, i = 1, . . . , N (4)

where K is the desired number of the assets in the portfolio, si
is a binary decision variable. If si = 1, asset i is chosen to be
held. Otherwise, si = 0. If asset i is held, ϵi is the minimum
proportion and δi is the maximum proportion. The proportion
of the held asset i should lie in [ϵi, δi] where 0 ≤ ϵi ≤ δi ≤ 1.

This extended model is a quadratic mixed-integer problem
(QMIP) which is NP-hard. Therefore, many researchers choose
to use heuristic or metaheuristic in this area. For this work, we
want to combine the strengths of both metaheuristic techniques
and mathematical programming methods and present a hybrid
approach which combines PSO and an exact method together
to solve the extended constrained model.

III. THE PROPOSED COMBINATORIAL ALGORITHM

The most difficult part of the constrained model is the cardi-
nality constraint (Equation (2)). It is mainly because the cardi-
nality constraint is discrete and therefore the solution space is
discontinuous. In the current literature, many researchers relax
the cardinality constraint from an equality to an inequality

(i.e.
N∑
i=1

si ≤ K). Apart from that, the rest of the model can

be efficiently solved by using some commercial mathematical
integer programming solvers. The idea of our approach is to
combine the metaheuristic algorithm and mathematics method
into a hybrid algorithm. The metaheuristic algorithm can be
used to deal with the discrete constraint (cardinality) and
mathematical method can be used to solve the rest of the
model.

Usually, the quality of an individual solution in the meta-
heuristic algorithm is computed by using a fitness measure or
a fitness function. Therefore, for each portfolio which satisfies
the cardinality constraint, we can use a fitness function to
calculate its quality. And then by iterations, we can get the
portfolio with the better fitness value. For this work, we choose
to use particle swarm optimization to handle the cardinality
constraint and the Matlab math library to implement the
corresponding fitness function.

A. Particle swarm optimization

Particle swarm optimization (PSO) algorithm, which is a
nature-inspired searching techniques, was invented by Eber-
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hart and Kennedy in 1995 [12], [13]. It is a population-
based stochastic algorithm modeled on the social behaviors
observed in flocking birds. Each particle, which represents a
solution, flies through the search space with a velocity that is
dynamically adjusted according to its own and its companion’s
historical behaviors. The particles tend to fly toward better
areas of search space over the course of the search process
[14].

The canonical PSO algorithm is simple in concept and easy
in implementation [15], [16]. The basic equations are as the
follows:

vi ← wvi + c1rand()(xpb − xi) + c2Rand()(xlb − xi) (5)
xi ← xi + vi (6)

The meaning of notations are as follows:
• w denotes the inertia weight and is usually less than 1;
• c1 and c2 are two positive acceleration constants,
• rand() and Rand() are two independent functions to

generate uniformly distributed random numbers in the
range [0, 1].

• xi is the ith particle’s position, which represents a solu-
tion to the problem.

• vi is the ith particle’s velocity,
• xpb is personal best, which refers to the best position

found by the ith particle, and
• xlb is local best, which refers to the position found by

the members in the ith particle’s neighborhood that has
the best fitness evaluation value so far.

The procedure of PSO algorithm is given as Algorithm 1.

Algorithm 1: The procedure of particle swarm optimiza-
tion algorithm

1 Initialize velocity and position randomly for each particle
in every dimension;

2 while not find the “good enough” set of assets or not
reach the maximum number of iterations;

3 do
4 Calculate each particle’s fitness value;
5 Compare fitness value between that of current

position and that of the best position in history
(personal best, termed as xpb). For each particle, if
the fitness value of current position is better than xpb,
then update xpb to be the current position;

6 Select the particle which has the best fitness value
among current particle’s neighborhood, this particle is
called the neighborhood best (termed as xlb).;

7 for each particle do
8 Update particle’s velocity and position according

to the Equation (5) and (6), respectively;

B. Problem Representation

In this paper, particle swarm optimization algorithm is uti-
lized to solve a discrete problem with cardinality constraints.

The search space (characterized by N in (1) and (2)) is
different for different benchmark datasets (see Section IV-A).
The aim of the search algorithm is to find the best k items
from N instances. The details of problem representation are
as follows:
• The fitness function f maps from a list of K integers to

a real number: ZK → ℛ where K is the cardinality of
the portfolio.

