
Runtime Analysis Comparison of Two Fitness Functions on a Memetic Algorithm
for the Clique Problem

Kuai Wei and Michael J. Dinneen
Department of Computer Science, University of Auckland, Auckland, New Zealand

{kuai,mjd}@cs.auckland.ac.nz

Abstract—It is commonly accepted that a proper fitness func-
tion can guide the algorithm to find a global optimum solution
faster. This paper will use the runtime analysis to provide the
theoretical evidence that a small change of the fitness function
(additional one step looking forward) can result in a huge
performance gap in terms of finding a global optimum solution. It
also shows that the fitness function that gives the best results in an
Memetic Algorithm on the Clique Problem is entirely instance
specific. In detail, we will formalize a (1+1) Restart Memetic
Algorithm with a Best-Improvement Local Search, and run them
on two different fitness functions, fOL and fOPL, to solve the Clique
Problem respectively. We then construct two families of graphs,
G1 and G2, and show that, for the first family of graphs G1, the
(1+1) RMA on the fitness function fOPL drastically outperforms
the (1+1) RMA on the fitness function fOL, and vice versa for the
second family of graphs G2.

I. INTRODUCTION

Memetic Algorithms (MAs) are a wide class of randomized
search heuristics that hybridize Evolutionary Algorithms (EAs)
with local searches. There are many examples in which MAs
have successfully been used to solve various kinds of prob-
lems [13]. This motivates the desire for a better understanding
of MAs by using runtime analysis.

MAs and EAs both apply mutations and recombinations,
and the runtime analysis of these operations have been studied
a lot in EAs. Some of the examples are: the study on dynamic
mutation approach [6], [5], [11], [28]; the recombination
(also known as crossover) operation [10], [12], [17]; and
the analysis of population-based EAs, [9], [30]. Therefore,
theoretical analyses of MAs have mainly focused on the impact
of the local searches. The first runtime analysis on MAs is
the (1+1) MA in 2006 [22] by Sudholt. Later on, in 2008,
he [23] analyzed the (1+1) MA with variable-depth search
to overcome local optimum on three binary combinatorial
problems: Mincut, Knapsack, and Maxsat. Similarly, in 2009,
the same author [24] showed that changing the depth of
local searches or the frequency of applying local searches in
MAs will reduce the performance from polynomial to super-
polynomial. Furthermore, the interaction of mutations and
local searches has attracted much attention. For example, Sud-
holt and Zarges [25] analyzed the interaction of two different
mutations with local search for Vertex Coloring in 2010. Then,
Dinneen and Wei [6], in 2013, analyzed a dynamic mutation
with two different local searches on some artificially created
functions; and in the same year, the authors [5] analyzed a
(1+1) Adaptive MA on the clique problem and showed that, for

any local optima that is hard to escape, the (1+1) Adaptive MA
is expected to overcome the local optima super-polynomially
faster than the basic (1+1) EA. A few latest surveys of runtime
analysis on MAs and EAs can be found in [3], [8], [14], [15].

These runtime analyses explain the success of some ex-
periments. For example, an adaptive mutation approach in
an MA [4] gained success in experiments, and theoretical
evidences were studied in [6], [5]. However, runtime analysis
progress still lags behind the experimental approach. In par-
ticular, many experimental studies observed that, for a single
problem, it is possible to construct different fitness functions,
and running the same algorithm on these fitness functions can
result in a huge performance gap, for example [1], [2], [19],
[26]. This observation has motivated a great amount of studies
on the fitness landscape theory, as presented in a few recent
surveys [16], [18]. However, to the best of our knowledge,
no runtime analyses show the evidence for this observation,
which is the aim of this paper.

The paper is structured as follows. In Section II, we will
formalize two fitness functions, fOL and fOPL, for solving
the Clique Problem. Then propose the (1+1) Restart Memetic
Algorithm (RMA). Next, in Section III, we will construct a
family of graphs (G1), and show that, to solve the Clique
Problem on the graph family G1, the (1+1) RMA on fOPL
is expected to take O(n2) fitness evaluations, but the (1+1)
RMA on fOL is expected to take a super-polynomial number
of fitness evaluations. In Section IV, we will construct another
family of graphs (G2) and show the opposite trend, i.e. the
(1+1) RMA on fOPL is expected to take a super-polynomial
number of fitness evaluations, but the (1+1) RMA on fOL
is expected to take O(n2.5) fitness evaluations. Finally, a
conclusion will be given in Section V.

II. ALGORITHM DEFINITIONS

A. The Maximum Clique Problem

A clique of a graph is a subset of vertices from this graph
such that every two vertices in the subset are connected
by an edge. The Clique Problem is the NP-hard problem
of finding the largest size of a clique in a graph. For a
given graph G = (V = {v1, v2, ..., vn}, E), a bit string
x = (x1, x2, ..., xn) ∈ {0, 1}n defines a clique potential
solution (an induced subgraph) where xi = 1 represents that
the vertex vi is selected. We say x represents a clique if each
selected vertex in x is connected to all other selected vertices
in x, i.e. {(vi, vj) | xi = xj = 1 and i 6= j} ⊆ E.

133

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

mailto:kuai@cs.auckland.ac.nz?subject=1+1AMA_paper
mailto:mjd@cs.auckland.ac.nz?subject=1+1AMA_paper

There are some runtime analyses studying EAs on the
Clique Problem, in which different fitness functions have been
studied, e.g., Storch in 2006 [20] used the function f1 as
follows:

f1(x) =

{
ONES(x), if x represents a clique,
−∞, otherwise;

and the same author in 2007 [21] constructed another function
f2 as follows:

f2(x) =

{
ONES(x), if x represents a clique,
−ONES(x), otherwise.

