
A Memetic Algorithm with a New Split Scheme for Solving
Dynamic Capacitated Arc Routing Problems

Min Liu, Hemant Kumar Singh and Tapabrata Ray

Abstract— Capacitated arc routing problems (CARPs) are
usually modeled as static problems, where all information
about the problem is known in advance and assumed to
remain constant during the course of optimization. However,
in practice, many factors such as demand, road accessibility,
vehicle availability etc. change during the course of a mission
and the routes of each vehicle must be reconfigured dynamically.
This problem is referred to as dynamic capacitated arc routing
problem (DCARP). In this study, a memetic algorithm with a
new split scheme for DCARPs is proposed. This algorithm is
capable to solve DCARPs with variations in vehicle availability,
road accessibility, added/canceled tasks or demands and traffic
congestions. The algorithm is also capable of solving static
CARPs. The performance of the algorithm is reported on a 10-
node and three 100-node examples in order to demonstrate the
efficacy of the algorithm in solving static and dynamic problems.

I. INTRODUCTION

The capacitated arc routing problem (CARP) is a challeng-
ing combinatorial problem, wherein a set of required arcs,
each with a fixed demand, are served by a fleet of homoge-
neous vehicles of finite capacity while attempting to keep the
total distance traveled to a minimum. However, in most real-
life applications (winter gritting, street sweeping, inspection
of pipe distribution networks etc.), certain unexpected events
invariably happen while the vehicles are en route. Exam-
ples of such unpredicted events include change in demand
(i.e., new customer requests/cancellations), unexpected road
blocks, traffic congestion and vehicle breakdowns. Under
such situations, the originally planned vehicle routes need
to be reconfigured, making it a dynamic CARP (DCARP).

In DCARP, part or all of the information (such as demands,
road accessibility etc.) is unknown and revealed dynamically
while the vehicles are in service. Limited studies have
been reported on solving DCARPs. With the availability of
advanced global positioning systems, the area is likely to
gain greater attention in coming years. For vehicle routing
in dynamic scenarios, DCVRP has been studied in [1], and
classified into two types, deterministic and stochastic. Similar
classification can be extended to DCARP, with the difference
being that the former deals with serving nodes, while latter
deals with serving edges. In the deterministic form, there is
no historical data available, and vehicle routes are generated
based on current requirements. In the stochastic form, useful
historical data about possible tasks, vehicle availability, roads
maintenance etc. is available in order to schedule the vehicle

Min Liu, Hemant Kumar Singh and Tapabrata Ray are with the
School of Engineering and Information Technology, University of New
South Wales, Canberra, Australia (email: min.liu@student.adfa.edu.au,
{h.singh,t.ray}@adfa.edu.au).

routes. After initial scheduling, in both these forms, the
vehicle routes are redefined continuously based on directions
from the central decision maker.

The limited studies reported in solving DCARP include
solving (deterministic) winter gritting problem with time-
dependent service costs (distance) [2] and solving dynamic
salting route with dynamic demand affected by road surface
temperature [3]. In [2], a variable neighborhood descent
heuristic, initially developed for the static version of the prob-
lem (where all service cost functions are known in advance
and do not change thereafter), is adapted to handle the dy-
namic variant. In [3], a new salting route optimization system
was proposed which combines Evolutionary Computation
(EC) with the neXt generation Road Weather Information
Systems (XRWIS). XRWIS is a forecast system used for
predicting road surface temperatures and conditions across
the road network over a 24-hour period. ECs were used
to optimize a series of salting routes for winter gritting by
considering XRWIS temperature data along with treatment
vehicle and road network constraints.

So far, the existing research has only focused on DCARP
with variation of distances and demands of tasks. However,
in real life, dynamically revealed information may consist of
at least six factors, namely, vehicle availability, road acces-
sibility, new added tasks, canceled tasks, variation of traffic
conditions and variation of demands. In this study, dynamic
problems containing these variations are discussed and a
memetic algorithm with a new split scheme embedded with
a path repair operator is proposed to solve such problems.

The remaining sections of this paper are organized as
follows. In Section II, the problem statement is presented.
The description of the proposed algorithm (MASDC) is given
in Section III, and the numerical experiments are presented
in Section IV. Conclusions are discussed in Section V.

