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Abstract—This paper investigates how to use diversity 
introduction methods to enhance the dynamic evolutionary 
multiobjective optimization algorithms in dealing with 
dynamic multiobjective optimization problems (DMOPs). 
Although diversity introduction method is easy used to 
response to the dynamic change, current diversity introduction 
methods still have a difficulty in identifying the correct 
proportion of diversity introduction. To overcome this 
difficulty, this paper proposes an adaptive diversity 
introduction (ADI) method. Specifically, the proportion of 
diversity introduction can be dynamically adjusted rather than 
being hand designed and fixed in advance. In addition, an 
adaptive relocation operator is designed to adapt the evolving 
individuals to the new environmental condition. The 
effectiveness of the ADI method is validated against various 
diversity introduction methods upon five DMOPs test 
problems. The simulation results show that the proposed ADI 
has better robustness and total performance than other 
diversity introduction methods. 

Keywords—dynamic multi-objective optimization; 
evolutionary algorithm; diversity introduction; adaptive 

I. INTRODUCTION  
Optimization problems occur in many situations and 

aspects of modern life. Optimization problems include 
single-objective optimization problems (SOPs) and 
multiobjective optimization problems (MOPs). MOPs can be 
classified as stationary multiobjective optimization problems 
(SMOPs) and dynamic multiobjective optimization problems 
(DMOPs). Evolutionary multiobjective optimization (EMO) 
algorithms are a class of stochastic optimization techniques 
that simulate biological evolution to solve MOPs [1]. Most 
of EMO works are confined to SMOPs currently [2]. 

However, many real-world problems are DMOPs, their 
objective vector-valued function, constraints and problem 
parameters may change with time [3]. Accordingly, the 
Pareto optimal front is unlikely to remain invariant. Hence, 
the optimization goal is not only to evolve a near-optimal 
and diverse Pareto optimal front, but also to track the front as 
it changes with time [4]. Therefore, the research topic, 
dynamic EMO (DEMO), has obtained growing attention 
among researchers recently [2]. 

Based on Evolutionary algorithm (EA), some DEMO 
algorithms have been proposed to solve DMOPs. Deb et al. 
[5] extended the well-known NSGA-II algorithm [6] to solve 
DMOPs, and they denoted the dynamic version of NSGA-II 
as DNSGA-II. Goh and Tan [4] proposed a new 
coevolutionary paradigm that hybridizes competitive and 
cooperative mechanisms to solve DMOPs. Liu and Zeng [7] 
presented a memory enhanced dynamic multi-objective 
evolutionary algorithm based on decomposition. Recently, 
Zhou et al. [8] suggested a population prediction strategy for 
dynamic evolutionary multiobjective optimization. 

Besides EAs, other nature-inspired optimization methods, 
such as particle swarm optimization (PSO) and artificial 
immune systems (AIS), etc, have also been introduced to 
deal with DMOPs [9-13]. In [9], a dynamic multiobjective 
PSO, maximinPSOD, was proposed. Greff and Engelbrecht 
[10] presented a vector evaluated particle swarm optimiser 
(VEPSO) to solve DMOPs. In the area of AIS, Zhang [11] 
investigated immune-based optimization techniques for a 
class of DMOPs. Shang et al. [12] designed a clonal 
selection algorithm for dynamic multiobjective optimization. 

Generally, DEMO algorithm must make a balance 
between convergence and diversity for dealing with DMOPs 
[14],[15]. This is because if the dynamic landscape changes 
in one area and there is no member of the algorithm in this 
area. Once the algorithm is converged, it is hard to escape 
from an old optimum and hence might fail to track the 
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moving global optimum. In particular, when a new change 
happens, the DEMO algorithm must be capable of solving 
diversity problem within the evolving population. The 
different techniques proposed to handle population diversity 
are based on the following three approaches, i.e., diversity 
introduction after a change, diversity maintaining and 
multiple populations [4]. 

Diversity introduction (DI) method is a strategy which 
introduces a certain degree of diversity to the evolutionary 
population during the transition phase. The DEMO algorithm 
is run in standard fashion, but as soon as a change in the 
environment is detected, explicit actions are taken to increase 
diversity and, thus, to facilitate the shift to the new optimum 
[4]. If the change is radical, and the new problem bears little 
resemblance to the previous problem, random restart (RR) or 
reinitialization may be the only viable option. If the optimal 
solutions of the new environment are similar to those of the 
old environment, some percentage of new individuals had 
better be introduced either through random initialization or 
mutation [5]. 

The problem of DI method is that increasing diversity is 
basically equivalent to replacing information about 
previously successful individuals by random information. It 
is difficult to determine a useful amount of diversity: Too 
much will resemble restart, while too little does not solve the 
problem of convergence [15]. Therefore, an ideal approach 
may be the adaptive diversity introduction method, in which 
the proportion of diversity introduction is dynamically 
determined according to the actual environmental change 
rather than being hand designed and fixed in advance. 
However, to the best of our knowledge, most of current 
methods use a fixed proportion of diversity introduction. 
Motivated by this observation, we propose an adaptive 
diversity introduction (ADI) method for DEMO algorithms. 
The major contributions of this paper include the following. 

• The appropriate proportion of diversity introduction 
is determined by estimating the actual extent of 
environmental change. 