Note that even though these two fitness functions both
encode the problem of finding a maximum clique, and both can
be calculated within O(n2) time, the function f2(x) provides
some additional information which is very important for MAs.
In other words, if the mutation jumps to a bit string that does
not represent a clique, f2(x) can guide the local search quickly
discover a clique, but f1(x) cannot. In this paper, we construct
another two fitness functions, fOL and fOPL, for solving the
Clique Problem.

Definition 1. The fitness function fOL (ONES, LACKEDGES)
is defined as follows:

fOL(x) =

{
ONES(x), if x represents a clique,
−LACKEDGES(x), otherwise,

where ONES(x) is the number of ones in x; and
LACKEDGES(x) is the number of missing edges such that
the subgraph becomes a clique.

Definition 2. The fitness function fOPL (ONES,
P[otential]V[ertices], LACKEDGES) is defined as
follows:

fOPL(x) =

{
ONES(x) + PV(x)/n, if x represents a clique,
−LACKEDGES(x), otherwise,

where the additional function PV(x) is the number of zeros in
x such that, when each of these zeros is flipped individually,
a larger clique is obtained.

Example 3. For a given graph G, displayed below, we have:

1) If x = (1101), then fOL(x) = fOPL(x) = 3 because x
represents a clique that consists of vertices 1, 2 and 4.

2) If x = (1111), then fOL(x) = fOPL(x) = −1 because
we need to add one edge (1, 3) to the graph so that the
bit string represents a clique.

3) If x = (0101), then fOL(x) = 2 and fOPL(x) = 2.5.
Since x represents a clique that consists of vertices 2
and 4, ONES(x) = 2. There are two potential vertices 1
and 3, such that flipping either the first or the third bit
will obtain a larger clique, so PV(x)/n = 0.5.

1 4

2 3

Note that if x does not represent a clique, since the function
LACKEDGES provides more information than the function
ONES, the functions fOL and fOPL can guide the local search
to find a clique faster than the functions f1 and f2. Besides,
if x is a subset of a larger clique, and has many neighbor
cliques of which the clique size are all larger than x by one,
then fOL cannot distinguish these neighbors, while fOPL can
distinguish some of them because it provides an additional one
step looking forward.

Also note that both fOL and fOPL can be calculated within
O(n2) time. This is why we claim that the fitness change is
small, due to the fact that we can also construct another fitness
function that looks two steps forward or even more, which
may not be calculated within O(n2) time. For example, a
fitness function that looks n steps forward can guide the BILS
(Algorithm 5) directly moving towards a maximum clique, but
that fitness function is too expensive to calculate.

A maximum clique for a graph G is a global optimal
solution x that maximizes both fOL(x) and fOPL(x).

B. Algorithms to be analyzed

Algorithm 4. (1+1) RMA.
1) Set the number of generations gen := 0, x = 0n.
2) y := x. Flip every bit in y with probability 1/n.
3) z := LocalSearch(y).
4) If f(z) ≥ f(x) then x := z.
5) gen := gen + 1.
6) If gen = λ then go to step 1.
7) Stop if any stopping criterion is met, otherwise, go to

step 2.

Note that the algorithm will restart in every λ genera-
tions. We will analyze the impact of λ on the algorithm’s
ability to find a global optimal solution. The local search
LocalSearch(y) can have a local search pool that contains
many different local searches, and the algorithm can dynam-
ically or adaptively choose one of them to execute. Since
we want to focus on the fitness functions, we only analyze
a simple Best-Improvement Local Search (BILS), which uses
a steepest ascent pivot rule.

Algorithm 5. Best-Improvement Local Search (BILS). For a
given string x ∈ {0, 1}n:

1) BestNeighborSet :={
y | f(y) > f(x),Hamming(x, y) = 1, and
∀z with Hamming(x, z) = 1 : f(y) ≥ f(z)

}
.

2) Stop and return x if BestNeighborSet = ∅.
3) x is randomly choosen from BestNeighborSet.
4) Go to step 1.

134

Note, Hamming(x, y) is the number of different bits be-
tween x and y. Since the BILS will evaluate all n neighbors
and then randomly select one of the best neighbors, and
according to the fitness functions fOL in Definition 1 and fOPL
in Definition 2, we have:

1) If the bit string after the mutation represents a clique,
the BILS will keep flipping bits from zeros to ones until
it finds a local optimal clique, which takes at most n2

fitness evaluations.
2) If the bit string after the mutation does not represent

a clique, the BILS will keep flipping bits from ones
to zeros until it finds a clique, which takes at most n2

fitness evaluations.
Therefore, the BILS will stop on both fitness functions fOL
and fOPL within 2n2 fitness evaluations.

In the rest of this paper, we will use (1+1) RMA OL to
denote that the (1+1) RMA is running on the fitness function
fOL, and (1+1) RMA OPL to denote that the (1+1) RMA is
running on the fitness function fOPL.

Due to space limitations we provide proof sketches for the
main theorems and redirect the reader to [27] for full proofs
or [29] for similar proof techniques related to these same
graph families for local search comparison (instead of fitness
function comparison).

III. A FAMILY OF GRAPHS ON WHICH THE (1+1)
RMA OPL OUTPERFORMS THE (1+1) RMA OL

In this section, we will construct a family of graphs G1,
and show that the (1+1) RMA OPL is expected to find the
maximum clique on any graph of the family G1 within a
polynomial number of fitness evaluations, while the (1+1)
RMA OL is expected to take a super-polynomial number of
fitness evaluations to find the maximum clique on any graph
of the family G1.