II. PROBLEM STATEMENT

Capacitated arc routing problem (CARP) is a combinato-
rial optimization problem, in which the aim is to service a set
of tasks with a fleet of homogeneous vehicles (without ex-
ceeding their capacities), while minimizing the total distance
traveled. In DCARP studied here, six factors can change
during the course of operation, which are vehicle availability,
road accessibility, added/canceled tasks, road congestions
and change in tasks’ demands. In this study, the vehicle
speed is considered constant and the distance of the road is
manipulated to reflect the effect of congestion. If the vehicles
are unavailable due to breakdowns, the control center needs
to assign other vehicles to complete the remaining tasks.

595

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Depot

known request task planned trip

node

Fig. 1. A simple case of static CARP (I0)

When certain roads are inaccessible (e.g. due to weather
hazards) or there are congestions, the control center may
need re-route the vehicles via different paths than originally
planned. When some demands (tasks) are added or canceled,
there is a need for rescheduling based on the position and
availability of the vehicles. If certain demands of existing
tasks are changed, the control center needs to reschedule
the vehicles’ routes to avoid exceeding of capacities, and
at the same time make the total service distance as short
as possible. Figure 1 shows a simple case for a static CARP
(I0) at the beginning, while Figure 2 illustrates the six factors
of possible interruptions/changes considered in the DCARP
model. The attributes of DCARP are listed below.

1) The fleet of vehicles may be homogeneous (same
capacity) or heterogeneous (different capacities).

2) The vehicles may start from different depots.
3) Any vehicle may suffer a breakdown during its course

of service.
4) A broken down vehicle is towed to its depot and

repaired. The vehicle may be used subsequently for the
mission and the distance from the site of breakdown
to its depot is not accounted in the formulation. Fur-
thermore, the repaired vehicle starts at its depot fully
refilled.

5) Any road in the network may become inaccessible
during the mission. Such inaccessibility could be short
term (e.g. maintenance) or long term (e.g. land slides).

6) New tasks may be added in and some existing tasks
may be canceled during the course of service.

7) Demand associated with any task may change over
time (e.g., the amount of snow requiring removal
usually grows with time). The demand can exceed ve-
hicles’ capacities for DCARP (in which case multiple
trips are done to serve them).

8) The speed of each vehicle is assumed constant.
9) Information about the dynamic changes is conveyed to

the control center without any time delay.
10) Each vehicle starts and ends at its own depot.
11) Each task is completed exactly once.

The objective of DCARP is to use available vehicles to
serve all the required tasks (taking into account dynamic

Depot

known request task planned trip new trip segment

Depot

node

(a) Change in vehicle availability

known request task planned trip new trip segment

Depot

node

(b) Change in road accessibility

known request task planned trip new trip segment

Depot

new request task node

(c) Change in tasks, i.e., added and/or canceled tasks

known request task planned trip new trip segment

Depot

distance changed road node

(d) Change induced by congestion

known request task planned trip new trip segment

Depot

demand changed task node

(e) Change in demand of tasks

Fig. 2. Six types of possible interruptions/changes

596

changes) while traveling minimum total distance.
In DCARP, if the interruptions/changes occur at ti (i =

1, 2, ..., Gmax), then the original instance I0 gets updated
to generate new instances I1, I2,..., IGmax incorporating the
changes.

III. PROPOSED MEMETIC ALGORITHM WITH NEW SPLIT
SCHEME FOR DCARP (MASDC)

In this section, a memetic algorithm is proposed to solve
DCARPs. The algorithm incorporates a new split scheme
with a path repair operator in order to handle the attributes
of DCARP (compared to a static CARP). For solving a
DCARP, an algorithm must be able to deal with the following
situations (which do not occur in a standard static CARP
problem).

1) Vehicles can have different depots/starting points. Han-
dling this situation is necessary because when the
instance changes, the vehicles may be in the process of
serving existing tasks. Hence for the updated problem,
the vehicles will not start from the original/common
depot, but from their existing locations.

2) Vehicles have different capacities. When the change
occurs in the problem, the vehicles may have served
some of the tasks already, and hence will not be at
their full capacities. Therefore algorithm must be able
to route vehicles which may not necessarily have the
same capacity.

3) The total demand may be larger than the sum of exist-
ing available vehicles’ capacity. When/if the demands
change, they total new demand may exceed the total
capacities of the vehicles. Hence the algorithm must be
able to have provision for dealing with this situation
(e.g. by re-filling the vehicles).