• An adaptive relocation operator is designed to adapt 
already converged or currently evolving individuals 
to the new environmental condition. 

The paper is organized as follows. Section II introduces 
the DMOPs and discusses related diversity introduction 
methods. Our adaptive diversity introduction method is 
presented in Section III. Then, sections IV reports and 
analyzes experimental results of our method with a 
comparison to other DI methods. The paper concludes with a 
summary and some ideas for future work in Section V. 

II. BACKGROUND 

A. Problem Statement 
Definition 1: The DMOPs [3] can be formally defined as 
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where x is the vector of decision variables bounded by the 
decision space, Ω; The evaluate function, F(x,t) is a mapping 
from Ω × t to objective space, Λ. y is the set of objectives to 
be minimized with respect to time, t. m is the number of 
objective function. The functions of g and h represent the set 
of inequality and equality constraints that changes with t, 
respectively. 

Definition 2: Pareto Dominance: A vector u = (u1, u2, ..., 
um)T is said to dominate another vector v = (v1, v2, ..., vm)T, 
denoted by ≺u v  if and only if u is partially less than v, ie., 

{1,2,..., }∀ ∈k m , uk ≤ vk , and, {1,2,..., }∃ ∈l m  , ul < vl. 

Definition 3: Dynamic Pareto Optimal Set: The dynamic 
Pareto optimal set, denoted as POS(t), is the set of solutions 
that are non-dominated in the decision space such that 

( ) : { | ' , ( ', ) ( , )}= ∈ ¬∃ ∈ ≺POS t t tx x F x F xΩ Ω . 

Definition 4: Dynamic Pareto Optimal Front: The 
dynamic Pareto optimal front, denoted as POF(t), is the set of 
solutions that are non-dominated in the objective space such 
that ( ) : { ( , ) | ( )}= = ∈POF t y t POS tF x x . 

B. Related Work 
This section summarizes some related work on DI 

methods and further presents a framework of DEMO 
algorithm with DI method. 

In a certain sense, the DMOP can be considered as the 
consecutive optimization of different time-constrained MOPs 
with varying complexities [4]. It is imperative that DEMO 
algorithm must be capable of attaining a fast convergence in 
order to find the optimal solution set before it changes and 
becomes obsolete. However, a fast convergence also implies 
a rapid loss of diversity during the optimization process, 
which inevitably leads to the difficulty of tracking the 
dynamic Pareto optimal front. It is, thus, necessary to 
introduce sufficient diversity in order to explore the search 
space when the DMOPs changes in a dynamic environment. 

A typical representative of DI method is reinitialization. 
Other common techniques include hypermutation [16] where 
the mutation rate is increased drastically, and variable local 
search [17] where mutation rate is increased gradually. 
According to the amount of diversity introduction, the 
existing diversity introduction methods can be classified as 
whole DI and partial DI. 

1) Whole diversity introduction: Random restart (RR) or 
reinitialization of the whole population is one of the simplest 
whole DI for generating diversity [4]. The main drawback of 
this approach is that information gained is lost after the 
introduction of diversity [18]. Recently, a memory like 
reinitialization (MLR) strategy is adopted for the new 
environment [19]. In MLR, the individuals of new generated 
population are randomly generated within the bounds of the 
search space or generated by the Gaussian local search 
operator. 

2) Partial diversity introduction: Deb et al. [5] proposed 
dynamic NSGA-II (DNSGA-II) for DMOPs. In order to 
detect problem changes, 10% of individuals in the population 
are selected randomly and reevaluated in every generation. 
When a change is detected, all outdated solutions are 
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reevaluated, and diversity introduction is executed either 
through random initialization or mutation. Specifically, a ζ% 
of the new population is replaced with randomly created 
solutions or with mutated solutions of existing solutions. 
Accordingly, in this paper we denote these two diversity 
introduction methods as random diversity introduction (RDI) 
and mutation diversity introduction (MDI) respectively. 
Greff and Engelbrecht [10] presented vector evaluated 
particle swarm optimizer (VEPSO) to solve DMOPs. When a 
change is detected, several responses with different amount 
diversity introduction are used. Either 10%, 20% or 30% of 
the swarm’s population is reinitialized. Reinitialization of 
particles is either done for all swarms, or only for the swarm 
that is solving the objective function that has changed. The 
results showed that different percent adapts to different 
dynamic multiobjective benchmark problems, and none of 
these percentages can achieve optimal on all benchmark 
problems. Later on, Helbig and Engelbrecht [20] further 
adopted a partial DI method with fixed proportion of 
diversity in their dynamic VEPSO algorithm. If a change has 
been detected, 30% of the particles of the swarm(s) whose 
objective function changed are reinitialized. 

Instead of reinitialization or subjecting the entire 
subpopulation to hypermutation, Goh and Tan [4] adopted a 
competitive process to regulate diversity introduction. The 
idea of competitive process is to compare the potential of 
new regions in the search space and the past information to 
decide whether the subpopulation should be initialized. 
However, it is not clear how this diversity introduction is 
implemented. 

Since DI method is common used to enhance the DEMO 
for solving DMOPs, we summarize a general DEMO 
algorithm framework with DI, which pseudo-code is 
described in algorithm 1. 