Definition 6. The graph G1(t) has n = t(2t+ 2) vertices for
the variable t. We separate all vertices into (2t + 2) disjoint
sets V0, V1, · · · , V2t+1 such that Vi ∩ Vj = ∅ and |Vi| = t for
0 ≤ i ≤ 2t + 1, 0 ≤ j ≤ 2t + 1 and i 6= j. We use vi,k to
refer the k-th vertex in Vi (0 ≤ k ≤ t− 1). To make it easier
to understand the edge set E, we first assume it is a complete
graph, and then delete edges according to the following rules:

1) Delete the edge between vi,k and vj,k for all variables
i, j, k with bi/2c 6= bj/2c, 0 ≤ k ≤ t−1, 0 ≤ i ≤ 2t+1
and 0 ≤ j ≤ 2t+ 1.

2) Delete the edge between vi,t−1 and vj,t−1 for all vari-
ables i, j with 2 ≤ i ≤ 2t+ 1 and bi/2c = bj/2c.

3) Delete the edge between v1,k and vj,l for all variables
j, k, l with 2 ≤ j ≤ 2t+ 1, 0 ≤ k ≤ t−1, 0 ≤ l ≤ t−1
and k ≡ (l − 1) mod t.

Visually we fill all vertices from the sets V0, V1, · · · , V2t+1

into a (2t + 2)-by-t matrix with each set Vi being the i-th
row vector, as shown in Figure 1. Hence, vi,j is the vertex
in row i and column j. We use V (x) to denote the set of
vertices x has chosen; recall x = (x1, x2, . . . , xn). Then we

use vi,k(x) = 1 (a solid circle in Figure 1) to denote that
vi,k ∈ V (x), and vi,k(x) = 0 (a hollow circle in Figure 1)
otherwise. In Figure 1, v0,0(x) = 1 and v0,1(x) = 0.

V0

V1

V2t

V2t+1

...

0 1 · · · t− 1

V2

V3

Fig. 1. A (2t+ 2)-by-t matrix representation for G1(t) and G2(t).

Figure 2 demonstrates the edge deleting rules for the graph
G1(t), in which dashed lines denote that the edges are deleted.
In detail, Case 1 in Figure 2 is an example of deleting edges
that are connected to the vertices v0,0 and v1,0, according
to Rule 1 in Definition 6; Case 2 in Figure 2 demonstrates
all edges that need to be deleted, according to Rule 2 in
Definition 6; and Case 3 in Figure 2 is an example of
deleting edges that are connected to the vertices v1,0 and v1,1,
according to Rule 3 in Definition 6.

Note that the idea of the edge rules in Definition 6 is to
limit the graph G1(t) to only have one maximum clique of 2t
vertices, which is the top two rows in Figure 1; meanwhile, it
has many misleading local optimal cliques of (2t−1) vertices
in the bottom 2t rows in Figure 1. Observe the PV function in
fOPL will guide the BILS to add vertices in the top two rows,
which is the maximum clique. On the other hand, since fOL
cannot provide the “one step looking forward” function, and
because the size of the bottom 2t rows is t times the size of the
top two rows, the BILS on the fOL is more likely to become
trapped into a local optimal that contains many vertices in
the bottom 2t rows. Overall, we aim to show that the (1+1)
RMA OPL drastically outperforms the (1+1) RMA OL on
this family of graphs when finding the maximum clique.

Claim 7. For the graph G1(t), if the bit string x represents
a clique, V (x) has at most two vertices in each column,
i.e. ∀k, 0 ≤ k ≤ t− 1 :

∑2t+1
i=0 vi,k(x) ≤ 2.

Proof. Due to Rule 1 in Definition 6, every vertex is connected
to at most one vertex in the same column.

Claim 8. For the graph G1(t), if the bit string x represents a
maximal clique, V (x) contains at least one vertex in each
column, i.e. ∀k, 0 ≤ k ≤ t − 1 :

∑2t+1
i=0 vi,k(x) ≥ 1.

Furthermore, V (x) contains at least t vertices, i.e. |V (x)| ≥ t.

Proof. Recall the rules in Definition 6, for each column k
(0 ≤ k ≤ t− 1), the vertex v0,k is connected to all vertices in

135

V1

V2

10

V3

V4

t− 1

V2t

V2t+1

V0

...

· · ·
· · ·

· · ·

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

V5 · · · V5

V1

V2

t− 20

V3

V4

t− 1

V2t

V2t+1

V0

...

· · ·
· · ·

· · ·

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
...

1

V5

V1

V2

t− 10

V3

V4

V2t

V2t+1

V0

...

· · ·
· · ·

· · ·

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
...

1

...

2

Fig. 2. Illustrating Cases 1, 2 and 3 for the graph G1(t) of Definition 6.

other columns. Thus, V (x) will either contain some vertices
from

⋃2t+1
i=1 {vi,k}, or contain the vertex v0,k. Furthermore,

since V (x) contains at least one vertex in each column, and
there are t columns, V (x) contains at least t vertices.

Claim 9. The only maximum clique of the graph G1(t) is
Vglobal = V0 ∪ V1, which contains 2t vertices.

Proof. Firstly, due to the edge rules in Definition 6, there
exists a 2t clique of V0 ∪V1. Secondly, according to Claim 7,
any clique can have at most two vertices in each column, and
there are t columns in the graph, thus, the maximum clique
size can not be larger than 2t. This means that V0 ∪ V1 is a
maximum clique.