MASDC is a memetic algorithm, combining features from
global and local search, and has four key steps: split method,
parent selection, crossover, and local search. A potential
solution is represented using a sequence of tasks. From this
sequence, to generate a vehicle schedule, a split method is
used, which forms a solution. The total distance for this
schedule gives the fitness of the individual (lower distance⇒
higher fitness). A population of individuals is maintained, and
in each generation, two parents are selected from the popu-
lation using Roulette Wheel [4] based selection to generate
two offspring individuals via crossover operation. Thereafter,
the local search is performed (with a given probability) from
the the better offspring individual among the two as the
starting point. The improved individual replaces the worst
one in the existing population. The process continues until
the maximum function evaluations are reached.

MASDC uses a conditional check to identify if the prob-
lem at a given time instant resembles static or dynamic
CARP. If the problem at a given instant resembles static
CARP (homogeneous vehicles, one depot and the total
demand is less than the sum of existing available vehicles’
capacity), then the methods used for split, parent selection,
crossover, and local search are Ulusoy heuristic [5], Multi-
ple Sequence Alignment (MSA) inspired selection, Hybrid

recombination and Extended local search respectively as
discussed in detail in [6]. The details of these operators are
omitted here for brevity. However, if the problem resembles
dynamic CARP (heterogeneous vehicles and/or different
depots and/or total demand exceeds capacity), then the
new proposed split scheme, Roulette wheel based selection,
Random key crossover and Hill-climb local search method
are used. These are described in more detail in the following
subsections. The pseudo code of the MASDC is presented
in Algorithm 1.

At any given time ti (iε{0, 1, . . . Gmax}), the vehicles start
serving the tasks obtained using the best solution from the
search at time ti. When the interruptions/change happen next
at ti+1, the vehicles stop at their current positions (nearest
node) and the problem information (e.g. vehicle’s left capac-
ity, positions of vehicles and status of tasks etc), is updated.

Algorithm 1 Proposed memetic algorithm with new split
scheme for DCARP (MASDC)
Require: Population size (Ps), Maximum number of function evaluations

(MFE), rLS , Times t1, t2,..., tGmax when interruptions/changes
occur, instances I0, I1, I2,..., IGmax

1: for i = 1 to Gmax do
2: if i = 1 then
3: Read instance I0;
4: else
5: Read updated instance Ii−1;
6: end if
7: Generate an initial population Q;
8: while Number of solutions evaluated <= MFE do
9: if The graph is detected as basic (static) CARP then

10: Apply MSA inspired selection operator to select Ps/2 pairs of
parents;

11: Apply hybrid recombination to generate a child population
QC (size of Ps);

12: Evaluate QC ;
13: Sort (Q ∪QC) and keep the best Ps individuals in Q;
14: Select the best individual in Q as Sa;
15: if rand[0,1] ≤ rLS then
16: Apply local search to Sa to generate Sc;
17: Replace the worst individual in Q with Sc if it is better

than it and not a clone of any individuals in Q;
18: end if
19: Sort the individuals in Q;
20: else
21: Apply Roulette Wheel selection operator to select two parents

Pc1 and Pc2;
22: Apply Random Keys crossover operator to Pc1 and Pc2 to

generate a child Sa;
23: if rand[0,1] ≤ rLS then
24: Apply local search to Sa to generate Sb;
25: if Sb /∈ Q then
26: Q ← Q ∪ Sb

27: else if Sa /∈ Q then
28: Q ← Q ∪ Sa;
29: end if
30: else if Sa /∈ Q then
31: Q ← Q ∪ Sa;
32: end if
33: Sort the chromosomes in Q and keep the best Ps solutions in

Q;
34: end if
35: end while
36: end for

597

A. Solution Representation and Initialization

An individual (chromosome) of DCARP is represented
as a list of tasks i.e. edge IDs. A set of chromosomes
are generated by applying path-scanning (PS) heuristic [7]
without considering the capacity constraints to form the
initial population Q. The initialization phase terminates when
Ps unique individuals have been generated. In the event Ps

unique individuals cannot be generated within prescribed
number of trials (=100), random individuals are added.
The solutions are then generated from the chromosomes by
applying Distance based Split Scheme (proposed in the next
subsection) to split the individuals into an ordered list of
tasks for each vehicle. The total distance D for this trip list
defines the fitness of the individual.