Algorithm 1: A DEMO Framework with DI Method 

1  Set time step t = 0; 
2  Initialize population Pt 
3  while not terminate do 
4      if change() then 
5          Execute DI on Pt; 
6          t = t+1; 
7      else  
8          Evolve Pt to optimize the t-th MOP by using 
            an EMO algorithm; 
9      end if 
10 end while 

In algorithm 1, more diversity are introduced into the 
evolving population to response the new change, the more 
useful information gained will be lost. On the other hand, too 
little diversity introduction does not solve the problem of 
convergence. An extreme example is none diversity 
introduction (NDI) method, in which the last population of 
the previous environment is just set as the starting population 
for the new environment [12]. This NDI method may be 
feasible only if there is a large degree of similarity between 
the old environment and the new environment. Therefore, it 
is difficult to determine a useful amount of diversity for an 
uncertain new change [15]. Bearing these observations in 

mind, an adaptive diversity introduction method for DEMO 
is suggested, investigated, and discussed in the following 
sections. 

III. ADAPTIVE DIVERSITY INTRODUCTION METHOD 
Firstly, a measure method is given to estimate the extent 

of environmental change. Secondly, the appropriate 
proportion of diversity introduction is calculated based on 
the extent of change. Later on, an adaptive relocated operator 
is designed. Finally, the algorithm of ADI is given. 

A. Estimating the Extent of Environmental Change 
Firstly, the extent of environmental change is defined as 

the degree of deviation between the old POF and the new 
POF. Since POF usually can not be known in advance, the 
difference of evolutionary populations before and after 
change is used to estimate the extent of change. Specifically, 
we simply use the following formula for estimating the 
extent of environmental change in objective space: 

                     
( )1

( , ) ( , 1)
( )δ =

− −
=
∑K i i

i
t t

t
K

F x F x
              (2) 

where the operator ||•|| is the Euclidean distance. After K 
different individuals are randomly sampled from the 
population, the average displacement of their objective 
function vectors is calculated to approximate the extent of 
environmental change. 

B. Adaptive Proportion of the Diversity Introduction 
Here, the proportion of diversity introduction is adaptive 

and can be dynamically adjusted rather than being hand 
designed and fixed. Formally, the proportion of diversity 
introduction can be calculated as follows: 

             min

max min

( )( ) ( ( )) ( ,1.0)tt t Min δ δζ η δ λ
δ δ

−= = ×
−

             (3)  

where ζ(t) is the adaptive proportion of the diversity 
introduction. δ(t) is the extent of environmental change. δmin 
and δmax are the minimum and maximum change recorded in 
the history, respectively. With the increasement of the 
objective space in size, the extent of environmental change is 
gradually enlarged. Therefore, we introduce a scale factor λ, 
and set λ=m-1, where m is the number of objective function. 
Finally, the adaptive proportion of diversity introduction is 
determined by normalization and multiplication. If the result 
is greater than 1, it will be revised as 1 by Min function.  

Based on the ζ(t), ζ(t) × N individuals are sampled from 
the population randomly, where N is the size of the 
population. Then, these individuals are updated by using an 
adaptive relocation operator described in the next section to 
complete diversity introduction. 

C. Adaptive Relocation Operator 
For every sampled individual x =[x1, x2, …, xn], either 

Gaussian local search or random initialization is chosen to 
relocate the individual. Specifically, the probability of 
random initialization is set to be ζ(t), while the probability of 
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Gaussian local search is 1-ζ(t). Here, the Gaussian local 
search is defined as follows: 

xi = xi +N(0, ζ(t)),  i =1,2, …, n.                        (4) 

where n is the number of decision variable, N(0,ζ(t)) is a 
Gaussian distribution, its mean value and standard deviation 
are 0 and ζ(t), respectively. The adaptive relocation operator 
is also shown in Fig 1. 

Fig. 1. Adaptive relocation operator. 

From this figure, the relocation operator owns adaptive 
ability in the following two areas: 

• Both the probability of random initialization and that 
of Gaussian local search are dynamically adjusted 
according to the estimation of extent of 
environmental change. 

• If the environmental change is significant, the 
individual is more likely to be randomly 
reinitialized. On the other hand, if the environmental 
change is small, the individual tends to do local 
search in its neighborhood. Furthermore, the 
neighborhood radius (i.e., ζ(t)) of the Gaussian local 
search is also adaptively determined according to the 
estimated extent of environmental change. 

D. Algorithm Description of the Adaptive Diversity 
Introduction Method 
The pseudo-code description of the ADI method is given 

in Algorithm 2. 
Algorithm 2: Adaptive diversity introduction method 
1  Estimate the extent of environmental change δ(t) by 

using formula 2; 
2  Calculate the adaptive proportion of the diversity 

introduction ζ(t) by using formula 3; 
3  for (i = 0; i < ζ(t)×N; i++) { 
4      Choose an individual x from Population Pt 

randomly; 
        /*Perform adaptive relocation operator as follows. 

Pr is a random decimal between 0 and 1.0 */ 
5      Pr = randomperc(); 
6      if (Pr < ζ(t)) then 
7            initialize individual x randomly;  
8      else    
9           Gaussian_local_search(x,0,ζ(t)). 
10    end if 
11 }  // end for 

In the above algorithm, the major computational costs are 
in line 1 and line 3. Since the line 1 samples K individuals 

and the line 3 needs do N loop at most, the computational 
complexity of Algorithm 2 is O(N). Therefore, the ADI can 
response to the change rapidly. 

