
Hybridizing the Dynamic Mutation Approach with Local Searches
to Overcome Local Optima

Kuai Wei and Michael J. Dinneen
Department of Computer Science, University of Auckland, Auckland, New Zealand

{kuai,mjd}@cs.auckland.ac.nz

Abstract—A Memetic Algorithm is an Evolutionary Algorithm
augmented with local searches. The dynamic mutation approach
has been studied extensively in experiments of Memetic Algo-
rithms, but only a few studies in theory. We previously defined a
metric BLOCKONES to estimate the difficulty of escaping from a
local optima, and showed that the algorithm’s ability of escaping
from a local optima, that has a large BLOCKONES, is very
important, because it dominates the time complexity of finding
a global optimal solution. In this paper, we will use the same
metric and show the benefits of hybridizing the dynamic mutation
approach with one of two local searches, best-improvement and
first-improvement. In short, this hybridization greatly enhances
the algorithm’s ability to escape from any local optima.

Keywords—memetic algorithms, clique problem, runtime anal-
ysis

I. INTRODUCTION

A Memetic Algorithm (MA) is a population-based
meta-heuristic algorithm that hybridizes Evolutionary Algo-
rithms (EAs) with local searches. This hybridization preserves
both the exploratory search ability of evolutionary algorithms
and the neighborhood search ability of local searches [1],
which has increased interests in MAs. An overview in 2011
shows the usefulness of MAs in many applications [11]. The
highlighted experimental results have verified the advantages
of MAs, and also motivate the desire for a better understanding
of MAs by using runtime analysis.

The first runtime analysis on MAs is the (1+1) MA
analyzed by Sudholt [15], in which he compared the (1+1)
MA with the (1+1) EA [5] and the randomized local search.
The term (1+1) represents that, a) the population size of parents
and children are both one, and b) an elitist selection is used,
where the next generation will be chosen from both parents
and children. Since MAs combine EAs and local searches, it
is generally believed that many theoretical findings of EAs are
also capable with MAs, for example, some studies show that
the population-based EAs are useful [20], [12], [6], [4], and
the crossover operation is essential [7], [9], [13]. There are
also some theoretical studies that are specific for MAs. For
example, Sudholt, in 2006 [14] and in 2009 [16], showed that
changing the depth of local searches or the frequency of apply-
ing local searches in MAs will reduce the performance from
polynomial to super-polynomial. In 2014, Wei and Dinneen
in [19] showed that the best local search in MAs for solving the
Clique Problem is instance specific; also in [18], they showed
that the best fitness function for MAs to solve the Clique
Problem is instance specific. Furthermore, the interaction of
mutations and local searches has attracted much attention,
which is also the focus of this paper. For example, Sudholt and

Zarges [17] analyzed the interaction of two different mutations
with a local search for Vertex Coloring in 2010; also, Dinneen
and Wei [3], in 2013, analyzed a dynamic mutation with two
different local searches on some artificially created functions.

The mutation probability is also known as the mutation
strength or the mutation step size. There are a great amount of
experimental studies show the success of using the dynamic,
adaptive, and self-adaptive mutation approaches, see a survey
in [10] for more detail. However, only a few runtime analysis
studied the dynamic mutation approach. For example, Jansen
and Wegener in 2006 [8], and Dinneen and Wei in 2013 [3]
studied the dynamic mutation approach on EAs and MAs
respectively. They both showed that the dynamic mutation
approach can outperform each of static mutation approaches on
some artificially created functions, but there also exists some
other functions that a static mutation approach outperforms
the dynamic mutation approach. We believe that the dynamic
mutation approach contributes far more in experiments than the
above runtime analyses show us. In our previous study [2],
we defined a new metric, called BLOCKONES, to estimate
the difficulty of escaping from a local optima and finding a
better solution to the Clique Problem. We also showed that the
algorithm’s ability of escaping from a local optima, that has
a large BLOCKONES, is very important. Because it dominates
the time complexity of finding a maximum clique. This paper
further investigates this metric, and we will focus on analyzing
the benefits of hybridizing the dynamic mutation approach with
different local searches.

Based on the metric BLOCKONES, our main results are:

1) Hybridizing the dynamic mutation with the First-
Improvement Local Search (FILS) enhances the al-
gorithm’s ability to escape from any local optimal so-
lution x with BLOCKONES(x) ≥ 2. Furthermore, the
magnitude of this enhancement is super-polynomial
if BLOCKONES(x) = ω(1), or even exponential if
BLOCKONES(x) = Θ(n).

2) Hybridizing the dynamic mutation with the Best-
Improvement Local Search (BILS) enhances the al-
gorithm’s ability to escape from any local optimal
solution x with BLOCKONES(x) = Ω(log logn).
Furthermore, the magnitude of this enhancement is
super-polynomial if BLOCKONES(x) = Ω(log n), or
even exponential if BLOCKONES(x) = Θ(n).

The paper is structured as follows. In Section II, we state
the (1+1) EA, and the (1+1) Dynamic Memetic Algorithm
(DMA) with two different local searches—FILS and BILS.
In Section III, we first define the metric BLOCKONES, then

74

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

mailto:kuai@cs.auckland.ac.nz?subject=1+1AMA_paper
mailto:mjd@cs.auckland.ac.nz?subject=1+1AMA_paper

analyze the upper bounds of each algorithm’s ability to escape
from a local optima and find a better solution. In Section IV,
we show that hybridizing the dynamic mutation approach with
the FILS enhances the algorithm’s ability to escape from a
local optima. In Section V, we show that hybridizing the
dynamic mutation approach with the BILS enhances the algo-
rithm’s ability to escape from a local optima. Our conclusions
and future work will be given in Section VI.

II. ALGORITHM DEFINITIONS

In this section we give basic definitions of our algorithms
and we begin with the following standard notation that will be
used throughout this paper.

1) f(n) = ω(g(n)) ↔ ∀k > 0, ∃n0, ∀n > n0, g(n) ·
k < f(n).

2) f(n) = Ω(g(n)) ↔ ∃k > 0, ∃n0, ∀n > n0, g(n) ·
k ≤ f(n).

