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Abstract—Optimal approximation of linear system models is
an important task in the controller design and simulation for
complex dynamic systems. In this paper, we put forward a novel
nature-based meta-heuristic method, called artificial raindrop
algorithm, which is inspired from the phenomenon of natural
rainfall, and apply it for optimal approximation of a stable linear
system. It mimics the changing process of a raindrop, including
the generation of raindrop, the descent of raindrop, the collision
of raindrop, the flowing of raindrop and the updating of raindrop.
Five corresponding operators are designed in the algorithm.
Numerical experiment is carried on the optimal approximation
of a typical stable linear system in two fixed search intervals. The
result demonstrates better performance of the proposed algorithm
comparing with that of other five state-of-the-art optimization
algorithms.

I. INTRODUCTION

Approximation is an operation that identifies the largest
value from multiple input signals. Such an operation has
many applications in a variety of fields including associative
memories [1], cooperative models of binocular stereo [2],
Fukushima’s neocognitron for feature extraction [3], and so
on. As a mathematical tool, it has been widely used in the
field of control engineering. For the simulation and controller
design of complex dynamic systems, optimal approximation
of linear systems is one of the most important tasks [1]. In
the past few decades, various methods have been proposed for
the model approximation problem under certain approximation
error criteria, such as gradient-based search methods [1].
However, these methods often obtain a local rather than a
global optimum solution. In order to get the approximation
model of given linear system more efficient and effective, some
intelligent algorithms have been introduced for this issue in
the recent years. Representatively, the genetic algorithm (GA)
[2], differential evolution algorithm (DE) [3], artificial immune
algorithm (AIA) [4]–[5], have been employed in the optimal
approximation of linear systems, respectively. The problem
of model approximation is also addressed and solved with a
memetic computing approach called 3SOME employed in the
optimal approximation of linear systems [6], which is the latest
progress of the problem.

According to the No Free Lunch theorem, however, there
is no explicit approach to be optimized for all optimization
problems. Hence, developing for new meta-heuristic methods
is always an open problem. In this paper, a new optimization
algorithm inspired from the phenomenon of natural rainfall,
especially its primary stage, named artificial raindrop algorithm

(ARA) is proposed for optimal approximation of linear system
models. The algorithm is based on particle system which is
a technique for modeling a class of fuzzy objects such as
the smoke, water, cloud and so on [7], and the particle goes
through five stages, including the produce of raindrop, the
descent of raindrop, the collision of raindrop, the flowing
of raindrop and the updating of raindrop. Five corresponding
operators are designed to closely simulate the raindrop process
of change.

The rest of this paper is organized as follows: in Section
II, we first introduce the model approximation problem of
linear systems. Then Section III presents the background and
principles of the proposed algorithm. Section IV presents the
simulation results. Section V discusses the similarities and
difference between ARA and PSO, and shows how and why
the proposed algorithm works well. Finally, the summary of
this paper will be made in Section VI.

II. PROBLEM FORMULATION

Usually, a practical linear system can be represented a
transfer function of the form in Eq.(1) [1].

G(s) =
b0s

m + b1s
m−1 + ⋅ ⋅ ⋅+ bm−1s+ bm

sn + a1sn−1 + ⋅ ⋅ ⋅+ an−1s+ an
. (1)

For a high-order linear system, m and n are usually much
larger. In order to simplify the system, we usually employ
the second-order system with delay of the form in Eq.(2) to
approximate the high-order system.

H(s) =
k(s+ b)

s2 + a1s+ a2
e−�s. (2)

The goal to find an optimal approximate mode H(s) such
that the frequency-domain L2-error performance in Eq.(3) is
minimized, where the frequency points, ωi, i = 0, 1, 2, ⋅ ⋅ ⋅ , N ,
and the integer N are taken a priori.