It should be noted that although both ADI and MLR 
methods own Gaussian local search and random initialization, 
ADI is still quite different from MLR. It is because that some 
related parameters, such as the proportion of diversity 
introduction, the ratio of global search and local search, the 
radius of neighborhood search, used in MLR are fixed in 
advance, whereas those used in ADI can all be adaptively 
adjusted according to the real environmental change. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
This section is devoted to the experimental comparison 

for investigating the performance of different DI methods. 
First, we will explain how to generate several DNSGA-II 
variants. Second, we will use these DNSGA-II variants to 
solve five dynamic multiobjective test problems. Finally, the 
results of the experiments are tabulated and analyzed. 

A. DNSGA-II Variants 
We briefly choose five common used DI methods: NDI 

[12], MDI [5], RDI [5], MLR [19], and RR [15], which are 
used to validate the proposed ADI method. For a fair 
comparison of various DI methods, we choose DNSGA-II as 
a basic DEMO algorithm, and integrate them into DNSGA-II 
to generate different DNSGA-II variants. For example, after 
integrated the ADI method into DNSGA-II by replacing the 
original RDI method with the ADI method, we can get a new 
DNSGA-II variant, which is denoted as DNSGA-II-ADI. 

B. Dynamic Multiobjective Test Problems 
Five different dynamic multiobjective test problems are 

applied here to examine the performance of ADI in 
enhancing the ability of DEMO algorithm. These test 
problems come from FDA suites [3], [21]. 

C. Performance Metric 
The reversed generational distance (rGD(t)) [9] is 

chosen as performance metric. The metric indicator, rGD(t), 
can be used to evaluate both the convergence and spread of 
solution set obtained by some DEMO algorithm. The lower 
value of rGD(t), the better performance of the algorithm. 

* ( )
( ) *( ) ( ) 21
1 1*

( ) , min ( )
( )

=
= =

= = −∑ ∑
POF t

mi Q t i ki
i k j jj

d
rGD t d f f

POF t
      (5) 

D. DNSGA-II Variants 
The experiments are conducted at different severity 

levels (nT) and different frequencies (τT) so as to study the 
impact of dynamics in uncertain environments. In particular, 
a low value of nT implies that the number of different change 
is small. Likewise, a larger value of τT will result in an 
increasingly condition of static environments. 

The simulations are implemented in C++ on an Intel 
Core i3 2.93GHz personal computer. Thirty independent 
runs are performed for each of the test functions to obtain 
the statistical information. All the algorithms here are 
implemented using the same real coding scheme. The 
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simulated binary crossover (SBX) and polynomial mutation 
are used in DNSGA-II. The experimental parameter settings 
are listed in Table I. In this table, there are four versions of 
RDI method. Furthermore, this table includes six different 
settings for the proportion of DI. 

TABLE I.  PARAMETER SETTING FOR EXPERIMENT 

Parameter Value 

Population size (N) Two objectives DMOPs: 100; 
Three objectives DMOPs: 300 

Crossover probability 0.9 
Distribution index for crossover 10 

Mutation probability 1/n 
Distribution index for mutation 20 

proportion of diversity 
introduction 

NDI:0; MDI and RDI1: 0.2; 
RDI2:0.4; RDI3:0.6; RDI4:0.8; 

MLR and RR:1.0 
Frequency of change (τT) 5, 10, 15, 20 
Severity of change (nT) 5, 10, 20 

E. Discussion of the Results 

 All the DNSGA-II variants are ranked based on their 
rGD(t) results under every dynamic change combination (τT, 
nT). The sorting rule is as follows: between two variants 
with different mean value of rGD(t), we prefer the variant 
with the lower (better) mean. Otherwise, if both variants 
have the same mean value, then we prefer the one with the 
smaller variance. Furthermore, we calculated the scores of 
all the DNSGA-II variants based on their rank values. Given 
an algorithm A, its scores can be calculated as follows: 

1
score(A) = (10 (A))

=
−∑ i

num

i
rank                              (6) 

where num is the number of different dynamic change 
combinations, and ranki(A) is the rank value of the algorithm 
A under i-th change combination. The higher score is the 
algorithm, and its performance is more excellent. 

Table II is experiment results of nine different DNSGA-II 
variants on solving FDA1 problem. For the sake of 
convenience, DNSGA-II is also denoted as DNSGA2 in this 
paper. The last variant adopts adaptive DI method, while the 
others use fixed proportion of DI. Clearly, this table shows 
that DNSGA-II-ADI has the best rank value in the most of 
dynamic change combinations, which indicates that 
DNSGA-II-ADI is robust to different dynamic changes. In 
addition, DNSGA-II-ADI has the best performance since it 
has the highest score. It is interest to note that four different 
DNSGA-II-RDI variations have close scores, no matter they 
use different proportion of diversity introduction. Finally, 
two variants using reinitialization method come in the eighth 
and ninth positions. In particular, DNSGA-II-RR has the 
lowest score, since the old useful information is lost after the 
random restart. 

Tables III - VI are the results of different variants on 
solving the other FDA test problems. DNSGA-II-ADI still 
has the best score on these FDA problems, except 
FDA3mod. Although the score of DNSGA-II-ADI is 43 in 
FDA3mod problem, the gap between it and the best score 
(46) is not significant. 

