
A New Grouping Genetic Algorithm for the MapReduce Placement
Problem in Cloud Computing

Xiaoyong Xu and Maolin Tang

Abstract— MapReduce is a computation model for processing
large data sets in parallel on large clusters of machines, in
a reliable, fault-tolerant manner. A MapReduce computation
is broken down into a number of map tasks and reduce
tasks, which are performed by so called mappers and reducers,
respectively. The placement of the mappers and reducers on
the machines directly affects the performance and cost of
the MapReduce computation. From the computational point
of view, the mappers/reducers placement problem is a gen-
eration of the classical bin packing problem, which is NP-
complete. Thus, in this paper we propose a new grouping
genetic algorithm for the mappers/reducers placement problem
in cloud computing. Compared with the original one, our
grouping genetic algorithm uses an innovative coding scheme
and also eliminates the inversion operator which is an essential
operator in the original grouping genetic algorithm. The new
grouping genetic algorithm is evaluated by experiments and the
experimental results show that it is much more efficient than
four popular algorithms for the problem, including the original
grouping genetic algorithm.

I. INTRODUCTION

MapReduce is a highly-popular programming model for
big data processing, which has been widely applied to
many commercial and scientific applications, such as data
mining, bioinformatics, machine learning and web indexing.
MapReduce has the capability of processing petabytes of data
in a single job through parallelizing the job on a large-scale
cluster of computing nodes.

Unlike in a traditional cluster, MapReduce is operated
in a different way in cloud computing. Once an end user
submits its MapReduce jobs, a dedicated cluster of virtual
machines (VMs), rented from an Infrastructure-as-a-Service
(IaaS) provider like Amazon EC2, is generated instantly, and
then the jobs start running on the cluster. Once the jobs are
completed, the cluster is dismissed and the end user pays for
the usage of the VMs.

A MapReduce job is executed by a set of mappers and
reducers. Mappers and reducers are respectively used to
execute the map tasks and reduce tasks in a MapReduce
job. Both of them are called workers. In the rest part of
the paper, without specific instruction, the workers indicate
the mappers and reducers. When executing different jobs
submitted by an end user, the workers probably have different
demands for the resources like CPU, memory and so on. For
example, some workers may have higher demands for CPU
when running WordCount jobs while some workers may have
higher demands for memory when executing Terasort jobs.

Xiaoyong Xu and Maolin Tang are with the School of Electrical Engineer-
ing and Computer Science, Queensland University of Technology, Brisbane,
Australia 4000 (email: {x21.xu, m.tang}@qut.edu.au).

These workers need to be placed on VMs, such that they can
acquire the resources provided by VMs to execute their jobs.
An inappropriate worker placement usually leads to a poor
match for the resource demands of the workers. Placing too
many workers on the same VM probably results in resource
competition, thus leading to performance degradation. In
contrast, placing too few workers on the same VM lowers
the resource utilization although the resource demands of the
workers are met. However, most current works on the re-
source provision [1] [2] for MapReduce have not considered
the worker placement.

Then, a new problem named Mapper/Reducer Placement
Problem (MRPP) is raised and needs to be addressed.
The objective of MRPP is to place all the workers for a
MapReduce computation on the VMs, such that the costs
of the VMs are minimized while the resource demands of
the workers are met. MRPP can be seen as a type of the bin
packing problem (BPP). But, compared with the classic BPP,
MRPP has three special features: (1) multiple types of VMs
(bins) with different costs are available to load the workers
(items); (2) there are multiple resource constraints on the
worker placement; (3) multiple workers probably have the
same resource demands, since they apply the same operations
on the input with the similar size. Thus, MRPP can be taken
as a multi-constraint BPP with variable bin size.

Clearly, MRPP is NP-hard, since it is a generalization of
the BPP, which has been proven to be NP-complete [3]. Some
heuristics [4] [5] [6] [7] have been proposed to solve multiple
variants of the BPP. Recently, the genetic algorithms (GAs)
including the ordering GA (OGA) [7] and the grouping
GAs (GGAs) [8] [9] [10] have been introduced to solve the
problems due to their ability of searching global optimums.
However, MRPP-like problems have rarely been studied.

Therefore, in this paper we studies MRPP, a new problem
of the MapReduce in cloud computing, and proposes a new
GGA to solve it. Compared with the original GGA, our
GGA uses an innovative coding scheme that can significantly
reduce the search space and a knowledge-based crossover
that can use domain-specific knowledge to enhance its ex-
ploitation capacity. In addition, the inversion operator which
is an essential operator in the original GGA is eliminated
from our GGA. Furthermore, we also provide a flexible
way of constructing MRPP instances with known optimal
solutions, which can be used to test the quality of solutions.
Finally, we evaluate the performance of five algorithms
including two popular heuristics, a representative OGA, the
original GGA and our new GGA on solution quality and
computation time.

1601

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

The rest of the paper is organized as follows. Section II
discusses the related work, Section III formulates the prob-
lem, Section IV describes the new GGA, Section V shows
the way to construct MRPP instances with known optimal
solutions, Section VI presents the evaluation and Section VII
concludes the study.