3) f(n) = O(g(n)) ↔ ∃k > 0, ∃n0, ∀n > n0, f(n) ≤
g(n) · k.

4) f(n) = Θ(g(n)) ↔ ∃k1 > 0, ∃k2 > 0, ∃n0, ∀n >
n0, g(n) · k1 ≤ f(n) ≤ g(n) · k2.

5) limn→∞ (1 + 1/n)
n

= e.

A. The Clique Problem

A clique of a graph is a subset of vertices from this graph
such that every two vertices in the subset are connected by an
edge. The Clique Problem is the NP-hard problem of finding
the largest size of a clique in a graph. In this section, we will
formalize a fitness function fOL for the Clique Problem.

For a given graph G = (V = {v1, v2, ..., vn}, E), a bit
string x = (x1, x2, ..., xn) ∈ {0, 1}n defines a clique potential
solution (an induced subgraph) where xi = 1 represents that
vertex vi is selected. We say x represents a clique if each
selected vertex in x is connected to all other selected vertices
in x, i.e. {(vi, vj) | xi = xj = 1 and i 6= j} ⊆ E.

Definition 1. The fitness function fOL (ONEMAX and
LackEdges) is defined as follows:

fOL(x) =

{
ONEMAX(x), if x represents a clique,
−LackEdges(x), otherwise,

where ONEMAX(x) is the number of ones in x; and
LackEdges(x) is the number of missing edges such that the
subgraph becomes a clique.

Example 2. For a given graph G displayed below,
fOL(1101) = 3 because x = (1101) is a clique consists of
vertices 1, 2 and 4. fOL(1111) = −1 because we need to add
at least one edge (1, 3).

1 4

2 3

A maximum clique for a graph G is a global optimal
solution x that maximizes fOL(x).

B. Algorithms to be analyzed

The algorithms we will analyze on the Clique Problem
are the (1+1) DMA with two local searches, FILS and BILS,
respectively, and the (1+1) EA [5] (a version that does not
include the dynamic mutation approach nor the local search).
Note these algorithms all try to maximize the function f =
fOL. The time complexity analysis in this paper only looks
at the number of evaluations of this fitness function fOL. The
algorithms are stated as below:

Algorithm 3. (1+1) EA for functions f : {0, 1}n → R:

1) Initialize the mutation probability p = 1/n.
2) Choose x ∈ {0, 1}n uniformly at random.
3) y := x. Flip every bit in y with probability p.
4) If f(y) > f(x) then x := y.
5) Stop if any stopping criterion is met; otherwise, go

to to step 3.

The (1+1) Dynamic Memetic Algorithm (DMA) dynam-
ically adjust the mutation probability in every generation. A
template of the generic algorithm is as follows:

Algorithm 4. (1+1) DMA for functions f : {0, 1}n → R

1) Initialize the mutation probability p := 1/n.
2) Choose x ∈ {0, 1}n uniformly at random.
3) y := x. Flip every bit in y with probability p.
4) z := LocalSearch(y).
5) p := Dynamic(p).
6) If f(z) > f(x) then x := z.
7) Stop if any stopping criterion is met; otherwise, go

to step 3.

We do not yet specify any stopping criterion since we will
analyze both algorithms’ ability of escaping from all local
optimal solutions until it finds a global optimal solution. For
the (1+1) DMA, the function Dynamic will be stated below
and the function LocalSearch will be stated in the next
Section.

The mutation in the DMA is mainly used for making a
jump in the search space when the DMA has been stagnated at
a local optimal solution. Meanwhile, the mutation probability
p = 1/n means that the expected number of flipped bits is
one. So the Dynamic function in step 5 is chosen as below:

p =

{
1
n , if p = 1

2 ,

min
(
2p, 12

)
, otherwise.

Note that this dynamic mutation approach has also been
studied for EAs in [8].

C. Two local searches

The local search in MAs can have many variations. We
will analyze a First-improvement Local Search (FILS) and a
Best-improvement Local Search (BILS) in this paper.

Algorithm 5. FILS for a given string x =∈ {0, 1}n:

1) Generate a random permutation Per of length n.
2) i := 0, NoImproveCount := 0.

75

3) y := flip(x,Per[i]).
4) If f(y) > f(x) then x := y, NoImproveCount :=

0.
5) NoImproveCount := NoImproveCount + 1.
6) i := (i+ 1) mod n.
7) Stop and return x if NoImproveCount = n.

Otherwise, go to step 3.

Note flip(x,Per[i]) denotes that the Per[i]-th bit in x
is flipped, and Per[i] is the i-th number in the permutation
Per.

Example 6. Suppose the string x = (0, 0, 0, 0), and Per =
(3, 2, 1, 4). So the FILS will first check a possible flipping
for the third bit in x to get y = (0, 0, 1, 0). If f(y) > f(x)
then x = y. This check sequence follows Per in a cyclic
fashion. That is, after checking the fourth bit in x, the FILS
will restart checking the third bit in x. In this example, the
checking sequence is 3, 2, 1, 4, 3, 2, · · · .

Also note that the FILS moves to the first neighbor that
improves the fitness value, so we have:

1) If the bit string after the mutation represents a clique,
the FILS will take at most n fitness evaluations to flip
bits from zeros to ones to find a maximal clique. Then
it will take another n fitness evaluations to find out
that there is no better neighbors, hence, stop.

2) If the bit string after the mutation does not represent a
clique, the FILS will take at most n fitness evaluations
to check all n bits to find a clique. During this time,
for each bit, if its value is one, and also flipping this
bit from one to zero will improve the fitness value,
then the FILS will execute the flip. Hence, the FILS
will find a clique within n fitness evaluations.

Therefore, the FILS will stop on the fitness functions fOL
within 3n fitness evaluations.

Unlike the FILS that moves to its neighbor as soon as
the fitness value improves, the BILS evaluates all n neighbors
before moving to one neighbor.

Algorithm 7. BILS for a given string x ∈ {0, 1}n:

1) BestNeighborSet :={
y | f(y) > f(x), Hamming(x, y) = 1, and
∀z with Hamming(x, z) = 1→ f(y) ≥ f(z)

}
.