B. Distance Based Split Scheme

A commonly used split method to evaluate a chromo-
some in existing CARP algorithms is Ulusoy heuristic [5].
Ulusoy heuristic is an exact algorithm that splits the chro-
mosome in a way that minimizes total trip distance D.
However, the method’s applicability is restricted to basic
CARP instances (homogeneous vehicles, same depot and
total demand less than vehicle capacity). Furthermore, the
heuristic does not take into account the number of available
vehicles (only considers capacity), and hence the solution
obtained from it may be infeasible (requires more vehicles
than available). Since the above conditions are not valid for
the DCARP instances, Ulusoy heuristic can not be used for
splitting/evaluating the chromosomes. To handle these cases
(heterogeneous vehicles, different depots, total demand more
than vehicle capacity), a new Distance based Split Scheme
embedded with a repair operator is proposed here. The details
of the scheme are as follows:

1) Given a chromosome, randomly split it into NV (num-
ber of vehicle) parts. For example, assume there are
three vehicles V1, V2 and V3 located at nodes 1, 2 and
3 respectively. A chromosome S = {2, 8, 6, 12, 1, 3,
5, 11, 7, 10, 4, 9} is split into three parts, e.g. S1 =
{{2, 8, 6}, S2 ={12, 1, 3, 5, 11}, S3 = {7, 10, 4, 9}}.

2) Consider the first set of nodes, S1. A vehicle which
has overall least distance from the nodes of this set
is sought to service this set. This is done as fol-
lows. Calculate the sum of distances of V1 (using
Dijkstra’s algorithm [8]) from its current position to
each task’s start node and end node in S1, e.g., DpV1

= sum (distance(node 1, start node of task 2) +
distance(node 1, end node of task 2) + distance(node
1, start node of task 8) + distance(node 1, end node
of task 8) + distance(node 1, start node of task 6)
+ distance(node 1, end node of task 6)). Similarly,
calculate DpV2

and DpV3
. The vehicle which has the

least distance among the three is assigned to service
S1.

3) Exclude the already assigned tasks from S and repeat
this process using the remaining vehicles progressively
until all tasks/vehicles are assigned.

4) Calculate the total distance of the three vehicles’ routes
as DR1. During the process of serving, certain vehicle
may encounter with a situation in which its remaining
capacity is insufficient to serve the next task, making
the solution infeasible. In such case, a Path Repair
Operator is introduced and adopted here: if a vehicle’s
remaining capacity is not sufficient to serve its next
task, then the vehicle is routed back to its depot to
get refilled and then returns to the start node of the
next task to continue its service. This does not affect
the task list assigned to the vehicle, only the total
distance required by the vehicle to finish the tasks. The
distance from its current position to its depot and the
distance from depot to the start node of next task are
calculated by Dijkstras algorithm and are considered
when calculating the solution’s fitness.

5) Three trials of the process outlined above (Steps 1-
4) are done (with different split locations) to calculate
three possible configurations with distances DR1, DR2

and DR3. The configuration with the minimum dis-
tance is used to assign the fitness of the chromosome.

The pseudo code of proposed split scheme is presented in
Algorithm 2.

Algorithm 2 Distance based Split Scheme
Require: A chromosome S, Number of vehicles NV , Vehicle IDs V1, V2...

VNV

1: V Set ← V1, V2... VNV

2: for i = 1 to 3 do
3: Randomly split S into NV parts, S1, S2,...,SNV

4: for j = 1 to NV do
5: for k = 1 to size(V Set) do
6: Consider set Sj . Calculate the sum of distances of Vk from

its current position to each task’s start node and end node of
the Sj and save the distance into DpVk

.
7: end for
8: The vehicle with shortest distance Dp is assigned to service Sj

9: Remove set Sj from V Set.
10: end for
11: Calculate the distance for this configuration as Di. If the demand

of a set assigned to a vehicle is higher than its capacity, use Repair
operator in Di calculation.

12: end for
13: Assign min({D1, D2, D3}) as the distance D of chromosome S

C. Crossover

Commonly used crossovers for CARP, namely order
crossover (OX) [9] and one-point/two-point crossover [10],
are designed for circular permutations (like CARP tours).
But the generated offspring might be infeasible with missed
or repeated tasks. To counter this, some researchers have
proposed repair algorithms [11] to recreate feasible trips.
However, repair algorithms can consume a considerable
amount of time, resulting in longer convergence time. Alter-
natively chromosomal representation like the one introduced
by Bean [12] in which a random numbers encoding structure
has been proposed, constituting so called Random Keys GA
(RKGA). In our study, the random key crossover [12], [13]
is adopted.