II. RELATED WORK

MRPP can be seen as a generalization of the BPP, an NP-
complete problem [3]. Several greedy algorithms have been
proposed to solve the BPP and its variants. For instance,
in [4] and [5] several variants of the first-fit-decreasing
(FFD) algorithm were proposed to address a multi-constraint
BBP. In these works, several ways to calculate the surrogate
weights were investigated. In addition, Kang and Park [6]
presented an iterative FFD (IFFD) especially for the variable
sized BPP. Besides these greedy algorithms, the work [7]
proposed a set-covering heuristic (SCH) for the variable
sized BPP. Through the comparative study of SCH and other
greedy algorithms, it was proven that SCH had the best
performance on solution quality.

Recently, GAs [7] [9] [10] were introduced to solve the
problems. Compared with the above mentioned heuristics,
GAs have the ability of searching global optimums. In term
of coding schemes, they are divided into two classes. The
first class is OGA where the individuals are encoded as an
ordered list of items. A typical example is the GA developed
by Haouari and Serairi [7], which was used to address the
variable sized BPP. In this GA, they introduced an acyclic
digraph to compute the shortest path as the fitness value.
However the calculation of fitness values is computation-
intensive, as it has to enumerate all possible paths in the
acyclic digraph, and the number of paths will increase
exponentially as the problem size increases.

Another class is GGA where the individuals are encoded
as a number of item groups. Falkenauer [8] firstly proposed
a GGA to solve BPP. The GGA adopted a coding scheme
in which the items in the groups were represented by their
identities rather than their types. Thus, when using the coding
scheme to MRPP, it will result in a large search space as there
will be a so-called redundant representation problem, which
will be discussed in Section IV.A. Moreover, it adopted a
special genetic operator called inversion to help the crossover
operator select different combination of groups to exchange
between two parents. In addition, Iima and Yakawa [9] and
Wilcox et al. [10] respectively modified the original GGA
and adopted it to solve the BPP with the same bin size.
However, since there are multiple VM types (or bin sizes) in
MRPP, the GGAs proposed in [9] [10] are hardly applicable
to MRPP.

To the best of our knowledge, few works have studied
MRPP, thus a new GGA will be proposed to solve it in this
paper.

III. PROBLEM FORMULATION

When a set of jobs are submitted by an end user concur-
rently, a cluster of VMs needs to be generated to execute

the jobs. Assume that, the set of workers to execute the
jobs is W = {w1, w2, ...wn}, and the ith worker wi has the
requirement rih for the hth resource. rih can be estimated
through using a profiling tool to compact the upper bounds
of the resource consumption of the workers from the past
job running or the sample tests. In this work, two resources,
CPU (h = 1) and memory (h = 2) are considered, while
other resources like I/O will be discussed in the future work.
Moreover, K VM types are available. For the VM of type k
(k = 1, 2, ...,K), the capacity of the hth resource is denoted
as Rkh, and the cost for renting this VM per hour is Ck.
Note that, K, Rkh and Ck are all constants. Assume that
each type of VMs has an infinite amount. Additionally there
exists at least one VM type that has enough resource capacity
to load any worker in W .

We give the following definitions:
Definition 3.1: A placement pattern is a combination of

workers placed on one VM. Let Wj be the jth placement
pattern, and Wj ⊂ W; let k(Wj) be the type of the
cheapest VM (denoted as V(Wj)) being able to provide
enough resources to meet the demands of all the workers in
Wj . Then, the placement pattern Wj represents that all the
workers in Wj are placed on the VM V(Wj) of type k(Wj).
Moreover, V(Wj) cannot load any worker not in Wj .

Definition 3.2: The placement pattern Wj is feasible if
and only if there exists at least one VM type k∗, such that∑

∀wi∈Wj
rih ≤ Rk∗h, h = 1, 2.

Then, MRPP is formulated as follows: having known K
types of VMs with infinite amounts, given a set of workers
W , the objective of MRPP is to find a worker placement
solution

P = {Wj |j = 1, 2, ...,m}
which minimizes

Z(P) =
m∑
j=1

Ck(Wj) (1)

subject to

Wj is a feasible placement pattern , ∀Wj ∈ P (2)

Wj ∩Wj′ = ∅, j �= j
′

(3)
m⋃
j=1

Wj =W (4)

m ∈ N
+ (5)

In the above formulation, m is a variable, representing the
number of the placement patterns in P . The first constraint
indicates that the total resource demands of the workers
cannot exceed the capacities of the VMs on which these
workers are placed. Note that, although not all workers
start running concurrently, there is an overlap between the
execution. Therefore, a VM should satisfy the total resource
demands of the workers on this VM, even they do not start
together. The second constraint means that each worker only
can be allocated to a single VM. The third constraint denotes
that all the workers should be placed on the VMs.

1602

IV. A NEW GROUPING GENETIC ALGORITHM

In order to solve MRPP efficiently, we propose a new
GGA in which a new coding scheme and a knowledge-based
crossover are applied.