• A widely used representation is modelling portfolio se-
lection problem as a N dimensional search problem [17].
A vector z represents the selection of portfolio, zi = 1
means ith asset is selected and zi = 0 otherwise. The
dimension of algorithm’s search space is increased with
the increase of dataset’s dimension. In our approach, the
problem is modeled as a K dimensional search problem.
A fixed length vector of k =< k0, k1, ..., kK > is used
to encode the selected K assets of the portfolio and
ki ∈ {1, 2, . . . , N}. The selection of the ith item is
dependent on other items, i.e., the search problem is a
dimensional dependent problem.

• The swarm is a set of particles denoted by P . xi of a
particle pi ∈ P (i = 1, ⋅ ⋅ ⋅ , n) represents a potential
solution. Each particle pi consists of the two components:

1) Position xi = (x1, x2, . . . , xK), xi ∈ ZK at step t.
Each position is a list of K assets.

2) Velocity vi = (v1, v2, . . . , vK), vi ∈ ZK .
• The global best position is xgb(t) such that f(xgb(t)) ≤
f(xi(t)) for all xi(t), pi ∈ P at step t.

C. The fitness function
Once PSO chooses a set of assets which satisfies the

cardinality constraint, we need a fitness function to determine
the quality of the selected set (portfolio). We use Matlab to
implement the fitness function as there are some useful built-
in functions (they are used to handle the budget constraint
(1) and bounding constraints (3) ) in its toolbox and it is
also more convenient to deal with the covariance matrix σij .
Once the fitness function is implemented, it can be built into
a .DLL component which can be called by our PSO program
procedure.

For the preprocessing part, we use Matlab to solve the basic
mean-variance model in order to get the unconstrained efficient
frontier (UEF). This UEF is the upper bound of the efficient
frontier with the cardinality and bounding constraints being
included.

Firstly, we create a new portfolio with the selected assets
by PSO and set up the expected return and covariance matrix
for that. Then we can set up the budget constraint (Equation
(1)) and the bounding constraints (Equation (3)). After that,
the efficient frontier of the new portfolio can be computed.
This efficient frontier is called the sub-efficient frontier. The
portfolios on the sub-efficient frontier satisfy all the constraints
(Equation (1),(2),and (3)). Then we estimate m of optimal
portfolios over the sub-efficient frontier.

Usually, determining the quality of a portfolio is done by
using a percentage deviation method [7]. We apply the same
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technique here. The percentage deviation error is measured
by calculating the distance between the obtained portfolio and
UEF, both horizontally and vertically.

Formally, let (xuef, yuef) be a discrete point on the UEF.
The horizontal distance is calculated by taking the portfolio
expected return as fixed (y = yuef), linearly interpolating the
point on the UEF to get the x value xinterpolation and take the
absolute value of the difference between xuef and xinterpolation.
Then the percentage deviation error in the x-direction is
computed as ∣xuef − xinterpolation∣/xuef × 100%. The percentage
deviation error in the y-direction can be calculated in a similar
way. The final percentage deviation error is the minimum of
the percentage deviation error of the both directions.

We can choose m portfolios equally spaced on the UEF.
These m portfolios represent m return levels. And for each
chosen portfolio ut on the UEF, we can find a portfolio us on
the sub-efficient frontier with the smallest Euclidean distance
to ut. Then we compute the percentage deviation error of us
and return the result as the fitness value.

For each portfolio us on the sub-efficient frontier, the
selection of the assets are not necessarily the same. We call this
fitness the dynamic set fitness. The procedure of the dynamic
set fitness function is given in Algorithm 2.

Algorithm 2: The dynamic set fitness function

1 Input arguments: K asset numbers and a target portfolio
ut on the UEF;

2 Create a new portfolio with the selected K assets;
3 Set up the expected return and the covariance matrix of

the new portfolio;
4 Set up the budget and bounding constraints;
5 Compute the sub-efficient frontier of the new portfolio;
6 Estimate m portfolios evenly distributed on the

sub-efficient frontier;
7 Set umin = u1 where u1 is the first portfolio on the

sub-efficient frontier;
8 for each portfolio us on the sub-efficient frontier do
9 Calculate the Euclidean distance between us and ut;

10 if The distance is less than the distance between
umin and ut then

11 Set umin = us;

12 Compute the percentage deviation error of umin and
return the result;

We can also have a constant set fitness. The idea is to
find the sub-efficient frontier which is “close to” the UEF.
We calculate the sub-efficient frontier of the selected assets
and then choose m portfolios equally spaced on the the sub-
efficient frontier. We compute the percentage deviation error
of these m portfolios and return the mean percentage deviation
error as the fitness value. The procedure of the constant set
fitness function is given as Algorithm 3.