598

Random key operator works in the following way. First,
two individuals Pc1 and Pc2 are identified using a roulette
wheel based selection. Then, a set of Y (= total number
of tasks) unique numbers, each number corresponding to a
task in Pc1 are sampled using uniform distribution between
A and B (in our experiments A = 1, B = 4000). For the
discussion assume them as {2100, 569, 3, 888, 970, 1100,
30}. The sorted list of random numbers is {3, 30, 569, 888,
970, 1100, 2100}. The original chromosome {6, 1, 5, 4, 2,
3, 7} is encoded such that the element 3 in the sorted list
of random numbers is inserted in location 6, 30 in location
1, 569 in location 5 and so on resulting in an encoded
chromosome as {30, 970, 1100, 888, 569, 3, 2100}. The
process is repeated for Pc2, the encoded form of which is
{90, 220, 457, 140, 1400, 700, 550}. Following two-point
crossover [10] in the encoded space, the child chromosomes
R1∗ and R2∗ assumes the form {30, 970, 1100, 140, 1400,
3, 2100} and {90, 220, 457, 888, 569, 700, 550}. A decoding
of the chromosomes R1∗ and R2∗ back to the original space
results in {6, 1, 4, 2, 3, 5, 7} and {1, 2, 3, 7, 5, 6, 4}
respectively, where 6 denotes the position of the smallest
random number in the encoded chromosome, 1 denotes the
position of next smallest random number and so on. These
offspring are guaranteed to be feasible and a random one is
selected.

D. Local Search

In order to make the algorithm more efficient, local search
is performed from the best individual Sa in the population
Q with a probability rLS . Local search performs successive
phases that scan all pairs of tasks (Yi, Yj) and tries three
moves [14]:

1) Single insertion: move task Yi after task Yj , or before
Yj if Yj is the first task of its trip.

2) Double insertion: move adjacent tasks (Yi, Yi+1) after
task Yj , or before Yj if Yj is the first task of its trip.

3) Swap: swap tasks Yi and Yj .
One solution is generated using each of these moves, and

the best individual (with the shortest distance) out of the
three move operators is is selected as Sb. If this solution is
better than the worst solution in the population, Sb replaces
it. The pseudo code of the local search process is presented
in Algorithm 3.

The best solution obtained using the search at the given
instant ti is used by the vehicles to start serving the tasks.
When the next interruptions/changes happen at ti+1, the
vehicles stop at their current positions (nearest node) and
the following information gets updated:

1) Currently available vehicle’s information, i.e., vehicles’
capacities and locations.

2) Updated Graph if certain roads become inaccessible.
3) The tasks yet to be served from previous time step,

added and/or canceled tasks. If a vehicle has completed
less than half of a task when the change occurred,
this task is carried over to the new instance unserved,
whereas if more than half of the task was complete,

Algorithm 3 Local Search Algorithm
Require: Probability of invoking local search rLS , Starting individual Sa

//Single insertion
for i = 1 to Number of tasks in Sa do

for j = i+ 1 to Number of tasks in Sa do
Move the position of task Yi to the position of task Yj

Use split scheme to calculate the this chromosome’s fitness
end for

end for
S1
a ← The chromosome with the maximum fitness

//Double insertion
for i = 1 to Number of tasks in Sa - 1 do

for j = 1 to Number of tasks in Sa - 2 do
Move the position of a pair of tasks Yi and Yi+1 to the position
of task Yj

Use split scheme to calculate the chromosome’s fitness
end for

end for
S2
a ← The chromosome with the maximum fitness

//Swap
for i = 1 to Number of tasks in Sa - 1 do

for j = i+ 1 to Number of tasks in Sa do
Swap the position of tasks Yi and task Yj

Use split scheme to calculate the chromosome’s fitness
end for

end for
S3
a ← The chromosome with the maximum fitness

Keep the best individual among S1
a, S2

a and S3
a as Sb

it is assumed to have been already served in the new
instance.

4) Change in demands of existing tasks if applicable.
Thereafter, the algorithm is used to search for the best

solution for updated instance and the vehicles continue
serving again based on new schedules.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed MASDC
algorithm is studied on four dynamic problems taken from
[15]. First one is a 10-node example which is used to visually
illustrate the results from the algorithm. The remaining three
examples are undirected, directed and mixed graphs contain-
ing 100 nodes each. For each of the 100-node examples,
the instance resembles a static CARP at the beginning time
instant t0, and these are also solved using state of the art
static CARP algorithm MAENS [16] for comparison.