A. The Coding

In MRPP, multiple workers probably have the same re-
source demands, and it is defined that the workers with
the same resource demands are on the same type. Then,
a set of workers W = {w1, w2, ..., wn} is divided into D
worker types. For the workers of type d (d = 1, 2, ..., D),
they all have the same demands rdh for the hth resource.
Additionally, let d(wi) be the type of the worker wi.

Next, we will describe the coding scheme in our GGA.
Firstly, consider a worker placement solution P = {Wj |j =
1, 2, ...,m}, for any placement pattern Wj in P , it is en-
coded as a super set of worker types, called group, g =
{d(wi)|∀wi ∈ Wj}. Then, P is encoded as a set of groups
G = {g1, g2, ..., gm}, and gq is the jth group in G. We take
G as an individual in the population G of our GGA. Note that
there is no sequence in the set of groups unlike the original
GGA [8].

By using our coding scheme, an individual G probably
represents a large number of worker placement solutions,
as a number of workers can be on the same type, and
multiple combinations of workers could be mapped to the
same set of worker types. For example, having known that
W = {w1, w2, ..., w8}, d ∈ {1, 2, 3}, w1 and w2 are on type
1, w3 and w4 are on type 2, w5, w6, w7 and w8 are on type
3, and an individual G is

{{1, 2}, {1, 3, 3}, {2, 3, 3}}
The group g1 = {1, 2} represents a combination of one
worker of type 1 and a worker of type 2; g2 = {1, 3, 3}
represents a combination of one worker of type 1, two
workers of type 3; g3 = {2, 3, 3} represents a combination
of one worker of type 2 and two workers of type 3. Since
there are respectively two workers of type 1 and 2, four
different placement patterns, including {w1, w3}, {w1, w4},
{w2, w3} and {w2, w4}, are encoded as the same group
g1; similarly, there are respectively 12 different placement
patterns encoded as the same group g2 and g3. Consequently,
24(= A2

2A
2
2C

2
4C

2
2) different worker placement solutions in

total can be encoded the same individual G.
Therefore, by using our coding scheme, the search space

of our GGA is greatly reduced. By contrast, in the original
GGA [8], the elements in each group are represented by
unique identities, an individual just represents one worker
placement solution, thus the search space for the original
GGA could be very large. In addition, by using our coding
scheme, there is no sequence of the groups, the inversion
operator which is an essential genetic operator in the original
GGA will not be considered in our GGA, which makes our
GGA simpler.

B. Fitness Function

If we take Eq. (1) as the fitness function, a needle-in-a-
haystack problem arises, which means the fitness function
lacks the capacity of guiding the algorithm in the search [8],
because a very small number of optimal solutions probably
are lost in a large number of sub-optimal solutions yielding
the same cost.

To overcome this problem, we define a new fitness func-
tion by Eq. (6),

F (G) = Z(G) + cmin

(
1− f(G)∑

∀Go∈G f(Go)

)
(6)

where cmin is the basic unit of VM price, Go is an individual
and f(G) =

∑m
j=1 fj where fj is the fill ratio of the VM

V(Wj) which loads all workers in Wj , an indicator of the
resource utilization of V(Wj), and fj is expressed as

fj =

2∑
h=1

(∑
∀wi∈Wj

rih

Rk(Wj)h

)α

(7)

where Rk(Wj)h is the capacity of the hth resource of the VM
V(Wj) 1 < α ≤ 2, here we follow the suggestion in [8] and
set α = 2. After applying the new fitness function, within
the individuals with same Z(G), the well-filled one will be
preferred.

Next, we will propose a theorem proving that the solution
achieves optimal when F (G) is minimized. According to this
theorem, our GGA will try to find the individual G with the
minimal F (G), instead of that with the minimal Z(G).

Theorem 4.1: If F (G) is minimized, the individual G
achieves optimal.

Proof: Consider an individual G and the minimal value
Zmin of Z(G), obviously,

G achieves optimal ⇔ Z(G) = Zmin

Rewrite Eq. (6), let F (G) = Z(G) + ε(G), where ε(G) =

cmin

(
1− f(G)∑

∀Go∈G f(Go)

)
and 0 < ε(G) < cmin.

In addition, let G∗ be the individual minimizing F (G).
Assume that there is an individual G

′
(G

′ �= G∗), Z(G
′
) <

Z(G∗). Obviously, Z(G
′
) ≤ Z(G∗) − cmin and F (G

′
) ≥

F (G∗). Then, ε(G
′
) ≥ ε(G∗)+cmin, of course, it is not true.

Thus, G
′

does not exist; in other words, Z(G∗) = Zmin, then
the individual P ∗ is proven to be optimal.