In the dynamic fitness setting, for each different return level
on the UEF we can get a portfolio Pd with the minimum

Algorithm 3: The constant set fitness function

1 Input arguments: K asset numbers;
2 Create a new portfolio with the selected K assets;
3 Set up the expected return and the covariance matrix of

the new portfolio;
4 Set up the budget and bounding constraints;
5 Compute the sub-efficient frontier of the new portfolio;
6 Estimate m portfolios evenly distributed on the

sub-efficient frontier;
7 for each portfolio us on the sub-efficient frontier do
8 Compute the percentage deviation error of us;

9 Compute the mean percentage deviation error of m
portfolios and return the result;

percentage deviation error. These obtained portfolios can also
form a frontier. We choose m portfolios equally spaced on
this frontier, label them from Ud

1 to Ud
m and calculate the

corresponding percentage deviation error from ed1 to edm.
Similarly, in the constant fitness setting, we can compute a sub-
efficient frontier. We also choose m portfolios equally spaced
on this sub-efficient frontier, label them from U c

1 to U c
m and

calculate the corresponding percentage deviation error from ec1
to ecm.

We then combine the results of both settings by taking
the smaller percentage deviation error portfolio at each return
level. Thus, if edi ≤ eci , we say portfolio Ud

i dominates
portfolio U c

i and we take Ud
i ; if eci < edi , we say portfolio

U c
i dominates portfolio Ud

i and we take U c
i (i = 1 . . .m).

IV. DATA SET AND PARAMETER SETTINGS

A. The data set

A benchmark data set is available from the OR-library [18].
It contains the mean expected return and the correlation matrix
of the following five different capital market indices:
• Hang Seng in Hong Kong, N = 31.
• DAX 100 in Germany, N = 85.
• FTSE 100 in UK, N = 89.
• S&P 100 in US, N = 98.
• Nikkei 225 in Japan, N = 225.

B. Parameters settings

• Standard PSO: We set w = 0.72984, c1 = c2 =
1.496172. These values are same as in the standard PSO
[19], [20]. The population size of the particles is 48 and
the number of iterations is 500 for each return level in
every run. There are 5 runs in total for a single return
level.

• Fitness function: We set K = 10, ϵi = 0.01, δi = 1
(i = 1, . . . , N ) and m = 50.

V. COMPUTATIONAL RESULTS

A. The unconstrained model

It is commonly to test the algorithm on the basic uncon-
strained model first in order to evaluate its performance [7],
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[10]. For our case, if we set K = N (N is the size of the
dataset), ϵi = 0 and δi = 1, our algorithm can solve the basic
unconstrained model in an exact manner (i.e. MPE = 0).

B. The constrained model

1) The dynamic fitness setting: The computational results
of the dynamic fitness setting is shown in Table I. Here BPE
denotes the best percentage deviation error, MedPE denotes
the median percentage deviation error and MPE denotes the
mean percentage deviation error.

TABLE I
COMPUTATIONAL RESULTS USING THE DYNAMIC FITNESS

Instance BPE(%) MedPE(%) MPE(%)Index N

Hang Seng 31 0.0148 0.0265 0.8725
DAX 100 85 0.7213 0.8467 2.1794
FTSE 100 89 0.2602 0.4369 1.3996
S&P 100 98 0.2969 0.3553 1.5352

Nikkei 225 225 0.2609 0.6651 0.7104
Average 0.3108 0.4661 1.3394

Figure 1 shows the comparative results of the portfolios
obtained by our algorithm against the unconstrained efficient
frontier (UEF) for five data sets in the dynamic fitness setting.