Now we show that V0 ∪ V1 is the only 2t clique in the
graph. We assume that there is another 2t clique y. Due to
Claim 7, V (y) must contain two vertices in each column to
be a 2t clique. Furthermore, due to Rule 1 and Rule 2 in
Definition 6, V (y) can only contain v0,t−1 and v1,t−1 in the
last column. Therefore, V (y) contains some vertices in V0∪V1.
Since V (y) 6= V0∪V1, and |V (y)| = |V0∪V1| = 2t, V (y) must
contain some vertices in

⋃2t+1
i=2 Vi. So, there exists at least one

column k, such that V (y) must contain vertices from V0 ∪ V1

in this column, and which must also contain vertices from⋃2t+1
i=2 Vi in the next column. Then in the column k, V (y)

can not contain the vertex v1,k, due to Rule 3 in Definition 6.
Hence, V (y) only contains one vertex in the column k, which
conflicts with the requirement that V (y) must contain two
vertices in each column. Thus y does not exist.

Theorem 10. For any constant λ independent of n, the (1+1)
RMA OPL is expected to find the maximum clique of the graph
G1(t) within O(n2) fitness evaluations.

Proof sketch. Since the algorithm starts with x = 0n, and the
mutation probability is 1/n, the probability that the mutation

does not flip any bits is (1− 1/n)
n, which approaches 1/e

as n increases. Therefore, within Θ(1) restarts, we expect to
have a mutation that gets the bit string y = 0n.

From 0n, the function PV in fOPL will always guide the
BILS to add vertices from the top two rows into the clique,
until it finds the maximum clique of V0 ∪ V1. This is because
that, suppose the current clique is V (y), for any column k in
the graph such that V (y) does not contain any vertex in this
column, we have:

1) If V (y) includes the vertex of v1,k−1, then Rule 3 in
Definition 6 will prevent the BILS from adding any
vertex, that is in the bottom 2t rows and that is also
in the column k, into V (y) to obtain a larger clique.

2) If V (y) does not include the vertex of v1,k−1, then
Rule 3 in Definition 6 will distinguish the neighbors
of y, so adding the vertex v0,k into V (y) will have a
better fitness value than adding any vertex in the bottom
2t rows from the column k.

Therefore, after the BILS adds the vertex v0,k, it will not
consider adding any vertex in the bottom 2t rows of the
column k due to Rule 1 in Definition 6.

Recall that the algorithm will restart in every Θ(1)
generations, and in each generation, the BILS will stop on
the fOPL within 2n2 fitness evaluations (see Algorithm 5), so
the (1+1) RMA OPL is expected to find the bit string 0n

within O(n2) fitness evaluations. Then, the BILS will keep
checking all n neighbors of the current clique, and adding
one vertex from the top two rows into the current clique, until
it finds the maximum clique. This will take t · n = O(n1.5)
fitness evaluations (note n = t(2t + 2)). Overall, the (1+1)
RMA OPL is expected to find the maximum clique of the
graph G1(t) within O(n2) fitness evaluations.

We now introduce the Global Gambler’s Ruin that we will
use to prove Theorem 12.

Theorem 11. Global Gambler’s Ruin (Happ et al. [7])

136

Let X0, X1, X2,· · · be random variables describing a Markov
process over the state space N0. For constants a, b ∈ R with
0 ≤ a < b ≤ 1 let the random variable T denote the earliest
point in time t ≥ 0 that satisfies Xt ≤ an.

If there exist constants δ > 1 and C > 0 such that the three
conditions

1) P [X0 ≥ bn] = 1− 2−Ω(n),
2) P [Xt+1−Xt = j | Xt] ≥ δj ·P [Xt+1−Xt = −j | Xt]

for all j ≥ 1, t ≥ 0, and an < Xt < bn,
3)
∑

j≥1 δ
j · P [Xt+1 −Xt = −j | Xt] ≤ C for all t ≥ 0

and Xt ≥ bn
hold then T ≥ δ1/3·(b−a)n with probability 1− 2−Ω(n).

Theorem 12. For the variable λ, no matter if it is static,
adjusted dynamically or adaptively, the probability of the
(1+1) RMA OL finding the maximum clique of the graph
G1(t) within a polynomial number of fitness evaluations is
super-polynomially close to zero.

Proof sketch. We prove the theorem by showing that the
three conditions in Theorem 11 hold with probabilities super-
polynomially close to one, so that the probability of the
algorithm finding the maximum clique within a polynomial
number of fitness evaluations is super-polynomially close to
zero.

Let Xp denote the number of columns in which the current
clique contains vertices in the bottom 2t rows at time p. Note
that 0 ≤ Xp ≤ t and n = t(2t + 2). According to Claim 8,
any local optimum clique contains at least one vertex in each
column, then the target state is XT = 0, which denotes that the
local optimum clique does not contain any vertex in the bottom
2t rows, which is the maximum clique of V0∪V1. Let a = 1/4,
b = 1/2, the constants δ = 2 and C =

∑
j≥1 j · 2j/(j!).

Part 1. Condition 1 holds with a probability super-
polynomially close to one. Firstly, since the algorithm starts or
restarts from 0n, the first clique found by the algorithm from
0n has a constant number of vertices in the top two rows with
a probability super-polynomially close to one. This is because
that the probability of the mutation flipping k = ω(1) bits
in the top two rows is

(
2t
k

)
(1/n)k (1− 1/n)

2t−k ≤ 1
k!