C. Initial Population

We generate an initial population G containing S indi-
viduals by randomly placing all workers in W on the VMs
of all possible types. The detail process of generating the
initial population is described in Algorithm 1: at iteration
q (q = 1, 2, ...,K), and let k = q, we select a subset of
workers Wk from W , all of which can be placed on the VM
of type k without exceeding the resource capacities, then we
apply a random FFD to place Wk on the VMs of type k. In
detail, the random FFD firstly calculates the surrogate weight
li for each worker wi ∈Wk. Here we use the expression of
the surrogate weight in [5], and li =

∑2
h=1 ahrih where

1603

ah =
∑n

i rih
nRkh

. Then, Wk is sorted by the surrogate weight
in a descending order. Unlike the traditional FFD preferring
to place the worker with the largest surrogate weight, the
random FFD will randomly place the largest but different a
workers with probability proportional to (1−b)a (0 < b < 1)
on the VMs of type k. Note that, these a workers have the
distinct surrogate weights. The rest part of random FFD is the
same as the traditional one. After that, the worker placement
patterns generated by the random FFD will be encoded as a
set of groups Gqk. We repeat above steps, until all workers in
W are assigned by the random FFD. Next, we will combine
all groups generated at iteration q into an individual Gq ,
and insert it into the population G. Then, we will check if
the population size achieves S, if not, we will go to next
iteration. Specially, if G < S after K iterations completes,
the iteration will roll back the first one.

Algorithm 1 The initial population generation procedure
1: Input:W;
2: Output: G;
3: G ← ∅;
4: for q = 1 to K do
5: k = q, W̃ ←W;
6: Wk = {wi ∈ W̃ |rih ≤ Rkhh = 1, 2};
7: apply the random FFD to place the set Wk of the

workers on the VMs of type k, generating a set of
groups Gqk;

8: W̃ ← W̃ −Wk;
9: if W̃ �= ∅ then

10: k = k + 1, go to 6;
11: end if
12: Gq =

⋃K
k=q Gqk;

13: G ← G ∪Gq;
14: if |G| == S then
15: return G;
16: end if
17: end for
18: if Size(G) < S then
19: go to 4;
20: end if

D. The Crossover
Our GGA adopts a knowledge-based crossover to enhance

its exploitation capacity. The knowledge-based crossover can
discover and use the good placement patterns which can
make best use of resources. The good placement patterns
are discovered using a VM-centric placement procedure and
FFD. The crossover consists of three steps.

The first step is insertion. Fig. 1 describes an example of
insertion. In this step, several groups are randomly selected
from a parent G2, and then inserted into a group set denoted
as t1. Meanwhile, another parent G1 is firstly sorted by
fill ratio in an ascending order, and the elements of G1

also occurred in t1 are removed by order, then the groups
including the removed elements are inserted to another group
set t2 while the rest groups are copied to t1.

{{1,2,2,3},{2,3,4},{1,2,4,4}}

{{1,3,4,4},{2,3},{1,2,4),{2,2}}

{{2,3},{2,2},{1,2,4,4}}

{2,3,4},{1,2,2,3},{1,2,4,4}

{{4},{1,3}}t2

sort and delete

insert

insert

insert

G2

G1

t1

Fig. 1. Step 1: insertion

{{4},{1,3}}

{1,3},{4}{2,2},{2,3},{1,2,4,4}

{{2,3},{2,2},{1,2,4,4}}
sort by fill ratio in an

ascending order

t1 t2
sort by fill ratio in a
descending order

g1 g2

{{2,3},{2,3},{1,2,4,4}} {{1,2},{4}}
g1' g2'

after replacement

t1 t2

Fig. 2. Step 2: replacement

The second step is replacement. Fig. 2 describes an
example of replacement. Firstly, t1 and t2 are sorted by
fill ratio in ascending and descending orders respectively.
After that, the first group in t1 is replaced by the first three
groups in t2 one by one. In detail, the process of replacing
a group (g1) in t1 by a group (g2) in t2 is described as
follows: firstly, let W1,2 = W1 ∪ W2, where W1 and W2

respectively represent the workers in one possible placement
pattern decoded from g1 and g2 (recall that a group could
represent multiple placement patterns), then let k1 be the type
of the cheapest VM being able to load W1. Then, we place
W1,2 on the VMs of type k1 by the VM-centric placement
procedure (Algorithm 2). In this procedure, a VM will be
used to load the worker with the largest surrogate weight in
the current workers to be placed, until no more worker can
be placed on this VM, then a new VM will be used. After
applying Algorithm 2, a set of groups G

′
will be generated,

if the fill ratio of g1 increases, g1 will be replaced by the
first group g

′

1 in G
′

while g2 will be replaced by the rest
groups of G

′
; otherwise, they will not. Once the first group

in t1 completes the replacement, t2 will be sorted again, and
then the next group in t1 will repeat the previous procedures,
until all groups in t1 are replaced.

The last step is combining. As shown in Fig. 3, by
regarding the worker set decoded from each group in t1 and
t2 as a large worker, we apply the steps 3-13 in Algorithm 1
to place the large workers, but replacing the random FFD in
Step 7 by a traditional FFD which adopts the same way to
calculate the surrogate weight as the random FFD. Finally a
set of individuals are returned. Then we choose the individual
with the minimal fitness value in the set as the child. Through
combining the groups, we not only reduce the number of
groups in the child but also let the child inherit good building
blocks from parents.