2) Stop and return x if BestNeighborSet = ∅.
3) x is randomly choosen from BestNeighborSet.
4) Go to step 1.

Note that Hamming(x, y) is the number of different bits
between x and y. Also note that the BILS will evaluate all n
neighbors and then move to one of the best neighbor, thus we
have:

1) If the bit string after the mutation represents a clique,
the BILS will keep flipping bits from zeros to ones
until it finds a local optimal clique, which takes at
most n2 fitness evaluations.

2) If the bit string after the mutation does not represent
a clique, the BILS will keep flipping bits from ones

to zeros until it finds a clique, which takes at most
n2 fitness evaluations.

Therefore, the BILS will stop on the fitness functions fOL
within 2n2 fitness evaluations.

In the rest of this paper, we will use (1+1) DMA FILS
to denote the algorithm (1+1) DMA using FILS as the local
search, and use (1+1) DMA BILS to denote the algorithm
(1+1) DMA using BILS as the local search.

III. NEW METRIC ON STAGNATION ANALYSIS

Now we analyze how these algorithms cope with stag-
nations when they have been trapped into a local optimal
clique. We first restate the metric BLOCKONES to measure
the difficulty of escaping from a local optimal clique. Then
we show that this metric will tell us that each algorithm has
found a maximum clique with overwhelming high probability,
which can be applied as a stop criterion for engineering design.

Definition 8. For a given clique x = (x1, x2, . . . , xn) ∈
{0, 1}n in graph G, function BLOCKONES(x) is formalized
as:

BLOCKONES(x) = min
(y1,y2,...,yn)∈Clique>x

(
n∑
i=1

xiyi

)
where Clique>x is the set of all cliques in G with clique size
greater than the clique size of x, i.e. fOL(y) > fOL(x) for all
y ∈ Clique>x. Note, the complement of yi is yi = 1− yi.

So BLOCKONES(x) is the minimal number, such that at
least BLOCKONES(x) number of ones in x are blocking x to
find a larger clique in G. So we have BLOCKONES(x) = 0
if the clique of x is a subset of a larger clique. Also 0 <
BLOCKONES(x) < n/2 if x is a local optimal clique.

Theorem 9. If the analyzed algorithms are stagnated at a local
optimal solution x, where t = BLOCKONES(x), the expected
number of fitness evaluations to skip out of this local optimal
solution and find a larger clique is bounded by

1) O
(
n2t+1

)
for the (1+1) EA.

2) O
(
nt+2e2t log n

)
for the (1+1) DMA FILS.

3) O
(
n2te2t logn

t2t+1

)
for the (1+1) DMA BILS.

Proof. Since t = BLOCKONES(x), there must exist a larger
clique y such that fOL(y) = fOL(x) + 1 and

∑n
i=1 yixi =

t. Now we look at the expected fitness evaluations that each
algorithm will find this y. In order to find the y, let U1 and U2

be two sets of bits that each algorithm needs to flip from ones
to zeros and flip from zeros to ones, respectively, i.e. U1 =
{i | xi = 1 and yi = 0} and U2 = {j | xj = 0 and yj = 1}.
Furthermore, we know |U1| = t and |U2| = t+ 1.

Part 1. For the (1+1) EA.
The mutation needs to flip all bits in U2 from zeros to ones,
flip all bits in U1 from ones to zeros, and keep all other bits un-
flipped. This probability is p|U1|+|U2|(1−p)n−|U1|−|U2|, which
is Θ

(
(1/n)2t+1

)
when p = 1/n, |U1| = t and |U2| = t + 1.

Thus the upper bound is proved.

76

Part 2. For the (1+1) DMA FILS.
Let the mutation flip all bits in U2 from zeros to ones, and
do not flip any other bits. The probability of this mutation
occurring is pt+1(1− p)n−2t−1. Note that after this mutation,
the new bit string does not represent a clique. Hence, the
function LackEdges in the fitness function will guide the
FILS to flip some bits from ones to zeros in order to find a
clique. Also note that any vertex, that is represented by a bit in
U1, is not adjacent to some vertices, that are represented by the
bits in U2. Therefore, after the mutation, flipping any bit in U1

from one to zero will improve the fitness value. Furthermore,
the sequence of the bits that will be flipped is determined by
the sequence of the random permutation array. Therefore, if
the FILS generates a permutation array, that will guide the
FILS to check all bits in U1 before checking any bit in U2,
then the FILS will flip all bits in U1 from ones to zeros, hence,
it finds y. The success probability to get this permutation array
is (1/t)t+1 (recall that |U1| = t and |U2| = t+ 1).

Overall, the success probability of the (1+1) DMA FILS
escaping from x and finding a larger clique is at least
pt+1(1− p)n−2t−1(1/t)t+1. When t/n ≤ p < 2t/n, we know
that pt+1 ≥ (tn)t+1 and (1 − p)n−2t−1 > (1 − 2t

n)n−2t−1 =
Ω
(
e−2t(n−2t−1)/n

)
. Therefore, the success probability of the

(1+1) DMA FILS escaping from x and finding a larger clique
is Ω

(
n−t−1e−2t

)
. Besides, the dynamic mutation approach

will have one mutation probability p, with t/n ≤ p < 2t/n, in
every dlog ne mutations; also, after each mutation, the FILS
will take at most 3n fitness evaluations to find a local optimal
solution (see Section II-C).

Part 3. For the (1+1) DMA BILS.
Let the mutation flip t bits in U2 from zeros to ones, flip (t−2)
bits in U1 from ones to zeros, and do not flip any other bits
(note that |U1| = t and |U2| = t+ 1). The success probability
of this mutation occurring is

(
t+1
1

)(
t
2

)
p2t−2 (1− p)n−2t+2.

When t/n ≤ p < 2t/n, we know that p2t−2 ≥ (tn)2t−2

and (1 − p)n−2t+2 > (1 − 2t
n)n−2t+2 = Ω

(
e−2t(n−2t+2)/n

)
.