A. 10-node example

The example contains 2 vehicles with different capacities
(460 and 480) located at different depots (node 1 and
node 3). The speed of the vehicles is 30km/h. I0 is the
instance at time t0 (i.e., the beginning), and then there are
interruptions/changes detected at time t1 = 1 min and time t2
= 3 min. So two updated instances I1 and I2 are generated
at time t1 and t2. The features of the example are presented
below:
• I0: As shown in Figure 3(a), I0 contains 10 nodes and

14 roads. There are 5 tasks to be served, which are the
edges 1-4, 1-7, 4-8, 7-8 and 8-10. Vehicle 1 and vehicle
2 are both available for service.

• I1: As shown in Figure 3(b), I1 contains 10 nodes and
13 roads. The road 2-4 is inaccessible due to temporary

599

road maintenance. The demand of one existing task edge
8-10 is increased from 100 to 102. Besides the existing
tasks, there are 5 new requested tasks which are edges
1-6, 1-8, 4-10(two lanes) and 5-8. Vehicle 1 is broken-
down.

• I2: As shown in Figure 3(c), I2 contains 10 nodes
and 12 roads. The roads 8-10 and 2-10 assumed to be
inaccessible, while 2-4 is accessible again and requested
as a task. The task edge 8-10 is canceled as road is
inaccessible and task edge 1-6 is canceled as customer
requirement. Besides, a new task edge 3-4 is added in.
The demand of task edge 1-8 is decreased from 104 to
101. Vehicle 1 is fixed and located at its depot. Both
vehicles are available to service.

Twenty independent runs are done using MASDC on
the 10-node example described above. A limited budget of
2000 evaluations is used to solve the problem for each time
instant (t0, t1 . . . tGmax

). Population size (Ps) is set to 10.
Local search is applied with a probability rLS = 0.2. The
experimental results are presented in Table I.

TABLE I
STATISTICS FOR TOTAL DISTANCE TRAVELED FOR 10-NODE EXAMPLE

USING MASDC ACROSS 20 RUNS

Instance MASDC
Min. Max. Mean Std.

10-node example 5310 6630 5824.9 418.3

The details of the best out of 20 runs are described below:

• I0: Based on t0, the routes of vehicle 1 and 2 are
calculated as 1-8-10-4-8-7-1 and 3-1-4-3 respectively.
The tasks served until t1 are shown in Figure 4(a). Task
edges 4-8, 7-8, 1-7 and 1-4 are not served yet. In terms
of the condition of the vehicles, the service distance for
vehicle 1 is 408 and it stops at node 10 (and has broken
down); while the service distance for vehicle 2 is 160
and it stops at node 1 with a residual capacity 480.

• I1: The updated instance at time t1 and progression up
to t2 is shown in Figure 4(b). During this time, only
one vehicle (vehicle 2) is active. It starts from node 1
and goes through tasks 1-6, 1-8, 8-4, 4-10, 10-4, then
goes back to its depot node 3 to get refilled. Then it
stops at node 4. At this instant, tasks 5-8, 7-8, 1-7, 1-4
and 3-4 are remaining. The service distance for vehicle
2 is 1450 and it stops at node 4 with full capacity 480.

• I2: The updated instance at time t2 and the route of
the vehicles to serve the remaining tasks is shown in
Figure 4(c). Both vehicles are available for service.
Vehicle 1 starts at its depot with full capacity and
vehicle 2 starts at node 4 with its full capacity of 480.
The route for vehicle 1 is 1-4-8-1 (go back to depot to
refill)-8-5-8-7-1 with a distance of 2000 and for vehicle
2 is 4-2-4-3 with a distance of 1292. All requested tasks
are served and the vehicles return to their depots. The
total distance traveled is 5310.