(
2t
n

)k
,

which is super-polynomially close to zero due to n = t(2t+2).
Secondly, the first local optimum clique found by the algo-

rithm, after the start or after each restart, has O(log t) vertices
in the top two rows with a probability super-polynomially
close to one. This is because that a) the fitness function fOL
cannot help the BILS to distinguish those neighbors that all
improve the clique size by one; and b) the size of the bottom
2t rows is t times the size of the top two rows, i.e., most
neighbors that improve the clique size by one are obtained by
adding one vertex from the bottom 2t rows. Since the local
optimal clique has at least one vertex in each column (Claim 8)
and any clique has at most two vertices in the same column
(Claim 7), then with a probability super-polynomially close
to one, there are more than (1/2)t columns from which the
first local optimal clique contains vertices from the bottom 2t
rows, i.e., X0 ≥ bn.

Part 2. Condition 2 holds. Suppose the current state Xp ∈
(an, bn). Let δ = 2. Then we show that P [Xp+1 − Xp =
j | Xp] ≥ δj · P [Xp+1 − Xp = −j | Xp]. Since Xp ∈
(an, bn), there are more than t/2 columns that the current
clique contains vertices from the top two rows, and less than
t/2 columns that the current clique contains vertices from the
bottom 2t rows. And due to the size of the bottom 2t rows is t
times the size of the top two rows, the total number of cliques
that can achieve P [Xp+1 − Xp = j] is at least tj times the
total number of cliques that can achieve P [Xp+1−Xp = −j].
Furthermore, the probabilities to obtain each of these cliques
are the same. Therefore, P [Xp+1 − Xp = j | Xp] ≥ tj ·
P [Xp+1 −Xp = −j | Xp] > δj · P [Xp+1 −Xp = −j].

Part 3. Condition 3 holds. Note that for each column
that undergoes a positive drift or a negative drift, the
mutation needs to flip at least one bit in that column.
Therefore, to jump j steps towards the target state, i.e.,
Xp+1 − Xp = −j, the mutation needs to flip at least j
bits. Then we say that the probability of Xp+1 − Xp = −j
is at most

∑n
q=j

(
n
q

)
· (1/n)q ≤ ∑n

q=j 1/(q!). Therefore,∑
j≥1 δ

jP [Xp+1 − Xp = −j | Xp] ≤ ∑
j≥1 j · δj/(j!) =∑

j≥1 j · 2j/(j!), which is a constant (note that j! grows
faster than 4j when j > 4).

IV. A FAMILY OF GRAPHS ON WHICH THE (1+1) RMA OL
OUTPERFORMS THE (1+1) RMA OPL

In this section, we will construct a family of graphs
G2 and show that the (1+1) RMA OL is expected to find
a maximum clique within a polynomial number of fitness
evaluations, while the (1+1) RMA OPL is expected to take
a super-polynomial number of fitness evaluations to find a
maximum clique.

Definition 13. The graph G2(t) has the same number of
vertices as the graph G1(t), but the edge connections are
different. It has n = t(2t+ 2) vertices for the variable t. We
separate all vertices into (2t+2) disjoint sets V0, V1, . . . , V2t+1

such that Vi ∩ Vj = ∅ and |Vi| = t for 0 ≤ i ≤ 2t + 1,
0 ≤ j ≤ 2t+ 1 and i 6= j. We use vi,k to refer the k-th vertex
in Vi (0 ≤ k ≤ t − 1). To make it easier to understand the
edge set E, we first assume it is a complete graph, and then
delete edges according to the following rules:

1) Delete the edge between vi,k and vj,k for all variables
i, j, k with 0 ≤ k ≤ t−1, 0 ≤ i ≤ 2t+1, 0 ≤ j ≤ 2t+1
and bi/2c 6= bj/2c.

2) Delete the edge between v0,t−1 and v1,t−1.
3) Delete the edge between vi,k and vj,l for all variables

i, j, k, l with 2 ≤ i ≤ 2t + 1, 2 ≤ j ≤ 2t + 1, bi/2c =
bj/2c, 0 ≤ k ≤ t− 1, 0 ≤ l ≤ t− 1 and k 6= l.

4) Delete the edge between v1,k and vj,l for all variables
j, k, l with 2 ≤ j ≤ 2t+ 1, 0 ≤ k ≤ t−1, 0 ≤ l ≤ t−1
and k ≡ (l − 1) mod t.

5) Delete the edge between v1,k and vj,l for all variables
j, k, l with 2 ≤ j ≤ 2t + 1, 0 ≤ k ≤ t − 1 and l ∈
{k− k mod blog tc, k+ blog tc− k mod blog tc} where
0 ≤ l ≤ t− 1.

137

Again we fill all vertices from the sets V0, V1, . . . , V2t+1

into a (2t+2)-by-t matrix with each set Vi being the i-th row
vector, as shown in Figure 1. Hence, vi,j is the vertex in row
i and column j. We use V (x) to denote the set of vertices
x = (x1, x2, . . . , xn) has chosen. Then we use vi,k(x) = 1
(a solid circle in Figure 1) to denote that vi,k ∈ V (x), and
vi,k(x) = 0 (a hollow circle in Figure 1) otherwise.

Figure 3 demonstrates the edge deleting rules for the graph
G2(t), in which dashed lines denote that the edges are deleted.
In detail, Case 1 in Figure 3 is an example of deleting edges
that are connected to the vertices v0,0 and v1,0, according to
Rule 1 in Definition 13; Case 3 in Figure 3 is an example of
deleting edges that are connected to the vertices v2,0 and v3,0,
according to Rule 3 in Definition 13; Case 4 in Figure 3 is an
example of deleting edges that are connected to the vertices
v1,0 and v1,1, according to Rule 4 in Definition 13; and Case 5
in Figure 3 is an example of deleting edges that are connected
to the vertices v1,1 and vblog tc−1,1, according to Rule 5 in
Definition 13.