Therefore, this probability is Ω
(
t2t+1n−2t+2e−2t

)
. Then, after

this mutation, the bit string will have two bits in U1 and
t bits in U2 to be ones, while all other bits will be zeros.
Furthermore, we claim that the BILS will have a success
probability of at least 1/4 to flip the two bits in U1 from ones
to zeros (we will show this in the next paragraph). Hence, it
will get a clique that has the same clique size as x, and that
is a sub-clique of y. Therefore, the BILS will at least flip one
more bit from zero to one, hence, it escapes from x and find
a larger clique (this larger clique may not be y).

Overall, within O
(
t−2t−1n2t−2e2t

)
mutations, where the

mutation probability p satisfies t/n ≤ p < 2t/n, the (1+1)
DMA BILS is expected to escape from x and find a larger
clique. Again, the dynamic mutation approach will have one
mutation with t/n ≤ p < 2t/n in every dlog ne mutations;
also, after each mutation, the BILS will take at most 2n2 fitness
evaluations to find a local optimal solution (see Section II-C).
Therefore, the upper bound for the (1+1) DMA BILS is
proved.

Now we show that if the mutation has flipped t bits in U2

from zeros to ones, (t− 2) bits in U1 from ones to zeros, and
keep all other bits un-flipped, then the BILS has a probability
of at least 1/4 that flips the other two bits in U1 from ones

to zeros to find a sub-clique of y. Note that to illustrate our
proof easily, we treat each bit in the bit string as a vertex,
for example, we will use “x1 is not adjacent to x2” to denote
that the vertex that is represented by x1 is not adjacent to the
vertex that is represented by x2.

Let xi and xj be the two bits in U1 that are not flipped
from ones to zeros by the mutation. Let U t2 be the t bits in
U2 that have been flipped from zeros to ones by the mutation.
Then, we know that xi is adjacent to xj because they are two
vertices in the clique of x, and all bits in U t2 are adjacent to
each other because they are the vertices in the clique of y.

Furthermore, we claim that xi and xj are not adjacent to
some vertices in U t2, respectively. Otherwise, if any vertex,
suppose xi, is adjacent to all vertices in U t2, then we can get a
larger clique by flipping the bit xj from one to zero, and this
larger clique is obtained by flipping (t−1) bits in x from ones
to zeros, which is conflicted with t = BLOCKONES(x).

Therefore, after the mutation, the BILS will find out that
flipping the bit xi or xj from one to zero will improve the fit-
ness value by reducing the value of the function LackEdges.
Meanwhile, it will also find out that flipping some bits in U t2
will also improve the fitness value. Then, the result may be:

1) If any vertex of xi or xj is not adjacent to three
or more vertices in U t2, then the BILS will first flip
the xi or xj from one to zero because that is the
best neighbor of the current bit string. Note that any
vertex in U t2 is not adjacent to at most two vertices
(xi and xj).

2) If there is only one vertex in {xi, xj} that is not
adjacent to two vertices in U t2, then there is at most
one vertex in U t2 that is not adjacent to both the
vertices xi and xj . Therefore, the BILS will have at
least 1/2 chance that will first flip a bit from {xi, xj}
from one to zero.

3) If both the vertices of xi and xj are not adjacent to
two vertices in U t2, then there is at most two vertices
in U t2 that are not adjacent to both the vertices xi and
xj . Therefore, the BILS still has at least 1/2 chance
that will first flip a bit from {xi, xj} from one to
zero.

4) If both the vertices of xi and xj are not adjacent to
only one vertex in U t2, respectively. First of all, we
claim that, the vertex in U t2 that is not adjacent to
xi, and the vertex in U t2 that is not adjacent to xj ,
cannot be the same vertex. Otherwise, we can obtain
a clique by flipping that bit in U t2 from one to zero,
where this clique has a larger clique size than x and
this clique only flips (t − 2) bits in x from ones to
zeros, which is conflicted with t = BLOCKONES(x).
Therefore, since xi and xj are not adjacent to two
different vertices in U t2, respectively, the BILS still
has at least 1/2 chance that will first flip a bit from
{xi, xj} from one to zero.

Suppose the BILS first flips a bit of xi or xj from one to
zero, which has a chance greater than 1/2 as shown above.
Then, in the new bit string, the only bit in U1, that is one,
is not adjacent to at least one vertex in U t2 (we have shown
above that both xi and xj are not adjacent to some vertices
in U t2). Thus, the BILS will have at least 1/2 chance to flip

77

the other bit in U1 from one to zero. Overall, the BILS will
have at least 1/4 probability to flip the two bits in U1 from
ones to zeros.

Note to evaluate the function BLOCKONES(x) requires one
to compute all cliques in the graph, which is too expensive.
However, we know that BLOCKONES(x) ≤ ONEMAX(x),
and we will motivate the metric of BLOCKONES(x) by the
corollary below.

Corollary 10. If the analyzed algorithms are stagnated at a
local optimal solution x for the following number of fitness
evaluations, then with overwhelming probability, this x is a
maximum clique of the graph. let tm = ONEMAX(x), we have:

1) n2tm+2 for the (1+1) EA.
2) ntm+3e2tm log n for the (1+1) DMA FILS.
3) n2tm+1e2tm logn

t2tm+1
m

for the (1+1) DMA BILS.

Proof. If any of the above algorithms is expected to escape
from x and find a larger clique in O(g(n)) fitness evaluations
with overwhelming probability, then the probability that
this event will happen within n · g(n) fitness evaluations is
exponentially close to one. That is to say, if this algorithm is
stagnated at a local optimal solution for more than n · g(n)
fitness evaluations, then with overwhelming probability
it will not find any larger clique in the future. Hence,
with overwhelming probability x is a maximum clique,
due to the fact that the algorithm is expected to find a
maximum clique within O(nn) mutations with the mutation
probability p = 1/n. Therefore, according to Definition 8,
BLOCKONES(x) ≤ tm, and because of Theorem 9, the
corollary is proved.

IV. BENEFIT OF HYBRIDIZING THE DYNAMIC MUTATION
WITH THE FILS

In our previous study [2], we showed that the ability
of jumping out of a local optimal clique x with a large
BLOCKONES(x) is very important. This is because of that it
is the most time consuming part and dominates the time com-
plexity of finding a maximum clique. This finding brings us a
new question—what is the benefit of hybridizing the dynamic
mutation approach with a local search in terms of escaping a
local optimal clique x with a large BLOCKONES(x)?