Finally, for every DNSGA-II variant, we sum up its 
scores in the above five test problems. The total scores of 
different DNSGA-II variants are compared in the Fig. 2. This 

bar chart clearly shows that DNSGA-II-ADI has the highest 
total scores, which significantly surpasses the results of other 
variants.  Therefore, we can draw a conclusion that the 
proposed ADI method can better enhance the performance of 
DNSGA-II, compared with the methods using fixed 
proportion of DI. 

Fig. 2.  Total scores of different DNSGA-II variants. 

F. Analysis of Adaptive Proportion 
In this section we will analyze whether the proportion of 

diversity introduced in the DNSGA-II-ADI is adaptive to the 
real dynamic change. Here we take FDA1 as an example, 
and the dynamic change combination is (20,5). The time-
varying POS(t) of FDA1 is shown in Fig. 3. For convenience, 
variations on only the first two decision variables are shown 
for 20 time steps.  

 

Fig. 3. Time-varying POS(t) of FDA1 

 

Fig. 4. Adaptive proportion of diversity introduction in the DNSGA-II-
ADI algorithm on solving FDA1. 
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Accordingly, Fig. 4 illustrates the proportion of diversity 
introduction in the DNSGA-II-ADI algorithm on solving 
FDA1 in 100 time steps. In the beginning, the population is 
randomly generated. Consequently, no diversity introduction 
is needed at the time step 0 in the Fig. 4. When the first 
dynamic change took place, the new Pareto optimal set 
jumped to POS1 from POS0 as shown in Fig. 3. It can easily 
be seen that the gap between POS0 and POS1 is the biggest 
in 20 time steps. Correspondingly, the proportion of diversity 
introduction at time step 1 reached the maximum in the Fig. 
4. In the next four environmental changes, the gaps between 
the old and the new POS are decreased gradually. As a 
result, a continual decline in the proportion of diversity 
introduction at the related time steps is shown in Fig. 4. By 
further comparison of these two Figures, it can be seen that 
the proportion of diversity introduction in the DNSGA-II-
ADI is basically consistent with the extent of environmental 
change. Therefore, we can draw a conclusion that the 
proposed ADI method can introduce appropriate diversity to 
the evolving population according to the actual needs of 
dynamic changes. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed an adaptive diversity 

introduction (ADI) method to enhance the performance of 
dynamic evolutionary multiobjective optimization algorithms 
in dealing with DMOPs. When an environmental change is 
detected, the appropriate proportion of diversity introduction 
is determined by estimating the extent of the environment 
change. In addition, an adaptive relocation operator is 
designed to quickly response to the environment change. The 
main advantages of the proposed ADI method over other 
diversity introduction methods are as follows. 

• Rather than using fixed proportion of diversity 
introduction, ADI studies the gap between two 
consecutive POFs by estimating the extent of the 
new change, and uses this information to obtain an 
appropriate proportion of diversity introduction. 

• Based on the appropriate proportion, an adaptive 
relocation operator is designed to adapt the evolving 
population to the needs of the new environment. 

The work presented in this paper is preliminary, and there 
are some possible directions for future work. For example, 
this paper only investigates ADI for boundary-constrained 
DMOPs. It is worth to test ADI on more problems with 
different types of changes, with constraints. If there are some 
complex constrains to be handled with, the estimation 
method of environmental change in the ADI maybe need to 
be modified. In addition, we are planning to combine ADI 
method with other strategies, such as memory [7], [22] or 
prediction strategy [8], and investigate hybrid methods for 
DMOPs in the future. 
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TABLE II.  EXPERIMENT RESULTS OF DIFFERENT DNSGA-II VARIANTS ON FDA1 PROBLEM 