Note that according to Definition 13, the graph G2(t) has
many maximum cliques of 2t vertices, in fact, any maximal
clique that does not contain any vertex in the top two rows is a
maximum clique (note that Rule 2 in Definition 13 is different
from Rule 2 in Definition 6). Similarly, the PV function in fOPL
will guide the BILS to add vertices in the top two rows (note
that the BILS on fOPL will be less interested in the bottom 2t
rows due to Rule 3 in Definition 13). However, the clique of
the top two rows now becomes a local optimal clique, thus
the BILS on fOPL will get trapped easily. On the other hand,
due to the size of the bottom 2t rows is t times the size of
the top two rows, the FILS on fOL is more likely to discover a
maximum clique in the bottom 2t rows. Furthermore, we add
Rule 5 in Definition 13 to prevent the (1+1) RMA OPL from
escaping a local optimal clique and moving towards a global
optimal clique.

Claim 14. For the graph G2(t), if the bit string x represents
a clique, V (x) has at most two vertices in each column,
i.e. ∀k, 0 ≤ k ≤ t− 1 :

∑2t+1
i=0 vi,k(x) ≤ 2.

Proof. Due to Rule 1 in Definition 13, every vertex is con-
nected to at most one vertex in the same column.

Claim 15. For the graph G2(t), if the bit string x represents
a maximal clique, V (x) contains at least one vertex in each
column, i.e. ∀k, 0 ≤ k ≤ t − 1 :

∑2t+1
i=0 vi,k(x) ≥ 1.

Furthermore, V (x) contains at least t vertices, i.e. |V (x)| ≥ t.

Proof. Recall the rules in Definition 13, for each column k
(0 ≤ k ≤ t− 1), the vertex v0,k is connected to all vertices in
other columns. Thus V (x) will either contain some vertices
from

⋃2t+1
i=1 {vi,k} or contain the vertex v0,k. Furthermore, due

to V (x) contains at least one vertex in each column, and there
are t columns, V (x) contains at least t vertices.

Claim 16. For the graph G2(t), if the bit string x represents
a maximal clique, then for each row Vi with 2 ≤ i ≤ 2t+ 1,

V (x) contains at most one vertex in Vi, i.e., ∀i, 2 ≤ i ≤
2t+ 1 : |V (x) ∩ Vi| ≤ 1.

Proof. The claim can be induced from Rule 3 in Definition 13.

Claim 17. For any bit string x that represents a maximal
clique of the graph G2(t), if V (x) does not contain any
vertices in V0 ∪ V1, then it contains 2t vertices and is
a maximum clique. Otherwise, V (x) contains less than 2t
vertices.

Proof. Firstly, due to Claim 14, any clique can have at most
two vertices in each column, and there are t columns in the
graph, thus the maximum clique size can not be larger than 2t.
Also, according to the edge rules in Definition 13, if a maximal
clique V (x) does not contain any vertices in V0 ∪ V1, then it
must contain exactly two vertices in each column. Thus, it has
2t vertices, which is a maximum clique.

Secondly, if V (x) contains some vertices in V0 ∪ V1, x
belongs to one of the following two cases:

1) V (x) only contains vertices in V0∪V1. Therefore, it can
only contain one vertex in the last column, due to Rule 2
in Definition 13. In this case, the clique size of x will
be less than 2t.

2) V (x) also contains some vertices in
⋃2t+1

i=2 Vi. There-
fore, there exists a column k, such that V (x) contains
vertices from V0 ∪ V1 in this column, and contains
vertices from

⋃2t+1
i=2 Vi in the next column. Hence, V (x)

contains only the vertex v0,k in the column k due to
Rule 4 in Definition 13. In this case, the clique size of
x will be less than 2t.

Definition 18. For the graph G2(t) and a maximum clique
x, a section is called hard-to-escape if a) it contains blog tc
consecutive columns, that starts from a column k1 with
k1 mod blog tc = 0; and b) x contains exact two vertices in
V0 ∪ V1 from each column of this section.

Claim 19. For each hard-to-escape section in Definition 18,
if the mutation and the following local search wants to find
another clique of which the clique size is not decreased, but
has less vertices in V0 ∪ V1 in this section, then the only
way is to remove all vertices in V0 ∪ V1 in this section, and
add the same number of vertices in

⋃2t+1
i=2 Vi in this section.

Furthermore, the probability to achieve this jump is super-
polynomially close to zero.

Proof. Due to Rules 1 and 4 in Definition 13, there is no way
to achieve a small jump that only changes a subset of this
section of columns, from choosing vertices in the top two rows
to choose vertices in the bottom 2t rows, without decreasing
the clique size. Note that for each column k in this section,
there are three vertices (v0,k, v1,k and v1,(k−1) mod t) are not
adjacent to the vertices in the bottom 2t rows in the column
k.

138

V1

V2

10

V3

V4

t− 1

V2t

V2t+1

V0

...

· · ·
· · ·

· · ·

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

V5 · · · V5

V1

V2

t− 20

V3

V4

t− 1

V2t

V2t+1

V0

...

· · ·
· · ·

· · ·

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
...

1

V5

V1

V2

t− 10

V3

V4

V2t

V2t+1

V0

...

· · ·
· · ·

· · ·

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
...

1

...

2

V1

V2

1 · · ·0 blog tc − 1

V3

...

blog tc

V2t

V2t+1

V0 · · ·
· · ·
· · ·
· · ·

. . .

· · ·
· · ·

... ...

V4

V5

· · ·
· · ·

... ...

Fig. 3. Illustrating Cases 1, 3, 4 and 5 for the graph G2(t) of Definition 13.

In addition, due to Rule 5 in Definition 13, both edge
columns of this section cannot achieve a jump, from choosing
vertices in the top two rows to choose vertices in the bottom
2t rows, without decreasing the clique size.