1604

Algorithm 2 The VM-centric placement procedure
1: Input: W1,2, k1;
2: Output: G

′
;

3: q = 1;
4: G

′ ← ∅;
5: while W1,2 �= ∅ do
6: g

′

q ← ∅;
7: select a new VM of type k1, denoted as Vk1

;
8: while at least one worker in W1,2 is able to be placed

on Vk1
do

9: place a worker wi from W1,2 with the largest surro-
gate weight li on Vk1

where li =
∑2

h=1 ahrihsk1h,
sk1h is the rest space for the hth resource on Vk1

;
10: insert the type of wi into g

′

q ;
11: W1,2 ←W1,2 − wi ;
12: end while
13: G

′ ← G
′ ∪ g′

q and q = q + 1 ;
14: end while

combine

t1 {{2,3},{2,3},{1,2,4,4}} {{1,2},{4}}t2

{{2,3,1,2},{1,2,4,4},{2,3,4}}child

combine

Fig. 3. Step 3: combining

E. The Mutation

Firstly, several groups are randomly generated from an
individual G, and all workers decoded from these groups are
moved to a temporary set W ′

. In addition, randomly select a
VM type k

′
from all K VM types. Then, apply the steps from

6 to 12 in Algorithm 1, where W = W ′
and q = k

′
. After

that, a set of groups are generated. Combine these groups
with the rest groups in G, and then an mutated individual
comes out.

F. The Outline of Algorithm

With regard to the selection operator, the tournament
selection will be used in our GGA. The outline of our GGA is
presented in Algorithm 3, where Fmin and Gbest respectively
denote the minimal fitness value and the best individual
found by the algorithm, Ratecro and Ratemut respectively
denote the crossover rate and mutation rate.

V. CONSTRUCTION OF TEST INSTANCES WITH KNOWN
OPTIMAL SOLUTIONS

In order to evaluate the quality of solutions for comparison,
it is necessary to know the optimal solutions of the test
instances. Here we present a procedure to construct test
instances with known optimal solutions. Using this pro-
cedure, we can also construct test problems with various
characteristics.

Algorithm 3 The grouping genetic algorithm for MRPP
1: Input: an initial population G containing S individuals;
2: Output: Gbest;
3: generate an initial population G containing S individuals;
4: while the termination condition is not true do
5: the population of next generation, G∗ ← ∅;
6: find the individual P

′
with the minimal fitness value

from G;
7: if F (P

′
) < Fmin then

8: Fmin = F (G
′
);

9: Gbest = G
′
;

10: end if
11: for times = 1 to S do
12: select two parents G1 and G2 from G using selec-

tion operator;
13: apply crossover operator with the probability of

Ratecro on G1 and G2, generate a child G∗;
14: apply mutation operator with the probability of

Ratemut on G∗;
15: G∗ ← G∗ ∪ P ∗;
16: end for
17: sort G by the fitness values of the individuals in a

descending order, copy the first
(|G|−|G∗|) individuals

in G to G∗;
18: G ← G∗;
19: end while

Firstly, consider a problem (denoted as P1), which mini-
mizes

Z =

K∑
k=1

xkCk (8)

subject to
K∑

k=1

Rkhxk ≥ Ro
h, h = 1, 2 (9)

xk ∈ N (10)

where Ro
h is a constant, denoting the demands for the hth

resource.
P1 can be solved exactly by a MIP solver like CPLEX in a

short time, since the number of variations, K, in the problem
is very limited. Let X∗ = (x∗1, x

∗
2, ..., x

∗
K) be an optimal

solution to P1, which indicates the required number of each
type VM to satisfy the resource demands Ro

h (h = 1, 2)
with the minimal costs. Additionally, let Z∗ be the optimal
solution value and Z∗ =

∑K
k=1 x

∗
kCk.

Next, we present a theorem as follows:
Theorem 5.1: Consider a MRPP instance, denoted as P ,

its input is a set of workers W , and the total resource
demands of the workers in W satisfy Eq. (11).∑

∀wi∈W
rih = Ro

h, h = 1, 2 (11)

Let P be a solution to P , and P = {Wj |j = 1, 2, ...,m}.
Then, if Eq. (12) is satisfied, P is the optimal solution to P ,

1605

unless it is infeasible.

|Wk| = x∗k, k = 1, 2, ...,K (12)

Wk is the set of all placement patterns on the VM of type k,
Wk = {Wj |k(Wj) = k, j = 1, 2, ...,m}, and

⋃K
k=1Wk =⋃m

j=1Wj = P .
Proof: If Eq. (12) is satisfied, according to Eq. (2),

the objective value of P , Z(P) =
∑K

k=1 |Wk|Ck =∑K
k=1 x

∗
kCk = Z∗. Obviously, Z∗, the optimal solution

value to P1, is the lower bound of P . Therefore, once P
is feasible, it must be an optimal solution to P .

Then, we give the procedure of constructing a MRPP
instance P with known optimal solutions (Algorithm 4). In
steps 1-4, we solves the problem P1 and get the optimal
solution X∗ = (x∗1, x

∗
2, ..., x

∗
K). Then, in steps 5-7, we

respectively determine the numbers of worker types and
workers, Dk and nk, for each VM type k (k = 1, 2, ...,K),
and it is ensured that

∑K
k=1Dk = D and

∑K
k=1 nk = n. In

steps 8-12, we construct a set of feasible placement patterns
on the VM of type k,Wk (k = 1, 2, ...,K), satisfying |Wk| =
x∗k; meanwhile, the total resource demands of the workers
in the placement pattern amount to the resource capacity
of the VM of type k; moreover, Dk worker types and nk
workers are involved in Wk. In step 13, a feasible worker
placement solution P = {W1,W2, ...,WK} is constructed,
and the problem input is W = {W1,W2, ...,WK}. Finally,
in order to ensure Eq. (11) is satisfied, we apply step 14 to
update W .