(a) I0

(b) I1

(c) I2

Fig. 3. The graphs for 10-node example

B. 100-node examples

The performance of MASDC is further tested on three
100-node examples. The features of the examples are listed
in Table II. Population size (Pc) is set to 30, and maximum
evaluations allowed is set to 20,000 for each time step.
Local search is applied with a probability rLS = 0.2. Twenty
independent runs are performed for each instance. At t0, for
each of these problems, the vehicles have the same capacity,
are located at same depot, and the total demand is less than
the total capacity. Hence the solution for this instant can also
be obtained using a static CARP algorithm. A comparison

600

vehicle 1
vehicle 2

(a) I0

vehicle 1
vehicle 2

(b) I1

vehicle 2
vehicle 1

(c) I2

Fig. 4. The best solution obtained using MASDC for 10-node example

is presented for the instance at t0 between the presented
algorithm and the state of art MAENS [16] algorithm. For
the remaining instants (t1 and t2), the same conditions don’t
hold and they cannot be solved using static CARP methods.
Hence for those two instants, only the results obtained using
proposed MASDC are presented. The interruptions/changes
happen at time t1 = 4 mins and t2 = 6 mins.

1) I0: MASDC and MAENS Comparison: The results ob-
tained for the three instances at t0 are presented in Table III.
In the table, the number of nodes are denoted as |V |, edges
as |E|, number of one-way roads as |OWR|, number of
vehicle as NV , number of tasks as |Y | and vehicles capacity

TABLE II
100-NODE DYNAMIC INSTANCES: INSTANCE 1 (UNDIRECTED),

INSTANCE 2 (DIRECTED) AND INSTANCE 3 (MIXED)

Output
parame-
ters

Instance 1 Instance 2 Instance 3

t0 t1 t2 t0 t1 t2 t0 t1 t2
Nodes 100 100 99 100 100 100 100 100 100
Roads 164 148 139 328 295 279 208 187 177
One-way
roads 0 0 0 33 27 31 6 6 4

Vehicles 8 7 4 8 7 4 8 7 4
Capacity 244 244 244 450 450 450 319 319 319
Tasks 16 15 13 33 25 28 21 19 21
Depot 2 2 2 2 2 2 2 2 2
D1 3 6 6 3 3 3 3 6 4
D2 2 18 26 2 4 4 2 12 20
D3 62 52 52 62 62 63 62 58 53
D4 30 22 13 30 28 28 30 24 22
D5 3 2 3 3 3 2 3 0 1
ML1 50 49.32 49.64 50 51.19 51.61 50 52.41 49.72
ML2 43.29 43.24 43.88 42.99 41.69 40.5 42.79 41.18 41.48
ML3 3.05 3.38 3.6 3.05 3.05 3.58 2.88 2.67 3.39
ML4 3.66 4.05 2.88 3.96 4.07 4.3 4.33 3.74 5.08
Dists 79.88 79.73 82.01 80.18 80.34 81.72 80.29 80.21 80.23
Distm 15.24 14.86 15.11 14.94 14.58 14.34 14.9 14.97 16.38
Distl 4.88 5.41 2.88 4.88 5.08 3.94 4.81 4.81 3.39

as C. The progress plots of the median run for each instance
are presented in Figure 5. As reflected from the values in
Table III, MASDC on an average is able to achieve lower
total distance values across multiple runs. The best values
obtained using MASDC are also observed to be better than
those obtained using MAENS.

2) Overall Results using MASDC: After the vehicles start
serving the tasks on I0, the changes occur at t1 and t2. The
updated instances are solved using MASDC, and the total
distance traveled by all vehicles are reported in Table IV.
The statistics shown are calculated over 20 independent runs.
Given the unavailability of existing methods to solve such
problems, a comparison is not possible with other methods
currently.

TABLE IV
TOTAL DISTANCE TRAVELED FOR DYNAMIC INSTANCES USING MASDC

ACROSS 20 RUNS

Min. Max. Mean Std.
Instance 1 57451 65408 62308.4 1839.3
Instance 2 77011 85973 81017 2431.2
Instance 3 88538 102691 94136.3 4184.4

V. CONCLUSIONS

DCARP is a challenging problem which is of great interest
in both research and industry due to its applicability in many
real world problems. In this study, a memetic algorithm,
MASDC, is proposed for solving DCARPs with variations
in realistic factors such as vehicle availability, road accessi-
bility, added/canceled tasks, traffic congestion and demands.
MASDC is first of its kind to be able to solve problems
with heterogeneous vehicles, different starting depots as
well as cases with demands exceeding total capacity. The

601

TABLE III
SOLUTIONS OBTAINED USING MAENS AND MASDC FOR 100-NODE EXAMPLES AT t0 (I01 , I02 AND I03)

Instance |V | |E| |OWR| NV |Y | C MAENS MASDC
Min. Max. Mean Std. Min. Max. Mean Std.