Therefore, the only way is to remove all vertices in V0∪V1 in
this section, and add the same number of vertices in

⋃2t+1
i=2 Vi

in this section. Furthermore, due to the graph is dense, there
is no way that the mutation only flips a constant number of
bits to result in the following local search flips the remaining
O(log t) bits. Therefore, the probability of achieving this jump
to change this hard-to-escape section is super-polynomially
close to zero.

Theorem 20. For any constant λ, the (1+1) RMA OL is
expected to find a maximum clique of the graph G2(t) within
O(n2.5) fitness evaluations.

Proof sketch. Part 1. Same as the proof of Theorem 10, within
Θ(1) restarts, we expect to have a mutation that produces the
bit string 0n. Also, because we will restart the algorithm after
each λ generations, and the BILS will take at most 2n2 fitness
evaluations in each generation (see Algorithm 5), we expect
to have a mutation that does not flip any bits within O(n2)
fitness evaluations.

Part 2. From 0n, the BILS will keep adding vertices into
the current clique, and it has a probability 1/(t+ 1) to reach
a local optimum that does not contain any vertex in the top
two rows, which is a maximum clique due to Claim 17. If
we look at each column, and focus on the first vertex in the
column that the BILS will add to the current clique, there
must exist a sequence of columns C = (c1, c2, . . . , ct). In the
column c1, the BILS has a probability t/(t+1) to add a vertex
from the bottom 2t rows into the current clique. Suppose c1
successes, i.e., the BILS adds a vertex from the bottom 2t
rows in the column c1. Then, in the column c2, due to Rule 3
in Definition 13, the BILS has a probability (t−1)/t to add a
vertex from the bottom 2t rows into the current clique. Overall,
the probability that the BILS keeps adding vertices from the

bottom 2t rows for every columns in C is

t

t+ 1

t− 1

t
· · · 1

2
= 1/(t+ 1).

Therefore, if we have O(t) mutations that all produce the bit
string 0n, the BILS is expected to find a maximum clique.
Also, according to Part 1, we expect to have a mutation that
produces the bit string 0n within O(n2) fitness evaluations.
Hence, the algorithm is expected to find a maximum clique
within O(tn2) fitness evaluations, which is O(n2.5) since
n = t(2t+ 2).

Theorem 21. For the variable λ, no matter it is static,
adjusted dynamically or adaptively, the probability of the
(1+1) RMA OPL finding a maximum clique of the graph
G2(t) within a polynomial number of fitness evaluations is
super-polynomially close to zero.

Proof sketch. We prove this by showing that, from the start or
from each restart, the (1+1) RMA OPL is expected to become
trapped in a local optimal clique and take a super-polynomial
number of fitness evaluations to find a global optimal clique. In
detail, our proof consists of three parts, with each part having
a failure probability super-polynomially close to zero.

Part 1. The first clique found by the algorithm after the start
or each restart has no more than log n vertices in the bottom
2t rows with a probability super-polynomially close to one.
This is because that the mutation from 0n flips no more than
log n bits with a probability super-polynomially close to one.
Hence, either this bit string represents a clique, or the BILS
will flip some bits from ones to zeros in order to find a clique.
Therefore, part 1 holds.

Part 2. After the first clique has been found, the BILS will
keep adding vertices from the first row until there is only one
column that the current clique does not contain any vertex
in this column (this is because that the PV function in fOPL
will distinguish the neighbors of the current clique, and guide
the BILS to add a vertex from the first row into the current
clique). Therefore, with a probability super-polynomially close

139

to one, there are at most log t columns from which the first
local optimal contains vertices from the bottom 2t rows.

Part 3. Assume Part 2 has succeeded, there are t − log t
columns from which the current local optimal clique has
vertices from the top two rows. Therefore, there are ω(1)
hard-to-escape sections of Definition 18. Then, due to
Claim 19, the probability of the algorithm finding a maximum
clique within a polynomial number of fitness evaluations is
super-polynomially close to zero.

V. CONCLUSION AND FUTURE WORK

This paper provided the theoretical evidence that a small
change of the fitness function can result in a huge performance
gap in terms of finding a global optimum solution. It also
shows that the fitness function that gives the best results in
an MA on the Clique Problem is entirely instance specific. In
detail, we have formalized a (1+1) Restart Memetic Algorithm
with a Best-Improvement Local Search, and run them on two
different fitness functions, fOL and fOPL, to solve the Clique
Problem respectively. We then constructed two families of
graphs, G1 and G2, and showed that, for the first family
of graphs G1, the (1+1) RMA on the fitness function fOPL
drastically outperforms the (1+1) RMA on the fitness function
fOL, and vice versa for the second family of graphs G2.

For future work, we suggest analyzing the runtime perfor-
mance of MAs on more fitness functions to solve the same
problem, and use a dynamic or adaptive strategy that will
decide which fitness function should be used.

REFERENCES

[1] F. Alabsi and R. Naoum, “Fitness function for genetic algorithm used
in intrusion detection system,” Internal Journal of Applied Science and
Technology, vol. 2, no. 4, pp. 129–134, April 2012.

[2] M. Alfonseca, M. Cebrián, and A. Ortega, “A fitness function for com-
puter generated music using genetic algorithms,” WSEAS Transactions
on Information Science and Applications, vol. 3, no. 3, pp. 518–525,
March 2006.

[3] A. Auger and B. Doerr, Theory of Randomized Search Heuristics:
Foundations and Recent Developments. World Scientific Publishing Co.,
Inc., 2011.