Consequently, a MRPP instance P , which has the input
W satisfying Eq. (11) and a feasible solution P , has been
constructed; meanwhile, Eq. (12) is satisfied. Then, according
to Theorem 5.1, P is the optimal solution to P and Z∗ is
the optimal solution value.

VI. EVALUATION

In this section, we will evaluate the performance of our
new GGA (denoted as GGA-II) and compare it with IFFD
[4] which adopts several ways given by [6] to calculate the
surrogate weights, SCH [7], a representative OGA [7] and
the original GGA (denoted as GGA) [8] on solution quality
and computation time. Note that we will respectively run
IFFD with different methods given by [6] for calculating
surrogate weight, and compare the best results of IFFD with
the results of the other algorithms. All these algorithms are
coded in C#, and the integer programming problem involved
in Section V is solved by CPLEX 12.5.1.0. The algorithms
are implemented on a laptop with 4 cores (2.90 GHz Intel
Core i7-3520M CPU) and 8 GB RAM.

The parameter settings for the three GAs are presented in
Table I. In particular, for the parameter settings in OGA and
GGA, we respectively follow the suggestions in [7] and [8],
while for the parameter settings in GGA-II, we just choose
the best ones from several tests due to the time limitation,
but fine parameter tuning will be conduct in the future.
Furthermore, both the tournament sizes in GGA and GGA-II
are two. The termination condition of all the three GAs is

Algorithm 4 The procedure of constructing a MRPP instance
with known optimal solutions

1: Input: Ro
1, Ro

2, n, D;
2: Output: W , P ;
3: ∀Wk ← ∅, k = 1, 2, ...,K;
4: solve the problem P1 using CPLEX, get the optimal

solution X∗ = {x∗1, x∗2, ..., x∗K};
5: D = {D1, D2..., DK} where Dk =
x∗k/

∑K+1
k=1 x

∗
k�

(k = 1, 2, ...,K);
6: randomly select a number Dk > 1 from D, set Dk =
Dk − 1, repeat this action until

∑K+1
k=1 Dk = D;

7: apply similar actions from steps 6-7 to construct N =
{n1, n2, ..., nK} and ensure

∑K+1
k=1 nk = n ;

8: for k = 1 to K do
9: if x∗k = 0, set k = k + 1, then go to the next loop;

10: construct a set of placement patterns, Wk1, Wk2,
..., Wkx∗

k
, and for the qth placement pattern Wkq

(q = 1, 2, ..., x∗k),
∑

wi∈Wkj
rih = Rkh, meanwhile,

the total numbers of worker types and workers in these
placement patterns respectively are Dk and nk;

11: set Wk = {Wk1,Wk2, ...,Wkx∗
k
} ;

12: end for
13: P ← {W1,W2, ...,WK}, W ← {W1, ...,WK};
14: randomly choose a worker type d∗ involved in W ,

assume that the number of workers of type d∗ is n∗,
rd∗h = (

∑n∗

i=1 rih − (
∑K

k=1 x
∗
krkh −Ro

h))/n
∗, then the

demand for the hth resource of any worker of type d∗

is updated to rd∗h, if rd∗h ≤ 0, repeat this step until
rd∗h > 0;

that the number of consecutive non-improving generations
before stopping is up to 50. Moreover, for the maximal time
of solving the set-covering problem in SCH, we follow the
configuration in [7], setting it to 30 seconds.

TABLE I
THE PARAMETER SETTINGS FOR THE GAS

Parameters OGA GGA GGA-II
Population size 200 100 30
Crossover rate 0.9 0.5 0.9
Mutation rate 0.9 0.33 0.1

A. Test Instances

Firstly, eight VM types from Amazon EC2 (shown in Table
II) are involved in the test instances. Note that the amounts of
the hth resource a type k VM possesses, shown in Table II, is
not equal to its capacity Rkh, but equal to Rkh+R

o
kh, where

Ro
kh is a constant, representing the hth resource consumption

of an idle k type VM. We set Ro
k1 = 0 and Ro

k2 = 0.3, where
k = 1, 2, ...,K.

Then, we construct a group of MRPP instances to test the
algorithms by Algorithm 4. All instances are divided into
three sets:

• Set 1. The test instances are generated by Algorithm
4 in which the parameters are configured as follows:

1606

TABLE II
THE VM TYPES FROM AMAZON EC2

VM Type CPU (cores) Memory (GB) Price ($/hour)
m1 small 1 1.7 0.06

m1 medium 2 3.75 0.12
m1 large 4 7.5 0.24
m1 xlarge 8 14.7 0.48
m2 xlarge 6.5 17.1 0.41
m2 2xlarge 13 34.2 0.82
c1 medium 5 1.7 0.145
c1 xlarge 20 7 0.58

Ro
1 = 400, Ro

2 = 800, D ∈ {16, 24, 32}, n ∈
{150, 200, 250, 300}, and their optimal solution values
are 21.675.