τT, nT Statistic DNSGA2 
-NDI 

DNSGA2 
-MDI 

DNSGA2 
-RDI1 

DNSGA2 
-RDI2 

DNSGA2 
-RDI3 

DNSGA2 
-RDI4 

DNSGA2 
-MLR 

DNSGA2 
-RR 

DNSGA2 
-ADI 

5,20 
mean 

variance 
rank 

8.23E-01† 
5.24E-01 

7 

4.92E-01† 
1.85E-01 

2 

5.43E-01† 
1.75E-01 

5 

5.63E-01† 
1.53E-01 

6 

4.97E-01† 
1.07E-01 

3 

5.22E-01† 
9.35E-02 

4 

2.24E+00† 
2.81E+00 

8 

2.75E+00† 
3.15E+00 

9 

2.99E-01 
6.66E-02 

1 

10,20 
mean 

variance 
rank 

8.32E-02 
6.07E-03 

2 

7.98E-02‡ 
5.89E-03 

1 

9.02E-02† 
6.93E-03 

4 

9.33E-02† 
7.19E-03 

5 

1.04E-01† 
8.11E-03 

6 

1.10E-01† 
8.46E-03 

7 

5.00E-01† 
1.69E-01 

8 

1.19+00† 
5.75E-01 

9 

8.56E-02 
5.39E-03 

3 

10,10 
mean 

variance 
rank 

5.68E-01† 
2.66E-01 

7 

4.41E-01† 
1.53E-01 

6 

3.86E-01† 
9.60E-02 

3 

4.22E-01† 
1.14E-01 

5 

3.99E-01† 
8.16E-02 

4 

3.61E-01† 
6.31E-02 

2 

7.88E-01† 
3.61E-01 

8 

1.20E+00† 
5.87E-01 

9 

2.28-01 
3.90E-02 

1 

15,10 
mean 

variance 
rank 

1.25E-01 
9.62E-03 

2 

1.30E-01 
1.05E-02 

3 

1.33E-01 
1.12E-02 

4 

1.44E-01† 
1.40E-02 

5 

1.63E-01† 
1.76E-02 

7 

1.52E-01† 
1.55E-02 

6 

2.26E-01† 
2.59E-02 

8 

6.37E-01† 
1.56E-01 

9 

1.14E-01 
8.60E-03 

1 

15,5 
mean 

variance 
rank 

1.60E+00† 
2.08E+00 

9 

1.13E+00† 
1.03E+00 

8 

4.94E-01† 
1.18E-01 

6 

4.08E-01† 
7.21E-02 

3 

4.19E-01† 
7.94E-02 

4 

3.77E-01† 
5.92E-02 

2 

4.23E-01† 
8.84E-02 

5 

6.21E-01† 
1.56E-01 

7 

2.64E-01 
3.58E-02 

1 

20,5 
mean 

variance 
rank 

4.70E-01† 
1.65E-01 

8 

3.72E-01† 
1.04E-01 

7 

2.82E-01† 
4.76E-02 

5 

2.50E-01† 
3.46E-02 

4 

2.33E-01† 
2.42E-02 

2 

2.40E-01† 
2.77E-02 

3 

4.70E-01† 
1.65E-01 

8 

3.57E-01† 
5.04E-02 

6 

1.45E-01 
1.08E-02 

1 
 score 25 33 33 32 34 36 15 11 52 

† indicates DNSGA2-ADI performs better than the other DNSGA2 Variant with 95% certainty by t-test.    ‡ means that corresponding DNSGA2 variant is better than DNSGA2-ADI. 