[4] M. J. Dinneen, Z. Y. Lin, and K. Wei, “An intelligent self-adjusting
memetic algorithm for solving course scheduling problems,” in 3rd Inter-
national Conference on Information Science and Engineering (ICISE),
vol. 1, 2011, pp. 140–144.

[5] M. J. Dinneen and K. Wei, “A (1+1) adaptive memetic algorithm for the
maximum clique problem,” in Proceedings of Congress on Evolutionary
Computation, CEC’13, vol. 1. IEEE, June 2013, pp. 1626–1634.

[6] ——, “On the analysis of a (1+1) adaptive memetic algorithm,” in
Proceedings of Memetic Computing, MC2013. IEEE, 2013, pp. 24–31.

[7] E. Happ, D. Johannsen, C. Klein, and F. Neumann, “Rigorous analyses
of fitness-proportional selection for optimizing linear functions,” in
Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation, GECCO’08. ACM, 2008, pp. 953–960.

[8] T. Jansen, Analyzing Evolutionary Algorithms: The Computer Science
Perspective, Natural Computing Series. Springer, 2013.

[9] T. Jansen, K. A. De Jong, and I. Wegener, “On the choice of the offspring
population size in evolutionary algorithms,” Evolution Computation,
vol. 13, no. 4, pp. 413–440, 2005.

[10] T. Jansen and I. Wegener, “On the analysis of evolutionary algorithms—
A proof that crossover really can help,” Algorithmica, vol. 34, no. 1, pp.
47–66, 2002.

[11] ——, “On the analysis of a dynamic evolutionary algorithm,” Journal
of Discrete Algorithms, vol. 4, no. 1, pp. 181–199, 2006.

[12] T. Kötzing, D. Sudholt, and M. Theile, “How crossover helps in pseudo-
boolean optimization,” in Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, GECCO’11, N. Krasnogor,
Ed. ACM, 2011, pp. 989–996.

[13] F. Neri, C. Cotta, and P. Moscato, Handbook of Memetic Algorithms.
Studies in Computational Intelligence, 2012, vol. 379.

[14] F. Neumann and C. Witt, Bioinspired Computation in Combinatorial
Optimization: Algorithms and Their Computational Complexity, 1st ed.
Springer-Verlag, 2010.

[15] P. S. Oliveto, J. He, and X. Yao, “Time complexity of evolutionary
algorithms for combinatorial optimization: A decade of results,” Interna-
tional Journal of Automation and Computing, vol. 4, no. 3, pp. 281–293,
2007.

[16] E. Pitzer and M. Affenzeller, “A comprehensive survey on fitness
landscape analysis,” in Recent Advances in Intelligent Engineering
Systems, vol. 378. Springer, 2012, pp. 161–190.

[17] C. Qian, Y. Yu, and Z.-H. Zhou, “An analysis on recombination in
multi-objective evolutionary optimization,” Artificial Intelligence, vol.
204, no. 0, pp. 99–119, 2013.

[18] P. Rohlfshagen and X. Yao, “Dynamic combinatorial optimization
problems: A fitness landscape analysis,” in Metaheuristics for Dynamic
Optimization, vol. 433. Springer, 2013, pp. 79–97.

[19] F. A. Sadjadi, “Comparison of fitness scaling functions in genetic
algorithms with applications to optical processing,” in Proceeding of
SPIE, vol. 5557, 2004, pp. 356–364.

[20] T. Storch, “How randomized search heuristics find maximum cliques in
planar graphs,” in Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, GECCO’06. ACM, 2006, pp. 567–574.

[21] ——, “Finding large cliques in sparse semi-random graphs by simple
randomized search heuristics,” Theoretical Computer Science, vol. 386,
no. 12, pp. 114 – 131, 2007.

[22] D. Sudholt, “On the analysis of the (1+1) memetic algorithm,” in
Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, GECCO’06. ACM, 2006, pp. 493–500.

[23] ——, “Memetic algorithms with variable-depth search to overcome local
optima,” in Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, GECCO’08. ACM, 2008, pp. 787–794.

[24] ——, “The impact of parametrization in memetic evolutionary algo-
rithms,” Theoretical Computer Science, vol. 410, no. 26, pp. 2511–2528,
2009.

[25] D. Sudholt and C. Zarges, “Analysis of an iterated local search algorithm
for vertex coloring,” in Proceedings of the 21st International Symposium
on Algorithms and Computation (ISAAC), LNCS, vol. 6506. Springer,
2010, pp. 340–352.

[26] M. Szubert, W. Jaśkowski, P. Liskowski, and K. Krawiec, “Shaping
fitness function for evolutionary learning of game strategies,” in Pro-
ceeding of the Fifteenth Annual Conference on Genetic and Evolutionary
Computation Conference, GECCO’13. ACM, 2013, pp. 1149–1156.

[27] K. Wei, “Runtime analysis on the (1+1) memetic algorithms,” Ph.D.
dissertation, University of Auckland, 2014, to appear.

[28] K. Wei and M. J. Dinneen, “Hybridizing the dynamic mutation approach
with local searches to overcome local optima,” in Proceedings of
Congress on Evolutionary Computation, CEC’14. IEEE, July 2014,
World Congress on Computaitonal Intelligence. To appear.

[29] ——, “Runtime analysis to compare best-improvement and first-
improvement in memetic algorithms,” in Proceeding of the 16th Annual
Conference on Genetic and Evolutionary Computation Conference,
GECCO’14. ACM, July 2014, To appear.

[30] C. Witt, “Runtime analysis of the (µ + 1) EA on simple pseudo-boolean
functions,” Evolutionary Computation, vol. 14, no. 1, pp. 65–86, 2006.

140