2) The constant fitness setting: The computational results
of the constant fitness setting is shown in Table II. Figure
2 shows the comparative results of the sub-efficient frontier
obtained by our algorithm against the unconstrained efficient
frontier (UEF) for five data sets in the constant fitness setting.

TABLE II
COMPUTATIONAL RESULTS USING THE CONSTANT FITNESS

Instance BPE(%) MedPE(%) MPE(%)Index N

Hang Seng 31 0.1348 1.0412 0.9888
DAX 100 85 0.6692 1.1867 2.2455
FTSE 100 89 0.5541 0.9757 1.2137
S&P 100 98 0.3453 1.0773 1.2373

Nikkei 225 225 0.4289 0.7283 1.3966
Average 0.4265 1.0018 1.4163

3) The final results: We combine the results in both settings
by taking the smaller percentage deviation error portfolio at
each return level. We compare our results with those by Chang
et al. [7] (as shown in Table III) and the best results so far
in the literature [8] (as shown in Table IV). Figure 3 shows
the comparison results of the final frontier obtained by our
algorithm with the unconstrained efficient frontier (UEF).

4) The efficiency issue: The PSO algorithm was imple-
mented in C#. All the tests were run on the same Intel(R)
Core(TM) i5-3210M 2.50GHz processor with 4.00 GB RAM
PC and Windows 8 system. The computational time of the
whole program mainly depends on the fitness function imple-
mented by Matlab. One interesting finding is, as Matlab has a
powerful processing mechanism for the matrix, it takes almost
the same amount of time to finish a single fitness calculation

TABLE III
COMPARISON RESULTS OF OUR ALGORITHM WITH CHANG et al. [7] FOR

THE CONSTRAINED MODEL

Instance Chang Chang Chang Our
Index N -SA -TS -GA method

Hang Seng 31 MedPE(%) 1.2082 1.1992 1.1819 0.7546
MPE (%) 0.9892 0.9908 0.9457 0.8250

DAX 100 85 MedPE(%) 2.4675 2.5383 2.1262 1.7032
MPE (%) 2.4299 3.0635 1.9515 2.1389

FTSE 100 89 MedPE(%) 0.7137 0.6361 0.5938 0.6548
MPE (%) 1.1341 1.3908 0.8784 0.8129

S&P 100 98 MedPE(%) 1.1288 1.1487 1.1447 1.0429
MPE (%) 2.6970 3.1678 1.7157 1.5377

Nikkei 225 225 MedPE(%) 0.6292 0.5914 0.6062 0.5597
MPE (%) 0.6370 0.8981 0.6431 0.6208

Average MedPE(%) 1.2294 1.2227 1.1306 0.9430
MPE (%) 1.5774 1.9022 1.2269 1.1870

TABLE IV
COMPARISON RESULTS OF OUR ALGORITHM WITH WOODSIDE et al. [8]

FOR THE CONSTRAINED MODEL

Instance Woodside Woodside Woodside Our
Index N -SA -TS -GA method

Hang Seng 31 MedPE(%) 0.5355 0.3949 0.5873 0.7546
MPE (%) 1.0589 0.8234 0.8501 0.8250

DAX 100 85 MedPE(%) 0.8682 0.4298 0.2400 1.7032
MPE (%) 1.0267 0.7190 0.7740 2.1389

FTSE 100 89 MedPE(%) 0.3944 0.2061 0.0820 0.6548
MPE (%) 0.8952 0.3930 0.1620 0.8129

S&P 100 98 MedPE(%) 2.1064 1.0248 0.1809 1.0429
MPE (%) 3.0952 1.0358 0.2922 1.5377

Nikkei 225 225 MedPE(%) 0.6877 0.6526 0.3040 0.5597
MPE (%) 1.1193 0.7838 0.3353 0.6208

Average MedPE(%) 0.9184 0.5416 0.2788 0.9430
MPE (%) 1.4391 0.7510 0.4827 1.1870

regardless of the size of the instances. For our case, it takes
approximately 10 minutes to compute a single point for each
different return level in the dynamic fitness setting and it takes
approximately 60 minutes to compute the sub-efficient frontier
in the constant fitness setting.

5) Discussion: From Table III we can see that our algo-
rithm obtains the best results for 4 out of 5 datasets compared
with simulated annealing (SA), tabu search (TS) and genetic
algorithm (GA) reported in [7].