J =
N∑
i=0

∣G(jωi)−H(jωi)∣. (3)

In this case, the original system G(s) is asymptotically
stable, the constraint, H(0) = G(0), is place to make sure
that the steady-state responses of the original system and
approximate model are the same for the unit-step input [4]–[5].
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III. ARTIFICIAL RAINDROP ALGORITHM

A. The idea of proposed algorithm

In this section, the idea of artificial raindrop calculation
model, inspired from the phenomenon of natural rainfall, will
be introduced. It is similar to other meta-heuristic that the
proposed algorithm begins with an initial population called
vapor, i.e. the population is composed of vapors. Then, an
individual fitness value is considered as the individual altitude.
In other words, the small raindrops will flow from high
altitude to low altitude direction under the action of gravity.
Finally, most of small raindrops will stay in the location of
the lowest elevation, i.e. the location of the optimal solution.
The correspondence of ARA and the changing process of a
raindrop can be summarized in Table I.

TABLE I. THE CORRESPONDENCE OF ARA AND THE
CHANGING PROCESS OF A RAINDROP.

ARA The changing process of a raindrop
Search space Natural environment
Particle Vapor
Population size The number of vapor
Fitness function Altitude
Global optimal solution Location of the lowest altitude
Raindrop formation operator Raindrop formation process
Raindrop descent operator Raindrop descent process
Raindrop collision operator Raindrop collision process
Raindrop flowing operator Raindrop flowing process
Raindrop updating operator Raindrop updating process

1) Raindrop generation operator: As we all know, the
raindrop is generated by absorbing ambient water vapor in
nature. For convenience, it may be assumed that the position
of the raindrop is the geometric center of ambient water vapor.
From a statistical standpoint, the geometric center is a very
important digital characteristic and represents the changing
trend of vapor population on some level. The similar idea has
been used in the estimation of distribution algorithm based
on Gaussian model sampling [8]. That is why we choose the
geometric center as the position of raindrop.

At each generation t, the raindrop generation operator φG
R

on vapor population

Pop(t) = {Vapor1(t),Vapor2(t), ⋅ ⋅ ⋅ ,VaporN (t)}
is carried out as follows.
Define

Raindrop(t) = φG
R(Pop(t)) (4)

= {Vapor1(t),Vapor2(t), ⋅ ⋅ ⋅ ,VaporN (t)}

= {( 1
N

N∑
i=1

Vapori1(t), ⋅ ⋅ ⋅ ,
1

N

N∑
i=1

VaporiN (t)}.

where N is the number of population size.

2) Raindrop descent operator: According to our obser-
vation, when the effect of wind is ignored, the raindrop
straight drops from the cloud to the ground by the action
of gravity. From a mathematical point of view, it means
that the coordinate of raindrop changes just one component.
This is equivalent to a one-dimensional mutation operator or
disturbance in evolutionary algorithm.

Therefore, the raindrop descent operator φD
R on raindrop

is implemented as follows.

Define

New Raindrop(t) = φD
R (Pop(t)). (5)

i.e.

New Raindropr1
(t) = Raindropr2

(t) + ϕ ⋅ (Raindropr3
(t)

− Raindropr4
(t)). (6)

where r1, r2, r3, r4 ∈ {1, 2, ⋅ ⋅ ⋅ , D} are randomly chosen
indexes, j is the corresponding index of decision variable in
New Raindrop, and ϕ is a random number in the range (-1,
1).

3) Raindrop collision operator: Owing to the speed and
quality, the raindrop will be split into a number of small
raindrops when contacts the ground and flying in all directions.
It can be assumed that the number of small raindrops is equal
to the population size in order to keep the population scale
stability. Define

Small Raindrop(t) = φC
R(New Raindrop(t) ∪ Pop(t)).

(7)

i.e.

Small Raindropij(t) = New Raindropj(t) + sign(αj − 0.5)⋅
log(βj) ⋅ (New Raindropj(t)−Vaporkj(t))). (8)

where i (i = 1, 2, ⋅ ⋅ ⋅ , N ) and j (j = 1, 2, ⋅ ⋅ ⋅ , D) are the
index of ith small raindrop and the corresponding dimension,
respectively. k ∈ {1, 2, ⋅ ⋅ ⋅ , N} is randomly chosen index, αj

and βj are two uniformly distributed random numbers in the
range (0, 1) and sign(⋅) stands for sign function.