In this section, we will compare the (1+1) DMA FILS
with the (1+1) EA, in order to show the benefit of hybridizing
the dynamic mutation with the FILS. We will show that
this hybridization enhances the algorithm’s ability to escape
from any local optimal solution x with BLOCKONES(x) ≥ 2.
Furthermore, the magnitude of this enhancement is super-
polynomial if BLOCKONES(x) = ω(1), or even exponential
if BLOCKONES(x) = Θ(n).

Lemma 11. Suppose both the (1+1) DMA FILS and the (1+1)
EA have been stagnated at a local optimal clique x, and there
exists another clique y with fOL(y) ≥ fOL(x). Let U1 be the
set of all bits that need to be flipped from ones to zeros in
order to find y, i.e. U1 = {i | xi = 1, yi = 0 and 1 ≤ i ≤ n}.
Then, the ratio of a) the probability that the (1+1) DMA FILS
finds the bit string y by one mutation and the following FILS,

and b) the probability that the (1+1) EA finds the bit string y
by one mutation, is Ω

(
n|U1|

)
.

Proof. Let U2 be the set of all bits that need to be flipped
from zeros to ones in order to find y, i.e. U2 = {i | xi =
0, yi = 1 and 1 ≤ i ≤ n}, then we have |U2| ≥ |U1|. Hence,
to jump from x to y, we need to flip all bits in U1 from ones
to zeros, and flip all bits in U2 from zeros to ones. Now we
define ProbEA(x→y) and ProbDMA_FILS(x→y) as below:

Part 1. Let ProbEA(x→y) be the probability of the (1+1) EA
jumping from x to y using one mutation. Then we have:

ProbEA(x→y) = p|U1|p|U2|(1− p)n−|U1|−|U2|.

This probability is Θ
(

1
n|U1|+|U2|

)
when p = 1/n.

Part 2. Let ProbDMA_FILS(x→y) be the probability of the (1+1)
DMA FILS jumping from x to y using one mutation and
the following FILS. We measure the way that satisfies the
following two conditions:

1) The mutation will flip all bits in U2 from zeros to
ones and keep all other bits un-flipped. The success
probability of this mutation occurring is p|U2|(1 −
p)n−|U2|.

2) The permutation array will guide the FILS to check
all bits in U1 before checking any bit in U2. The
success probability of the random permutation array

satisfying this condition is
(

1
|U1|

)|U2|
.

Therefore, in this way, the mutation will create a bit string
that does not represent a clique, then the FILS will flip all bits
in U1 from ones to zeros, hence, find the bit string y. And
the success probability is p|U2|(1− p)n−|U2|(1

|U1|)
|U2|. Recall

that the dynamic mutation approach will double the mutation
probability until it reaches 1/2, therefore, in every dlog ne
mutations, we will have one mutation that has the mutation
probability p′ with |U1|

n ≤ p
′ < 2|U1|

n . Hence, we have:

ProbDMA_FILS(x→y) > p′|U2|(1− p′)n−|U2|
(

1

|U1|

)|U2|

,

where p′|U2| ≥ (|U1|/n)|U2| and (1 − p′)n−|U2| > (1 −
2|U1|/n)n−|U2|. Thus, this probability Ω

(
1

n|U2|
1

c|U1|

)
for a

constant c ≥ 1.

Overall, we have:

ProbDMA_FILS(x→y)

ProbEA(x→y)
= Ω

((n
c

)|U1|
)
.

Note that Lemma 11 restricts that both the (1+1) EA and
the (1+1) DMA FILS need to directly jump from x to y
without visiting any other intermediate cliques. However, the
algorithms may jump to some other intermediate cliques first,
and eventually move to y. Now we consider both situations
(directly jumping and via some intermediate cliques) and show
that the (1+1) DMA FILS is expected to escape from x and
find a larger clique faster than the (1+1) EA.

Theorem 12. Suppose both the (1+1) DMA FILS and the
(1+1) EA have been stagnated at a local optimal clique x

78

with t = BLOCKONES(x). Then the ratio of a) the probability
that the (1+1) DMA FILS escapes from x and finds a larger
clique, and b) the probability that the (1+1) EA escapes from
x and finds a larger clique, is Ω (nt/ct) for a constant c.

Proof. To prove the theorem, we show that if both algo-
rithms have been stagnated at x, then for any clique y such
that y is the first clique that the (1+1) EA will find with
fOL(y) > fOL(x) (escape from x), the probability of the (1+1)
DMA FILS finding the y is larger than the probability of
the (1+1) EA finding the y. Furthermore, the ratio of these
probabilities is Ω (nt/ct).

In order to find the y, let U1 and U2 be two sets of bits that
need to be flipped from ones to zeros and from zeros to ones
respectively, i.e. U1 = {i | xi = 1, yi = 0 and 1 ≤ i ≤ n} and
U2 = {i | xi = 0, yi = 1 and 1 ≤ i ≤ n}. Then we know that
|U2| > |U1| ≥ t.

Since the (1+1) EA only accepts a new solution if its fitness
is greater than or equal to the current solution, it can only
escape from the clique x to the clique y by two ways: (a)
directly mutating from x to y; or (b) mutating multiple times
to different cliques with the same clique size as x, and then
mutating to the clique y. Note y is the first solution that both
algorithms have found, and that is better than x.

Proof of case (a), by directly mutating from x to y.

According to Lemma 11, and because |U1| ≥ t, this ratio
is Ω (nt/ct) for a constant c ≥ 1.

Proof of case (b), by mutating multiple times to different
cliques with the same clique size as x, and then mutating to
the clique y.

Let Pathλ be an arbitrary λ-length path x1 → x2 →
· · · → xλ−1 → xλ, where x1 = x, xλ = y, λ ≥ 2 and each
xi with 1 ≤ i ≤ λ − 1 is a bit string with fOL(x) = fOL(xi).
We prove this part by comparing the probability of the (1+1)
DMA FILS jumping along this Pathλ to reach y and the
probability of the (1+1) EA jumping along this Pathλ to reach
y, and showing that the ratio of these two probabilities supports
our theorem.