TABLE III.  EXPERIMENT RESULTS OF DIFFERENT DNSGA-II VARIANTS ON FDA2 PROBLEM 

τT , nT Statistic DNSGA2 
-NDI 

DNSGA2 
-MDI 

DNSGA2 
-RDI1 

DNSGA2 
-RDI2 

DNSGA2 
-RDI3 

DNSGA2 
-RDI4 

DNSGA2 
-MLR 

DNSGA2 
-RR 

DNSGA2 
-ADI 

5,20 
mean 

variance 
rank 

4.83E-01 
1.10E-01 

5 

4.45E-01 
1.08E-01 

3 

3.89E-01‡ 
1.06E-01 

1 

5.10E-01† 
1.07E-01 

6 

4.30E-01‡ 
9.58E-02 

2 

5.12E-01† 
1.04E-01 

7 

1.12E+00† 
2.72E-01 

8 

1.25E+00† 
3.48E-01 

9 

4.71E-01 
1.28E-01 

4 

10,20 
mean 

variance 
rank 

3.81E-01 
1.08E-01 

6 

3.72E-01 
1.06E-01 

4 

3.75E-01 
1.04E-01 

5 

3.26E-01‡ 
9.78E-02 

1 

3.66E-01 
1.01E-01 

3 

4.05E-01† 
1.01E-01 

7 

8.86E-01† 
7.11E-02 

8 

9.66E-01† 
1.31E-01 

9 

3.62E-01 
1.06E-01 

2 

10,10 
mean 

variance 
rank 

2.92E-01 
8.08E-02 

4 

2.81E-01 
7.87E-02 

2 

3.15E-01 
8.58E-02 

5 

2.51E-01‡ 
5.90E-02 

1 

3.60E-01† 
9.46E-02 

7 

3.20E-01† 
7.51E-02 

6 

9.04E-01† 
8.38E-02 

8 

9.49E-01† 
1.16E-01 

9 

2.87E-01 
7.96E-02 

3 

15,10 
mean 

variance 
rank 

2.51E-01† 
7.86E-02 

4 

2.55E-01† 
8.61E-02 

5 

2.56E-01† 
8.21E-02 

6 

2.80E-01† 
9.36E-02 

7 

2.44E-01† 
7.36E-02 

2 

2.49E-01† 
7.48E-02 

3 

8.21E-01† 
4.67E-02 

8 

8.48E-01† 
4.96E-02 

9 

1.96E-01 
5.60E-02 

1 

15,5 
mean 

variance 
rank 

2.35E-01 
5.15E-02 

3 

2.31E-01 
5.21E-02 

2 

2.42E-01 
4.46E-02 

4 

2.54E-01† 
4.73E-02 

6 

2.50E-01 
4.93E-02 

5 

2.90E-01† 
6.20E-02 

7 

7.94E-01† 
5.18E-02 

8 

8.71E-01† 
4.85E-02 

9 

2.24E-01 
4.13E-02 

1 

20,5 
mean 

variance 
rank 

1.80E-01 
4.13E-02 

2 

1.73E-01 
4.12E-02 

1 

1.84E-01 
3.75E-02 

3 

1.94E-01 
4.00E-02 

5 

2.00E-01 
4.19E-02 

6 

2.06E-01 
4.24E-02 

7 

7.92E-01† 
3.24E-02 

8 

8.24E-01† 
3.09E-02 

9 

1.84E-01 
4.01E-02 

4 
 score 36 43 36 34 35 23 12 6 45 

TABLE IV.  EXPERIMENT RESULTS OF DIFFERENT DNSGA-II VARIANTS ON FDA3MOD PROBLEM 

τT , nT Statistic DNSGA2 
-NDI 

DNSGA2 
-MDI 

DNSGA2 
-RDI1 

DNSGA2 
-RDI2 

DNSGA2 
-RDI3 

DNSGA2 
-RDI4 

DNSGA2 
-MLR 

DNSGA2 
-RR 

DNSGA2 
-ADI 

5,20 
mean 

variance 
rank 

9.45E-01‡ 
1.27E+00 

2 

8.41E-01‡ 
8.73E-01 

1 

9.47E-01‡ 
6.75E-01 

3 

9.59E-01‡ 
5.68E-01 

4 

1.03E+00 
5.49E-01 

5 

1.11E+00 
6.00E-01 

7 

6.46E+00† 
1.69E+01 

8 

7.03E+00† 
1.76E+01 

9 

1.05E+00 
1.87E+00 

6 

10,20 
mean 

variance 
rank 

2.63E-01 
9.60E-02 

2 

2.46E-01‡ 
9.65E-02 

1 

2.65E-01 
9.76E-02 

3 

2.96E-01 
1.08E-01 

5 

3.15E-01† 
1.12E-01 

6 

3.21E-01† 
1.07E-01 

7 

2.93E+00† 
5.25E+00 

8 

4.02E+00† 
7.51E+00 

9 

2.69E-01 
7.66E-02 

4 

10,10 
mean 

variance 
rank 

8.26E-01 
8.91E-01 

3 

7.44E-01 
7.20E-01 

2 

7.21E-01‡ 
4.50E-01 

1 

8.69E-01† 
5.20E-01 

5 

1.00E+00† 
6.64E-01 

7 

9.16E-01† 
4.86E-01 

6 

3.46E+00† 
6.32E+00 

8 

4.08E+00† 
7.09E+00 

9 

8.26E-01 
1.03E+00 

4 

15,10 
mean 

variance 
rank 

3.64E-01† 
1.45E-01 

4 

3.41E-01 
1.26E-01 

2 

3.46E-01 
1.28E-01 

3 

4.05E-01† 
1.70E-01 

5 

4.79E-01† 
2.08E-01 

7 

4.13E-01† 
1.47E-01 

6 

1.46E+00† 
1.73E+00 

8 

2.17E+00† 
2.47E+00 

9 

3.32E-01 
1.45E-01 

1 

15,5 
mean 

variance 
rank 

1.18E+00† 
2.54E+00 

6 

1.05E+00† 
1.88E+00 

3 

1.04E+00† 
6.23E-01 

2 

1.15E+00† 
8.72E-01 

5 

1.22E+00† 
9.45E-01 

7 

1.10E+00† 
6.98E-01 

4 

1.78E+00† 
2.16E+00 

8 

2.28E+00† 
2.74E+00 

9 

7.83E-01 
4.14E-01 

1 

20,5 
mean 

variance 
rank 

9.65E-01† 
1.49E+00 

7 

7.67E-01† 
8.13E-01 

5 

6.68E-01† 
2.78E-01 

2 

7.74E-01† 
3.82E-01 

6 

7.17E-01† 
3.27E-01 

4 

6.73E-01† 
2.89E-01 

3 

1.08E+00† 
8.33E-01 

8 

1.33E+00† 
1.11E+00 

9 

4.98E-01 
1.93E-01 

1 
 score 36 46 46 30 24 27 12 6 43 
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TABLE V.   EXPERIMENT RESULTS OF DIFFERENT DNSGA-II VARIANTS ON FDA4 PROBLEM 