4) Raindrop flowing operator: Due to the action of gravity,
the small raindrops will flow from high altitude to low altitude
direction. Lastly most of small raindrops will stay in the
locations with a relatively low elevation. The locations provide
additional information about the promising progress direction.
Denote RP as a raindrop pool which includes chronicles
optimal solutions. In short, raindrop pool is an external archive.
The raindrop flowing operator φF

R on small raindrops is
generated as follows.

New Small Raindrop(t) = φF
R(Small Raindrop(t)). (9)

i.e.

New Small Raindropi(t) = Small Raindropi(t) + d(t, λ)
(i = 1, 2, ⋅ ⋅ ⋅ , N). (10)

where

d(t, λ) = τ1 ⋅ rand1 ⋅ sign(F (RPk1
)− F (Small Raindropi(t)))

⋅ (λ ⋅ RPk1 − Small Raindropi(t)) + τ2 ⋅ rand2 ⋅ sign(F (RPk2
)

− F (Small Raindropi(t))) ⋅ (λ ⋅ RPk2 − Small Raindropi(t)).
(11)

where τ1 and τ2 are two step parameters of Small Raindrop
flowing, rand1 and rand2 are two uniformly distributed random
numbers in the range (0, 1), F(⋅) is the fitness function, sign(⋅)
stands for sign function, λ is a damping coefficient, RPk1 and
RPk2 are any two of candidate solutions in raindrop pool RP,
and can be chosen by the tournament selection procedure.
However, each raindrop could not have been in the flowing
in a real environment. They will stay in the locations with a
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relatively lower elevation or evaporate after several flowing. It
is necessary to introduce a parameter Max Flow Number to
control the maximum number of flowing.

5) Raindrop updating operator: Evaporation is one of the
most important links in the water cycle. In the land water
cycle system, the water vapor produced by the evaporation is
mainly from surface water. The water vapor will be into the
atmosphere and further form the raindrops. In order to improve
the computational performance and convergence rate for global
optimization problem, the raindrop updating operator φU

R is
executed as follows.

Pop(t + 1) = φU
R(Pop(t) ∪ Small Raindrop(t)). (12)

That is to say, we use a sort method to select the N
best individuals as the next population from the above two
populations. In our work, the ranking method is achieved by
a bubble-sort procedure.

B. Algorithm procedures
As explained above, the implementation steps of ARA are

summarized as follows:

Step 1. Initialization: Choose the algorithm parameters N,
D, λ, τ1, τ2, Max Flow Number; Randomly Generate initial
population Pop(0); Set t = 0.

Step 2. Evaluation: Calculate the objective function values
of all vapors in Pop(t); Find the best solution gbest(0); RP(0)
= gbest(0);

Step 3. Raindrop Generation: Get Raindrop(t) by applying
raindrop generation operator φG

R to Pop(t);

Step 4. Raindrop Descent: Get New Raindrop(t) by ap-
plying raindrop descent operator φD

R to Raindrop(t);

Step 5. Raindrop Collision: Get Small Raindrop(t) by
applying raindrop collision operator φC

R to New Raindrop(t);

Step 6. Raindrop Flowing: Get New Small Raindrop(t)
by applying raindrop flowing operator φF

R to
Small Raindrop(t);

Step 7. Raindrop Updating: Get Pop(t+1) by applying
raindrop updating operator φU

R to Pop(t)∪Small Raindrop(t)
and update Raindrop pool RP(t+1);

Step 8. Termination Test: If termination condition is satis-
fied, export the individual with the smallest objective function
value in Pop(t+1), stop the algorithm; otherwise, t = t+1, go
to Step 3.

IV. APPLICATION OF ARA TO OPTIMAL
APPROXIMATION OF A STABLE LINEAR SYSTEM

A. Problem description

In this part, ARA is used for approximating a stable
linear system. The system is taken from [9], and the transfer
function is given by equation. Then the proposed ARA will
be compared with that of PSO [10], DE [11], GSO [12], ABC
[13] and CS [14]. The transfer function of the system is given
as follows:

G(s) =
kdkr1(τods+ 1)e−θds

(τrs+ 1)(τ1s+ 1)(τ2s+ 1)− kr2kd(τods+ 1)e−θds
.