We also compared our results with the best ones so far
in the literature by Woodside et al. [8]. Table IV shows
Woodside-GA obtains better results for 4 out of 5 datasets
compared to the ours. Our method outperforms Woodside-
SA for 4 out of 5 instances and is competitive to Woodside-
TS. The main difference between our method and Woodside
et al. [7] is that our algorithm is a combinatorial algorithm
which hybridizes both metaheuristics approach and mathemat-
ics method and it can guarantee the optimal allocation for a
given assets combination. This may not be possible by using
heuristics/metaheuristics techniques and it could lead to some
promising future research directions.

VI. CPLEX SOLUTIONS

In order to test the effectiveness of our algorithm, we also
use CPLEX (version 12.4) on the same datasets with the same
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Fig. 1. Comparison of the portfolios obtained by our algorithm with the unconstrained efficient frontier (UEF) in the dynamic fitness setting. The upper
curve is the UEF and the lower points are the portfolios found by our algorithm.
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Fig. 2. Comparison of the sub-efficient frontier obtained by our algorithm with the unconstrained efficient frontier (UEF) in the constant fitness setting. The
upper curve is the UEF and the lower curve is the sub-efficient found by our algorithm.
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Fig. 3. Comparison results of the final frontier obtained by our algorithm with the unconstrained efficient frontier (UEF). The upper curve is the UEF and
the lower curve is the final frontier found by our algorithm.

conditions (K = 10, ϵi = 0.01, δi = 1 (i = 1, . . . , N ).
We also choose 50 equally spaced return levels and for each
return level we give CPLEX a time limit of 3600s on a
same PC which was used to test our combinatorial algorithm.
For some return levels, CPLEX obtains the solutions with a
relaxed condition (feasible relaxed sum of infeasibilities), for
some return levels, CPLEX can obtain the optimal or integer
optimal solutions and for some return levels, CPLEX obtains
the solutions with the time limit exceeded. The results are
shown in Table V.

Figure 4 shows the comparison of CPLEX results with the
unconstrained efficient frontier (UEF). For the solutions with
the time limit exceeded, it might be the case that CPLEX can
not confirm the optimality of those points within the given
time limit. For example the last point obtained with the time
limit exceeded in DAX 100, it takes 10592s to confirm it is an
integer optimal solution. Because of the limitation of the time,
we did not test all of those points. Apart from the solutions
with the time limit exceeded and a few infeasible solutions,
we can see CPLEX can get optimal or integer solutions for
most of the return levels. In the current literature, the reason of
using MPE method to determine the quality of the algorithm
is that there exists no optimal solutions so far, thus, if those
CPLEX solutions’ optimality can be confirmed, they can be
used to determine the effectiveness of the algorithms for this
problem in the future.

TABLE V
CPLEX RESULTS FOR THE CONSTRAINED MODEL

Instance Number of MPE Average time

Index N
optimal points (optimal per point

obtained points)(%) (optimal)(s)

Hang Seng 31 47 0.6449 1.46
DAX 100 85 38 1.1851 3.23
FTSE 100 89 28 0.5022 2.37
S&P 100 98 27 0.6350 2.18

Nikkei 225 225 45 0.2449 1.67

VII. CONCLUSION AND FURTHER WORK

In this work, we propose a combinatorial algorithm which
hybridizes a metaheuristic algorithm (PSO) and a mathemati-
cal programming method for the portfolio optimization prob-
lem with the cardinality and bounding constraints. PSO is used
to deal with the cardinality constraints and the mathematical
method is used to deal with the rest of the model. The
main difference between our combinatorial algorithm and the
heuristics/metaheuristics techniques in the literature is that our
method can guarantee the optimal allocation for a given assets
combination. The results are promising and indicate that it
could be a useful strategy for the other finance and economics
applications with similar models.

We also tested a mixed integer program solver CPLEX on
the same datasets and the obtained results by CPLEX can be
used as the criteria for comparing algorithms for this problem
in the future.
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Fig. 4. Comparison of CPLEX results with the unconstrained efficient frontier (UEF). The red curve is the UEF. The black points are the ones with feasible
relaxed sum of infeasibilities, the blue points are optimal or integer optimal points and the magenta points are the ones the time limit exceeded.
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