For any jump from xi to xi+1 (1 ≤ i ≤ λ− 1) in Pathλ,
let xij denote the j-th bit of the bit string xi, and let Ti be the
set of bits that need to be flipped from ones to zeros in order to
find xi+1, i.e. Ti = {j | xij = 1, xi+1

j = 0 and 1 ≤ j ≤ n}. So
according to Lemma 11, the ratio of a) the probability that the
(1+1) DMA FILS finds xi+1 from xi, and b) the probability
that the (1+1) EA finds xi+1 from xi is Ω

(
n|Ti|/c|Ti|

)
for a

constant c ≥ 1.

Overall, the ratio of a) the probability that the (1+1)
DMA FILS jumps along Pathλ to find the y, and b) the
probability that the (1+1) EA jumps along Pathλ to find the
y is:

Ω

(
λ−1∏
i=1

(n
c

)|Ti|
)
.

Recall that U1 is the set of bits that need to be flipped
from ones to zeros in order to find the y from the x, thus∑λ−1
i=1 |Ti| ≥ |U1| ≥ t, thus the overall ratio is greater than

Ω(nt/ct).

Corollary 13. Suppose both the (1+1) DMA FILS and the
(1+1) EA have been stagnated at a local optimal clique x
with t = BLOCKONES(x). Let EEA(x) be the expected fitness
evaluations of the (1+1) EA escaping from x and find a larger
clique, and let EDMA_FILS(x) be the expected fitness evaluations
of the (1+1) DMA FILS escaping from x and find a larger
clique. Then EEA(x) is larger than EDMA_FILS(x) when t ≥ 2.
Furthermore, the ratio of the EEA(x) and the EDMA_FILS(x) is:

1) Exponentially large if t = Θ(n).
2) Super-polynomially large if t = ω(1).
3) Polynomially large if t = Θ(1) and t ≥ 2.

Proof. According to Theorem 12, the probability of the (1+1)
DMA FILS escaping from x and finding a larger clique is
Ω (nt/ct) times the probability of the (1+1) EA escaping from
x and finding a larger clique. However, note that the dynamic
mutation approach will take dlog ne mutations to iterate the
mutation probability between 1/n and 1/2, and each mutation
is followed by one FILS that will take at most 3n fitness
evaluations. Therefore, the overall ratio is Ω

(
nt

ctn logn

)
,

which is greater than one when t ≥ 2, super-polynomial when
t = ω(1) and exponential when t = Θ(1).

V. BENEFIT OF HYBRIDIZING THE DYNAMIC MUTATION
WITH THE BILS

In this section, we will compare the (1+1) DMA BILS
with the (1+1) EA, in order to show the benefit of hybridizing
the dynamic mutation with the BILS. We will show that
this hybridization enhances the algorithm’s ability to escape
from any local optimal solution x with BLOCKONES(x) =
Ω(log logn). Furthermore, the magnitude of this enhancement
is super-polynomial if BLOCKONES(x) = Ω(logn), or even
exponential if BLOCKONES(x) = Θ(n).

Lemma 14. Suppose both the (1+1) DMA BILS and the (1+1)
EA have been stagnated at a local optimal clique x, and there
exists another clique y with fOL(y) ≥ fOL(x). Let U1 be the
set of all bits that need to be flipped from ones to zeros in
order to find y, i.e. U1 = {i | xi = 1, yi = 0 and 1 ≤ i ≤ n}.
Then, the ratio of a) the probability that the (1+1) DMA BILS
finds the bit string y by one mutation and the following BILS,
and b) the probability that the (1+1) EA finds the bit string y
by one mutation, is Ω

(
n2|U1||U1|

)
.

Proof. Let U2 be the set of all bits that need to be flipped
from zeros to ones in order to find y, i.e. U2 = {i | xi =
0, yi = 1 and 1 ≤ i ≤ n}, then we have |U2| ≥ |U1|. Hence,
to jump from x to y, we need to flip all bits in U1 from ones
to zeros, and flip all bits in U2 from zeros to ones. Now we
define ProbEA(x→y) and ProbDMA_BILS(x→y) as below:

Part 1. Let ProbEA(x→y) be the probability of the (1+1) EA
jumping from x to y using one mutation. Then we have:

ProbEA(x→y) = p|U1|p|U2|(1− p)n−|U1|−|U2|.

This probability is Θ
(

1
n|U1|+|U2|

)
when p = 1/n.

79

Part 2. Let ProbDMA_BILS(x→y) be the probability of the (1+1)
DMA BILS jumping from x to y using one mutation and
the following BILS. We measure the way that satisfies the
following two conditions:

1) The mutation will flip all bits in U2 from zeros to
ones, flip (|U1|−2) bits in U1 from ones to zeros, and
keep all other bits un-flipped. The success probability
of this mutation occurring is

(|U1|
2

)
p|U1|+|U2|−2(1 −

p)n−|U1|−|U2|+2.
2) The BILS will find out that the bit string after the

mutation does not represent a clique, and flip the two
bits in U1 from ones to zeros, hence, it finds the y.
The success probability of achieving this is at least
1/4 (see the proof of Part 3 in Theorem 9).

Therefore, the success probability is
(|U1|

2

)
p|U1|+|U2|−2(1 −

p)n−|U1|−|U2|+2. Recall that the dynamic mutation approach
will double the mutation probability until it reaches 1/2.
Hence, in every dlog ne mutations, we will have one mutation
that has the mutation probability p′ with |U1|

n ≤ p′ < 2|U1|
n .

So we have:

ProbDMA_BILS(x→y) >

(
|U1|

2

)
p′|U1|+|U2|−2(1− p′)n−|U1|−|U2|+2,

which is Ω
(
|U1||U1|+|U2|

n|U1|+|U2|−2
1

c|U1|

)
for a constant c > 1.

Overall, we have:

ProbDMA_BILS(x→y)

ProbEA(x→y)
= Ω

(
n2|U1||U1|+|U2|c−|U1|

)
= Ω

(
n2|U1||U1|

)
.