(13)

where kr1 = 0.258, kr2 = 0.281, kd = 1.4494, θd = 1.4494,
τr = 0.3684, τ1 = 1.9624, and τ2 = 0.43256. It is desired to
find the second-order model

H2(s) =
k2,p(s+ τ2,z)

a2,0 + a2,1s+ s2
⋅ e−�2,ds. (14)

Therefore, the parameters to be determined are a2,1, k2,p,
τ2,z and τ2,d. Owing to the fact that the original system is
stable, each parameter lies in the interval [0,+∞).We use the
ARA to search for the optimal parameters of H2(s) in two
fixed search intervals, including [0, 10]4, and [0, 50]4.

B. Experimental platform and algorithms parameter settings

For all experiments, 50 independent runs are carried out
on the same machine with a Celoron 3.40 GHz CPU, 4GB
memory, and windows 7 operating system with Matlab 7.9,
and conducted with 40000 function evaluations (FES) as the
termination criterion. For all algorithms, the population size N
is set to 50. The other specific parameters of algorithms are
given as follows.

∙ PSO Settings: There are other three control parameters
denoted ω, c1 and c2. As suggested in [15], a linearly decreas-
ing inertia ω from 0.9 to 0.4 is adopted over the course of the
search. c1 and c2 are two coefficients of PSO and set to be
1.49445.

∙ DE Settings: There are other two control parameters
denoted F and CR in DE. F is a mutation step which is a
real constant and affects the differential variation between two
solutions. CR is a crossover rate which controls the change of
the diversity of the population. As suggested in [16], F is set
to be 0.5 and CR is 0.9, respectively.

∙ GSO Settings: There are other five important control
parameters denoted θ0, a, θmax, αmax, and lmax. We adopt
the same parameters setting with the original publication [12].
The θ0 is the initial head angle of each individual and is set to
(π/4, π/4, ⋅ ⋅ ⋅ , π/4). The constant a is given by round(

√
D),

where D is the dimension of the problem. The maximum
pursuit angle θmax is set to π/a2. The maximum turning
angle αmax is set to θmax/2. The maximum pursuit lmax is
calculated from the formula lmax = ∣∣U− L∣∣. Where Ui and
Li are the upper bounds and lower for the ith dimension.

∙ ABC Settings: There are other five control parameters
used in ABC: the number of the food sources N1, the number
of employed bees N2, the number of onlooker bees N3, the
umber of scour bees N4 and the value of limit. As suggested
in the original publication [13], N1 = N , N2 = N3 = N/2,
N4 = 1, limit = 100.

∙ CS Settings: There are other three control parameters
denoted Pa, α and β. Pa is a probability that a host can
discover an alien egg and is set to 0.25. α is the step size which
is related to the scales of the problem of interest. The β is a
parameter which is related to Lévy flights. In the experiment,
α is set to be 0.01 and β is 1.5, respectively. The above
three control parameters settings are suggested in the original
publication [14].

∙ ARA Settings: There are other five control parameters
in ARA. The optimal setting of the ARA parameters is very
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difficult to obtain and will be needed to further study in
the future. However, some advice is given to set the ARA
parameters as follows. The value of parameter λ can be either
1 or 2, which is again a heuristic step and decided randomly
with equal probability. The two step parameters are τ1 = 2 and
τ2 = 2. The maximum number of flowing Max Flow Number
is set to be 3. The size of RP is N.

C. Comparisons on the experimental results

The optimal approximate models and the corresponding
performance indices obtained by ARA are compared with other
algorithms in Table II and Table III. The convergence curves
of six algorithms are shown in Fig. 1 and Fig. 2.

TABLE II. COMPARISONS OF ARA, PSO, DE, GSO, ABC AND
CS IN OPTIMAL APPROXIMATION OF THE STABLE LINEAR

SYSTEM ON SEARCH SPACE [0, 10]4 .