• Set 2. The test instances are generated by Algorithm 4 in
which the parameters are configured as follows: Ro

1 =
Ro

2 = 600, D ∈ {16, 24, 32}, n ∈ {150, 200, 250, 300},
and their optimal solution values are 23.455.

• Set 3. The test instances are generated by Algo-
rithm 4 in which the parameters are configured as
follows:Ro

1 = 800, Ro
2 = 400, D ∈ {16, 24, 32},

n ∈ {200, 250, 300, 350}, and their optimal solution
values are 25.27.

B. Results and Discussion

We repeat running SCH, OGA, GGA and GGA-II on each
test instances 10 times, while running IFFD just once since
it is not stochastic.

Table III presents the gaps between the solution values
found by the algorithms and the optimal solution values (Z∗).
The gap can be expressed by Z−Z∗

Z∗ ×100%, especially when
the gap is 0, it means the solution is optimal. In Table III,
the column D means the number of worker types and n
represents the number of workers; the columns Min and Avg
respectively stand for the minimal and average gaps.

As seen from Table III, the solutions obtained by GGA-II
are much better than those found by the other algorithms.
GGA-II is the only algorithm being able to find the optimal
solutions and the gaps of the solutions found by GGA-II are
much lower than those by the other algorithms. In addition,
the quality of solutions found by GGA-II changes slightly as
the problem size varies, showing the stability of GGA-II.

16 18 20 22 24 26 28 30 32
0

50

100

150

200

250

Number of Worker Types

C
om

pu
ta

tio
n

T
im

e
(s

)

IFFD
SCH
OGA
GGA
GGA−II

Fig. 4. The variations in the average computation time of the algorithms
as the number of worker types increases

Fig. 4 displays the variations in the average computation
time of the five algorithms as the number D of worker types
increases from 16 to 32, when n is fixed at 150 and the test
instances are in Set 2. Doubtlessly, IFFD is the fastest one
while SCH ranks second. Among the three GAs, the fastest
one is GGA. As D increases, the average computation times
of the algorithms except GGA-II changes slightly, the reason
is D is not a input involved in these algorithms. On the
contrary, the average computation time of GGA-II increases
linearly as D increases.

150 170 190 210 230 250 270 290
0

100

200

300

400

500

600

700

Number of Workers

C
om

pu
ta

tio
n

T
im

e
(s

)

IFFD
SCH
OGA
GGA
GGA−II

Fig. 5. The variations in the average computation time of the algorithms
as the number of workers increases

Fig. 5 displays the variations in the average computation
time of the five algorithms as the number n of workers
increases from 150 to 290, when D is fixed at 16 and the test
instances are in Set 2. Similarly, IFFD is the fastest one while
SCH ranks second. Both the average computation times of
GGA and GGA-II increase linearly as n increases, while the
computation time of OGA increases much more dramatic
than the other two GAs. Considering that the trends in the
average computation times of the algorithms when the test
instances are in set 1 and 3 are similar to that in Set 1, we
will not illustrate them.

In summary, compared with the other four algorithms,
GGA-II is much more efficient for MRPP. On the one hand,
GGA-II is the only one being able to find the optimal
solutions, and the gap of the solutions found by GGA-II
is much lower than those found by the other algorithms,
furthermore, GGA-II shows its stability as the problem size
varies. On the other hand, on the term of computational time,
although GGA-II is not the fastest one, it is much scalable
as its computation time increase linearly when the problem
size increases.

VII. CONCLUSION

In this paper, a new problem of the MapReduce in cloud
computing called MRPP has been studied and a new GGA
has been proposed to solve it. Different from the original
GGA, our GGA uses an innovative coding scheme in which
the items in the groups are represented by the worker types
rather than the worker identities, which can greatly reduce the
search space of the algorithm. It also applies a knowledge-
based crossover which can find more promising groups in

1607

TABLE III
THE COMPUTATIONAL RESULTS

Set D n
IFFD SCH OGA GGA GGA-II
(%) Min (%) Avg (%) Min (%) Avg (%) Min (%) Avg (%) Min (%) Avg (%)

1 16 150 25.33 10.45 10.98 7.98 8.15 2.28 2.37 0.81 0.86
200 40.99 25.47 27.88 11.84 13.44 3.39 4.08 2.28 3.15
250 19.86 10.7 12.03 9.02 10.95 3.84 4.19 0.28 0.59
300 15.87 9.57 11.04 8.76 10.13 3.4 3.92 0.28 0.42

24 150 19.63 9.83 10.99 7.54 8.12 3.07 3.55 0.55 1.07
200 23.69 14.81 15.82 10.4 12.31 2.73 3.41 1.06 1.61
250 31.76 17.85 18.51 13.32 14.98 2.61 3.86 0.55 1.49
300 22.08 12.3 14.37 11.08 12.56 3.73 3.88 0.95 1.2