Note that Lemma 14 restricts that both the (1+1) EA and
the (1+1) DMA BILS need to directly jump from x to y
without visiting any other intermediate cliques. However, the
algorithms may jump to some other intermediate cliques first,
and eventually move to y. Now we consider both situations
and show that the (1+1) DMA BILS is expected to escape
from x and find a larger clique faster than the (1+1) EA when
BLOCKONES(x) = ω(1).

Theorem 15. Suppose both the (1+1) DMA BILS and the
(1+1) EA have been stagnated at a local optimal clique x with
t = BLOCKONES(x). Then, the ratio of a) the probability that
the (1+1) DMA BILS escapes from x and finds a larger clique,
and b) the probability that the (1+1) EA escapes from x and
finds a larger clique, is super-polynomial if t = Ω(log n), or
is exponential if t = Θ(n).

Proof. To prove the theorem, we show that if both algo-
rithms have been stagnated at x, then for any clique y such
that y is the first clique that the (1+1) EA will find with
fOL(y) > fOL(x) (escape from x), the probability of the (1+1)
DMA BILS finding the y is larger than the probability of
the (1+1) EA finding the y. Furthermore, the ratio of these
probabilities is super-polynomial if t = Ω(log n).

In order to find the y, let U1 and U2 be two sets of bits that
need to be flipped from ones to zeros and from zeros to ones,
respectively, i.e. U1 = {i | xi = 1, yi = 0 and 1 ≤ i ≤ n} and

U2 = {i | xi = 0, yi = 1 and 1 ≤ i ≤ n}. Then we know that
|U2| > |U1| ≥ t.

Since the (1+1) EA only accepts a new solution if its fitness
is greater than or equal to the current solution, it can only
escape from the clique x to the clique y by two ways: (a)
directly mutating from x to y; or (b) mutating multiple times
to different cliques with the same clique size as x, and then
mutating to the clique y. Note y is the first solution that both
algorithms have found, and that is better than x.

Proof of case (a), by directly mutating from x to y.

According to Lemma 14, and because |U1| ≥ t, this ratio
is Ω

(
n2tt

)
. Clearly this ratio is exponential if t = Θ(n). Fur-

thermore, we claim that it is super-polynomial if t = Ω(log n).
This is because that when n approaches infinite, there exists a
constant c, such that t > log(n/c). Then we have:

tt =
(
2log t

)t
= 2t·log t > 2log(n/c)·log log(n/c)

= 2log((n/c)
log log(n/c)) = (n/c)log log(n/c),

which is super-polynomial.

Proof of case (b), by mutating multiple times to different
cliques with the same clique size as x, and then mutating to
the clique y.

Let Pathλ be an arbitrary λ-length path x1 → x2 →
· · · → xλ−1 → xλ, where x1 = x, xλ = y, λ ≥ 2 and each
xi with 1 ≤ i ≤ λ − 1 is a bit string with fOL(x) = fOL(xi).
We prove this part by comparing the probability of the (1+1)
DMA BILS jumping along this Pathλ to reach y and the
probability of the (1+1) EA jumping along this Pathλ to reach
y, and showing that the ratio of these two probabilities supports
our theorem.

For any jump from xi to xi+1 (1 ≤ i ≤ λ− 1) in Pathλ,
let xij denote the j-th bit of the bit string xi, and let Ti be the
set of bits that need to be flipped from ones to zeros in order to
find xi+1, i.e. Ti = {j | xij = 1, xi+1

j = 0 and 1 ≤ j ≤ n}. So
according to Lemma 14, the ratio of a) the probability that the
(1+1) DMA BILS finds xi+1 from xi, and b) the probability
that the (1+1) EA finds xi+1 from xi is Ω

(
n2|Ti||Ti|

)
.

Overall, the ratio of a) the probability that the (1+1)
DMA FILS jumps along Pathλ to find the y, and b) the
probability that the (1+1) EA jumps along Pathλ to find the
y is:

Ω

(
n2λ−2

λ−1∏
i=1

|Ti||Ti|

)
.

Note that if λ = ω(1), this ratio is super-polynomial.
Therefore, we only show that, in the case of λ = Θ(1), this
ratio is super-polynomial if t = Ω(log n), or even exponential
if t = Θ(n). Recall that U1 is the set of bits that need to be
flipped from ones to zeros in order to find the y from the x,
thus

∑λ−1
i=1 |Ti| ≥ |U1| ≥ t. Therefore, since we only consider

the case of λ = Θ(1), there must exist at least one Ti with
Ti = Θ(t). Thus, |Ti||Ti| is exponential if t = Θ(n), and is
super-polynomial if t = Ω(logn) (in case (a), we showed tt

is super-polynomial if t = Ω(log n)).

Corollary 16. Suppose both the (1+1) DMA BILS and the
(1+1) EA have been stagnated at a local optimal clique x

80

with t = BLOCKONES(x). Let EEA(x) be the expected fitness
evaluations of the (1+1) EA escaping from x and find a larger
clique, and let EDMA_BILS(x) be the expected fitness evaluations
of the (1+1) DMA BILS escaping from x and find a larger
clique. Then EEA(x) is larger than EDMA_BILS(x) when t =
Ω(log logn). Furthermore, the ratio of the EEA(x) and the
EDMA_BILS(x) is super-polynomially large if t = Ω(log n).

Proof. Note that the BILS will take at most 2n2 fitness
evaluations to find a local optimal clique, and the dynamic
mutation approach will take dlog ne mutations to iterate the
mutation probability from 1/n to 1/2. Therefore, the benefit
of the (1+1) DMA BILS will be downgraded by a factor of
n2 log n.

When t = Ω(log n), the ratio of the probabilities in The-
orem 15 is super-polynomial, which is still super-polynomial
after dividing by a factor of n2 log n.