Algorithm Approximate Model
PSO H2(s) =

0.0199772(s+6.9217567)

s2+1.2345129s+0.2191751
⋅ e−0.4489693s

J = 4.13e− 05

DE H2(s) =
0.0134725(s+9.9834769)

s2+1.2524285s+0.2131921
⋅ e−0.4087373s

J = 5.14e− 05

GSO H2(s) =
0.1615397(s+6.5991488)

s2+9.0476640s+1.6896933
⋅ e−1.0440751s

J = 1.12e− 02

ABC H2(s) =
0.1441361(s+5.8249825)

s2+6.5715485s+1.3307853
⋅ e−0.9790431s

J = 1.00e− 03

CS H2(s) =
0.0217212(s+6.5989635)

s2+1.2350808s+0.2271961
⋅ e−0.4611103s

J = 6.41e− 05

ARA H2(s) =
0.013448(s+10.0000000)

s2+1.2523644s+0.2131672
⋅ e−0.4085342s

J = 3.63e− 05

TABLE III. COMPARISONS OF ARA, PSO, DE, GSO, ABC AND
CS IN OPTIMAL APPROXIMATION OF THE STABLE LINEAR

SYSTEM ON SEARCH SPACE [0, 50]4 .

Algorithm Approximate Model
PSO H2(s) =

0.0668230(s+40.2589210)

s2+25.3339184s+4.2641112
⋅ e−0.9360568s

J = 8.53e− 03

DE H2(s) =
0.0065845(s+23.0111473)

s2+1.2630373s+0.2401598
⋅ e−0.3637589s

J = 7.92e− 06

GSO H2(s) =
0.4835010(s+14.9822682)

s2+46.9811375s+11.4819488
⋅ e−1.0716813s

J = 1.18e− 02

ABC H2(s) =
0.0266913(s+25.1777486)

s2+39.7536285s+8.9290529
⋅ e−1.0247974s

J = 1.04e− 02

CS H2(s) =
0.0266913(s+27.5172856)

s2+5.3300849s+1.1641676
⋅ e−0.7678470s

J = 5.43e− 03

ARA H2(s) =
0.0046815(s+34.7929249)

s2+1.2651678s+0.2581766
⋅ e−0.3509602s

J = 6.76e− 06

From the Table II and Table III, when the search space
is set to [0, 10]4, and [0, 50]4, the performance indices of
models obtained by ARA has slightly better than that of other
five algorithms. The results also suggest that a larger search
space does not evidently influence the performance of ARA in
approximating of the stable linear system.

V. DISCUSSION

It is also very interesting to compare ARA with PSO. Like
PSO, ARA is also introduced to deal with continuous function
optimization problems. However, it is not very difficult to find
that there are some major difference between ARA and PSO.
Firstly, PSO is inspired from the models of coordinated animal
motion and originally developed for simulating the animal
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swarm behavior, mainly fish schooling and bird flocking,
while ARA is proposed based on the particle system and the
observation of natural rainfall. Secondly, each particle in the
basic PSO contains a velocity item. Nevertheless, the concept
does not appear in ARA. Thirdly, ARA uses a new learning
strategy whereby all particles’ historical best information to
guide each particle to aim to move to a better position, which
may ensure the diversity of population and avoid premature
convergence.

Although the ARA and evolutionary algorithms draw inspi-
ration from completely different disciplines, ARA still shares
some similarities with the other evolutionary algorithms. For
instance, all of them make use of the notion of fitness to
guide search toward better solutions. Like most of evolutionary
algorithms or swarm intelligence algorithms, ARA is also a
population-based algorithm.

The above comparisons between ARA and other nature
based heuristic algorithms may offer a possible explanation
that why ARA could obtain better results on some optimization
problems and it is possible for ARA to deal with more complex
problems better.
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VI. CONCLUSION

In this paper, a novel meta-heuristic algorithm-ARA is
proposed for optimal approximation of a stable linear system.
Numerical simulation results and comparisons show that the
proposed algorithm is also effective and efficient as with other
algorithms. Moreover, they further show that the propose algo-
rithm may be a potential approach for unstable linear systems,
as well as other numerical optimization problems in control
and other related areas. In short, ARA, like other intelligent
algorithms, may be used as a general-purpose optimization
method for various practical optimization problems.
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