32 150 24.38 12.16 13.19 9.67 10.74 3.73 4.19 1.18 1.81
200 18.85 12.53 13.53 8.85 10.28 2.81 3.27 1.59 1.81
250 18.75 12.34 14.16 11.24 12.51 2.73 3.14 0.28 1.08
300 19.77 12.9 14.57 9.76 10.6 2.38 3.98 0.83 1.25

2 16 150 41.21 11.94 13.11 10.85 12.32 3.69 4.24 0 0.53
200 40.91 12.81 13.33 8.02 9.5 2.68 3.69 0.66 1.59
250 43.68 30.7 32.42 15.24 17.67 3.73 4.52 1.24 1.48
300 46.51 23.7 25.38 13.33 15.56 2.66 3.07 0 0.88

24 150 53.31 17.69 20.2 9.02 10.35 3.13 3.33 0 0.54
200 42.06 10.64 10.96 7.45 8.58 2.62 3.86 0.77 1.58
250 46.45 13.62 14.89 9.62 10.45 2.41 3 1.02 1.95
300 45.9 20.68 21.18 12.69 14.26 2.6 3.12 0 1.2

32 150 56.58 15.35 16.07 13.56 15.9 3.75 4.11 0.26 1.98
200 42.83 24.6 26.78 14.24 16.2 2.52 3.22 1.79 2.25
250 47.94 17.42 18.18 12.68 14.21 4.11 4.78 1.79 2.89
300 42.36 13.96 14.65 10.03 11.28 4.94 4.43 0.26 2.21

3 16 200 67.91 10.65 11.76 12.5 13.42 3.42 3.81 1.62 1.72
250 61.14 22.44 23.59 16.98 18.29 6.33 7.57 2.37 3.31
300 56 15.63 16.38 15.23 16.56 4.56 5.42 2.65 3.77
350 65.65 19.57 20.4 12.75 14.28 2.83 3.28 0.47 0.88

24 200 67.97 11.97 12.98 12.65 14.33 3.62 4.09 0.24 0.47
250 63.59 23.72 24.69 14.82 17.9 4.1 4.87 1.72 2.46
300 68.62 16.66 17.03 14.31 15.51 3.36 4.08 1.5 2.16
350 66.92 21.29 22.25 10.56 12.65 3.03 4.12 0.47 2.01

32 200 61.77 12.35 12.88 8.9 10.55 3.15 4.03 0.47 1.39
250 67.39 20.89 21.94 13.45 14.92 2.47 3 0.47 1.45
300 59.97 13.57 14.23 13.27 14.6 4.1 4.79 1.42 2.89
350 57.02 8.09 8.36 7.14 9.14 3.18 3.92 0.47 1.56

the individuals so that its exploitation capacity is enhanced.
Moreover, since the sequence of the groups is not significant,
the inversion which is an essential genetic operator in the
original GGA is removed from our GGA to make our GGA
simpler.

We have also compared our GGA with IFFD, SCH, a rep-
resentative OGA and the original GGA. The computational
results have shown that our GGA is much more efficient
than the other four algorithms for MRPP and the solutions
found by our GGA are much better than those found by the
other algorithms. Furthermore, our GGA is scalable, since its
computation time increases linearly when the problem size
increases.

ACKNOWLEDGMENT

This research was funded by the State Scholarship Fund
of the China Scholarships Council (CSC) and the CSC Top-
Up Scholarship of Queensland University of Technology,
Australia.

REFERENCES

[1] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: automatic
resource inference and allocation for mapreduce environments,” in

Proceedings of the 8th ACM international conference on Autonomic
computing. ACM, 2011, pp. 235–244.

[2] X. Xu and M. Tang, “A comparative study of the semi-elastic and
fully-elastic mapreduce models,” in Proceedings of the 2013 IEEE
International Conference on Granular Computing (GrC). IEEE, 2013,
pp. 380–385.

[3] M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-completeness. WH Freeman and Company, New
York, 1979.

[4] A. Caprara and P. Toth, “Lower bounds and algorithms for the 2-
dimensional vector packing problem,” Discrete Applied Mathematics,
vol. 111, no. 3, pp. 231–262, 2001.

[5] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for
vector bin packing,” http://research.microsoft.com, 2011.

[6] J. Kang and S. Park, “Algorithms for the variable sized bin packing
problem,” European Journal of Operational Research, vol. 147, no. 2,
pp. 365–372, 2003.

[7] M. Haouari and M. Serairi, “Heuristics for the variable sized bin-
packing problem,” Computers and Operations Research, vol. 36,
no. 10, pp. 2877–2884, 2009.

[8] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,”
Journal of Heuristics, vol. 2, no. 1, pp. 5–30, 1996.

[9] H. Iima and T. Yakawa, “A new design of genetic algorithm for bin
packing,” in Evolutionary Computation, 2003. CEC ’03. The Congress
on, 2003, pp. 1044–1049.

[10] D. Wilcox, A. McNabb, and K. Seppi, “Solving virtual machine
packing with a reordering grouping genetic algorithm,” in Evolutionary
Computation (CEC), 2011 IEEE Congress on, 2011, pp. 362–369.

1608