τT , nT Statistic DNSGA2 
-NDI 

DNSGA2 
-MDI 

DNSGA2 
-RDI1 

DNSGA2 
-RDI2 

DNSGA2 
-RDI3 

DNSGA2 
-RDI4 

DNSGA2 
-MLR 

DNSGA2
-RR 

DNSGA2 
-ADI 

5,20 
mean 

variance 
rank 

3.72E-01† 
8.84E-02 

8 

2.69E-01† 
3.90E-02 

6 

1.89E-01 
1.21E-02 

5 

1.69E-01 
7.98E-03 

3 

1.60E-01 
7.03E-03 

1 

1.65E-01 
7.45E-03 

2 

3.05E-01† 
1.43E-02 

7 

3.75E-01† 
2.52E-02 

9 

1.72E-01 
1.03E-02 

4 

10,20 
mean 

variance 
rank 

9.70E-02† 
2.87E-03 

7 

8.73E-02† 
2.03E-03 

2 

9.22E-02† 
2.49E-03 

6 

9.01E-02† 
2.06E-03 

3 

9.01E-02† 
2.06E-03 

3 

8.86E-02† 
1.81E-03 

5 

1.08E-01† 
1.86E-03 

8 

1.99E-01† 
5.96E-03 

9 

7.84E-02 
1.44E-03 

1 

10,10 
mean 

variance 
rank 

3.29E-01† 
1.02E-01 

9 

2.46E-01† 
4.15E-02 

8 

1.46E-01† 
5.91E-03 

6 

1.36E-01 
6.18E-03 

4 

1.32E-01 
4.13E-03 

3 

1.31E-01 
3.77E-03 

2 

1.45E-01† 
2.44E-03 

5 

2.04E-01† 
6.49E-03 

7 

1.24E-01 
3.82E-03 

1 

15,10 
mean 

variance 
rank 

1.48E-01† 
1.35E-02 

9 

1.21E-01† 
5.79E-03 

7 

9.99E-02† 
2.32E-03 

6 

9.06E-02† 
1.71E-03 

5 

8.88E-02† 
1.53E-03 

4 

8.75E-02 
1.47E-03 

3 

7.83E-02‡ 
5.50E-04 

1 

1.24E-01† 
2.49E-03 

8 

8.51E-02 
1.49E-03 

2 

15,5 
mean 

variance 
rank 

4.49E-01† 
3.23E-01 

9 

3.34E-01† 
1.02E-01 

8 

1.38E-01† 
7.63E-03 

7 

1.26E-01 
6.02E-03 

5 

1.21E-01 
4.82E-03 

4 

1.17E-01 
4.10E-03 

3 

1.04E-01 
2.33E-03 

1 

1.27E-01 
2.18E-03 

6 

1.09E-01 
3.44E-03 

2 

20,5 
mean 

variance 
rank 

2.99E-01† 
9.84E-02 

9 

2.11E-01† 
3.95E-02 

8 

1.02E-01† 
4.20E-03 

7 

8.94E-02† 
2.81E-03 

6 

8.63E-02† 
2.20E-03 

5 

8.62E-02† 
2.08E-03 

4 

7.03E-02‡ 
7.32E-04 

1 

8.22E-02† 
8.97E-04 

3 

7.59E-02 
1.28E-03 

2 
 score 6 21 23 34 40 41 37 18 48 

TABLE VI.  EXPERIMENT RESULTS OF DIFFERENT DNSGA-II VARIANTS ON FDA5 PROBLEM 

τT , nT Statistic DNSGA2 
-NDI 

DNSGA2 
-MDI 

DNSGA2 
-RDI1 

DNSGA2 
-RDI2 

DNSGA2 
-RDI3 

DNSGA2 
-RDI4 

DNSGA2 
-MLR 

DNSGA2
-RR 

DNSGA2 
-ADI 

5,20 
mean 

variance 
rank 

4.24E-01† 
1.16E-01 

7 

2.96E-01† 
3.94E-02 

6 

2.30E-01† 
1.14E-02 

5 

2.06E-01 
8.92E-03 

2 

2.12E-01 
7.88E-03 

3 

2.24E-01† 
7.62E-03 

4 

6.23E-01† 
1.65E-01 

8 

6.71E-01† 
1.66E-01 

9 

1.93E-01 
8.51E-03 

1 

10,20 
mean 

variance 
rank 

1.28E-01 
2.20E-03 

7 

1.18E-01 
1.59E-03 

2 

1.23E-01 
1.75E-03 

6 

1.19E-01 
1.41-03 

4 

1.19E-01 
1.45E-03 

5 

1.19E-01 
1.34E-03 

3 

2.11E-01† 
1.93E-02 

8 

3.49E-01† 
5.37E-02 

9 

1.10E-01 
1.24E-03 

1 

10,10 
mean 

variance 
rank 

3.61E-01† 
9.79E-02 

9 

2.85E-01† 
3.99E-02 

7 

1.88E-01† 
6.49E-03 

5 

1.73E-01† 
4.71E-03 

4 

1.66E-01 
3.88E-03 

3 

1.62E-01 
3.09E-03 

2 

2.32E-01† 
1.37E-02 

6 

3.47E-01† 
4.48E-02 

8 

1.45E-01 
2.83E-03 

1 

15,10 
mean 

variance 
rank 

1.71E-01† 
9.15E-03 

8 

1.51E-01† 
4.70E-03 

7 

1.26E-01 
1.44E-03 

6 

1.20E-01 
1.37E-03 

5 

1.17E-01 
9.34E-04 

4 

1.16E-01 
9.50E-04 

3 

1.08E-01 
5.72E-04 

2 

1.89E-01† 
9.04E-03 

9 

1.06E-01 
6.36E-04 

1 

15,5 
mean 

variance 
rank 

4.89E-01† 
3.31E-01 

9 

3.84E-01† 
1.34E-01 

8 

1.70E-01† 
4.24E-03 

6 

1.57E-01† 
3.84E-03 

5 

1.53E-01 
3.57E-03 

4 

1.48E-01 
3.32E-03 

3 

1.44E-01 
2.14E-03 

2 

2.01E-01† 
1.85E-02 

7 

1.30E-01 
1.91E-03 

1 

20,5 
mean 

variance 
rank 

3.23E-01† 
1.02E-01 

9 

2.58E-01† 
4.48E-02 

8 

1.25E-01† 
1.67E-03 

6 

1.18E-01† 
1.25E-03 

5 

1.16E-01† 
1.49E-03 

4 

1.13E-01† 
1.24E-03 

3 

1.02-01 
6.04E-04 

2 

1.35E-01† 
1.18E-02 

7 

9.84E-02 
5.10E-04 

1 
 score 11 22 26 35 37 42 32 11 54 
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