Undirected graph I01 100 164 0 8 16 244 40709 44580 42400.1 1062.4 39246 39643 39314.8 126.4
Directed graph I02 100 328 33 8 33 450 55225 60982 58323.4 1650.9 48836 51652 50639.1 977.9
Mixed graph I03 100 208 6 8 21 319 53914 56915 55215.3 922.1 46503 48074 47260.8 492.9

0 0.5 1 1.5 2

x 10
4

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7
x 10

4

MAENS

MASDC

Number of function evaluations

V
al

ue
s

(a) Median results for Instance 1 (undirected graph)

0 0.5 1 1.5 2

x 10
4

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8
x 10

4

MAENS

MASDC

Number of function evaluations

V
al

ue
s

(b) Median results for Instance 2 (directed graph)

0 0.5 1 1.5 2

x 10
4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2
x 10

4

MAENS

MASDC

Number of function evaluations

V
al

ue
s

(c) Median results for Instance 3 (mixed graph)

Fig. 5. Median results for initial instance I0 of three 100-node examples

algorithm is also capable of solving traditional static CARP
instances efficiently. The working of the proposed algorithm
is illustrated using a 10-node example as well as three 100-
node examples of undirected, directed and mixed nature.
The results for static case are compared with the state of
the art algorithm MAENS to demonstrate the efficacy of the
algorithm. MASDC results are competitive and the algorithm
shows great potential for solving realistic DCARP problems.

REFERENCES

[1] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of
dynamic vehicle routing problems,” European Journal of Operational
Research, 2012.

[2] M. Tagmouti, M. Gendreau, and J.-Y. Potvin, “A dynamic capacitated
arc routing problem with time-dependent service costs,” Transporta-
tion Research Part C: Emerging Technologies, vol. 19, no. 1, pp. 20–
28, 2011.

[3] H. Handa, L. Chapman, and X. Yao, “Dynamic salting route op-
timisation using evolutionary computation,” in IEEE Congress on
Evolutionary Computation (CEC), vol. 1. IEEE, 2005, pp. 158–165.

[4] K. A. De Jong, “Jong: An analysis of the behavior of a class of
genetic adaptive systems,” Ph.D. dissertation, PhD thesis, University
of Michigan, Dissertation Abstracts International. 36 (10), 1975.

[5] G. Ulusoy, “The fleet size and mix problem for capacitated arc
routing,” European Journal of Operational Research, vol. 22, no. 3,
pp. 329–337, 1985.

[6] M. Liu and T. Ray, “Efficient solution of capacitated arc routing
problems with a limited computational budget,” in AI 2012: Advances
in Artificial Intelligence. Springer, 2012, pp. 791–802.

[7] B. Golden, J. DeArmon, and E. Baker, “Computational experiments
with algorithms for a class of routing problems,” Computers &
Operations Research, vol. 10, no. 1, pp. 47–59, 1983.

[8] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[9] I. Oliver, D. Smith, and J. Holland, “A study of permutation crossover
operators on the traveling salesman problem,” in Proceedings of the
Second International Conference on Genetic Algorithms on Genetic
algorithms and their application. L. Erlbaum Associates Inc., 1987,
pp. 224–230.

[10] H. Mühlenbein and D. Schlierkamp-Voosen, “Analysis of selection,
mutation and recombination in genetic algorithms,” in Evolution and
biocomputation. Springer, 1995, pp. 142–168.

[11] Michalewicz, “Repair algorithms,” Evolutionary computation 1, basic
algorithms and operators, pp. 56–61, 2000.

[12] J. Bean, “Genetic algorithms and random keys for sequencing and
optimization,” ORSA journal on computing, vol. 6, no. 2, pp. 154–
160, 1994.

[13] F. Samanlioglu, W. Ferrell, and M. Kurz, “A memetic random-key
genetic algorithm for a symmetric multi-objective traveling salesman
problem,” Computers & Industrial Engineering, vol. 55, no. 2, pp.
439–449, 2008.

[14] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Competitive memetic
algorithms for arc routing problems,” Annals of Operations Research,
vol. 131, no. 1, pp. 159–185, 2004.

[15] M. Liu, H. K. Singh, and T. Ray, “A benchmark generator for dynamic
capacitated arc routing problems,” in IEEE Congress on Evolutionary
Computation (CEC), 2014, accepted.

[16] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended
neighborhood search for capacitated arc routing problems,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1151–
1166, 2009.

602