When t = Ω(log log n), to show that EEA(x) will be larger
than EDMA_BILS(x), we need to prove that the ratio of the
probabilities in Theorem 15 is ω

(
n2 log n

)
. Recall the proof

of both cases (a) and (b) for Theorem 15, the ratios of the
probabilities are both Ω

(
n2tt

)
, so we only need to show that

tt = ω(log n) when t = Ω(log log n). Since t = Ω(log log n),
when n approaches infinite, there exists a constant c such that
t > log log(n/c). Then we have:

tt =
(
2log t

)t
= 2t·log t > 2log log(n/c)·log log log(n/c)

= 2log((log(n/c))
log log log(n/c)) = (log(n/c))

log log log(n/c)

= ω(log n).

VI. CONCLUSIONS AND FUTURE WORK

This paper is a further investigation based on our pre-
vious study in [2]. We focus on analyzing the benefits of
hybridizing the dynamic mutation approach with two differ-
ent local searches, best-improvement and first-improvement,
respectively. We showed that this hybridization enhances the
Memetic Algorithm’s ability to escape from a local optima
and find a better solution. In detail, based on the metric
BLOCKONES (minimum number of ones that are blocking each
algorithm to find a larger clique), for any local optimal clique
x with t = BLOCKONES(x), we showed that:

1) Hybridizing the dynamic mutation with the FILS
enhances the algorithm’s ability to escape from x
if t ≥ 2. Furthermore, the magnitude of this en-
hancement is super-polynomial if t = ω(1), or even
exponential if t = Θ(n).

2) Hybridizing the dynamic mutation with the BILS
enhances the algorithm’s ability to escape from x if
t = Ω(log log n). Furthermore, the magnitude of this
enhancement is super-polynomial if t = Ω(log n), or
even exponential if t = Θ(n).

A next step to investigate in the future is to find tight upper
bounds or the lower bounds for the (1+1) DMA FILS and the
(1+1) DMA BILS to escape from a local optima. Hopefully,
that study will tell us if the the (1+1) DMA FILS is more
suitable for escaping from local optimal solutions.

REFERENCES

[1] E. K. Burke and D. J. Landa-Silva, “The design of memetic algorithms
for scheduling and timetabling problems,” in Recent Advances in
Memetic Algorithms, Studies in Fuzziness and Soft Computing, W. H.
N. Krasnogor and J. Smith, Eds. Springer, 2004, vol. 166, pp. 289–312.

[2] M. J. Dinneen and K. Wei, “A (1+1) adaptive memetic algorithm for the
maximum clique problem,” in Proceedings of Congress on Evolutionary
Computation, CEC’13, vol. 1. IEEE, June 2013, pp. 1626–1634.

[3] ——, “On the analysis of a (1+1) adaptive memetic algorithm,” in
Proceedings of Memetic Computing, MC2013. IEEE, 2013, pp. 24–31.

[4] B. Doerr and M. Kunnemann, “How the (1+λ) evolutionary algorithm
optimizes linear functions,” in Proceeding of the Fifteenth Annual
Conference on Genetic and Evolutionary Computation Conference,
GECCO’13. ACM, 2013, pp. 1589–1596.

[5] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1)
evolutionary algorithm,” Theoretical Computer Science, vol. 276, pp.
51–81, 2002.

[6] T. Jansen, K. A. De Jong, and I. Wegener, “On the choice of the
offspring population size in evolutionary algorithms,” Evolution Com-
putation, vol. 13, no. 4, pp. 413–440, 2005.

[7] T. Jansen and I. Wegener, “On the analysis of evolutionary algorithms—
A proof that crossover really can help,” Algorithmica, vol. 34, no. 1,
pp. 47–66, 2002.

[8] ——, “On the analysis of a dynamic evolutionary algorithm,” Journal
of Discrete Algorithms, vol. 4, no. 1, pp. 181–199, 2006.

[9] T. Kötzing, D. Sudholt, and M. Theile, “How crossover helps in pseudo-
boolean optimization,” in Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, GECCO’11, N. Krasnogor,
Ed. ACM, 2011, pp. 989–996.

[10] O. Kramer, “Evolutionary self-adaptation: a survey of operators and
strategy parameters,” Evolutionary Intelligence, vol. 3, pp. 51–65,
August 2010.

[11] F. Neri, C. Cotta, and P. Moscato, Handbook of Memetic Algorithms.
Studies in Computational Intelligence, 2012, vol. 379.

[12] A. Q. Nguyen, A. M. Sutton, and F. Neumann, “Population size matters:
Rigorous runtime results for maximizing the hypervolume indicator,”
in Proceeding of the Fifteenth Annual Conference on Genetic and
Evolutionary Computation Conference, GECCO’13. ACM, 2013, pp.
1613–1620.

[13] C. Qian, Y. Yu, and Z.-H. Zhou, “An analysis on recombination in
multi-objective evolutionary optimization,” Artificial Intelligence, vol.
204, no. 0, pp. 99–119, 2013.

[14] D. Sudholt, “Local search in evolutionary algorithms: The impact of
the local search frequency,” Algorithms and Computation, vol. 4288,
pp. 359–368, 2006.

[15] ——, “On the analysis of the (1+1) memetic algorithm,” in Proceedings
of the 8th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO’06. ACM, 2006, pp. 493–500.

[16] ——, “The impact of parametrization in memetic evolutionary algo-
rithms,” Theoretical Computer Science, vol. 410, no. 26, pp. 2511–2528,
2009.

[17] D. Sudholt and C. Zarges, “Analysis of an iterated local search algorithm
for vertex coloring,” in Proceedings of the 21st International Symposium
on Algorithms and Computation (ISAAC), LNCS, vol. 6506. Springer,
2010, pp. 340–352.

[18] K. Wei and M. J. Dinneen, “Runtime analysis comparison of two
fitness functions on a memetic algorithm for the clique problem,” in
Proceedings of Congress on Evolutionary Computation, CEC’14. IEEE,
July 2014, World Congress on Computaitonal Intelligence. To appear.

[19] ——, “Runtime analysis to compare best-improvement and first-
improvement in memetic algorithms,” in Proceeding of the 16th Annual
Conference on Genetic and Evolutionary Computation Conference,
GECCO’14. ACM, July 2014, To appear.

[20] C. Witt, “Runtime analysis of the (µ + 1) EA on simple pseudo-boolean
functions,” Evolutionary Computation, vol. 14, no. 1, pp. 65–86, 2006.

81

