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Abstract—Community structure detection in large-scale com-
plex networks has been intensively investigated in recent years.
In this paper, we propose a new framework which employs the
ant colony clustering algorithm based on sampling to discover
communities in large-scale complex networks. The algorithm
firstly samples a small number of representative nodes from the
large-scale network; secondly it uses the ant colony clustering
algorithm to cluster the sampled nodes; thirdly it assigns the
un-sampled nodes into the detected communities according to
the similarity metric; finally it merges the initial clustering
result to sustainably increase the modularity function value of
the detection results. A significant advantage of our algorithm
is that the sampling method greatly reduces the scale of the
problem. Experimental results on computer-generated and real-
world networks show the efficiency of our method.

I. INTRODUCTION

Many systems in real world exist in the form of networks
that contain complex interactions between individuals, such
as biological networks, social networks, Web networks, etc,
which are known as complex networks. A complex network
is typically represented as an undirected graph G(V, E), where
V is the set of nodes and E is the set of edges. And a
distinguishing property of the complex networks is commu-
nity structure, which means that nodes within a group are
much more connected to each other than to the rest of the
network [1].

A lot of methods have been applied to complex networks
to detect community structure, and there are also some special
researches on community detection in large-scale networks
proposed along with the expansion of complex networks. For
instance, Newman proposed a fast algorithm for detecting
community structure based on Q metric, which is a classic
algorithm named Fast Newman (FN) [1]. He et al. presented a
new ant colony optimization for community detection in large
networks, named MACO, the approach uses ants to propagate
the label of its current position to others according to a
simulated annealing idea, whose purpose is to locally optimize
modularity Q, and introduces the thought of ”layer and rule”
to improve the performance [2]. Jin et al. gave a genetic
algorithm with local search (named LGA) for community
detection, and the idea of local search based on the analysis
on local monotonicity of function Q, meanwhile, to produce
the accurate and diverse initial population, the algorithm
adopted a label propagation based method [3]. Raghavan et
al. investigated a simple label propagation algorithm, known

as LPA, which has near linear run-time. And in this algorithm
every node is initialized with a unique label, and each node
adopts the label that most of its neighbors currently have
at every step, this process is repeated till all nodes have
a label that the maximum of their neighbors have [4]. The
research referred above employs different search mechanisms
to deal with the problem of community detection in large-
scale complex networks effectively, but these methods are
not sufficient to completely solve the problem along with the
expansion of network scale.

The community detection in large-scale complex networks
is different from the clustering problem of large-scale datasets,
and the main difference is they aim at different datasets which
have different topological properties. However, they are both
essentially the clustering problems, and both face with the
contradiction that the scale of data sets expands gradually in
realistic society, but the speed of clustering method is slower.
For clustering problem of large-scale datasets, there are some
useful researches; for instance, Zhou et al. developed a fast
DBSCAN algorithm, named FDBSCAN, which uses only a
small number of representative points as seeds to expand
the cluster [5]. Guha et al. raised CURE (Clustering Using
Representatives) algorithm, and the algorithm accomplished
clustering by combining the random sampling and partition-
ing [6]. However, as far as we know, there is no research of
using the similar sampling method to detect the communities
from large-scale complex networks till date. Hence, we employ
the sampling idea, and present a new Ant Colony Clustering
algorithm based on Sampling for community detection in
large-scale complex networks, called ACCS, and experimental
results show that the algorithm is fast and can gain good
clustering results.

The rest of this paper is organized as follows. Section
II presents the main idea, steps and description of ACCS
algorithm. Section III presents and analyzes the experimental
results. And at last, section IV concludes this paper.

II. ALGORITHM

A. The main idea

In [7], we have proposed an Ant Colony Clustering al-
gorithm based on Fitness perception and Pheromone diffusion
(called as ACC-FP) to detect community in complex networks.
Although the time complexity of ACC-FP is better than typical
algorithms, it is still hard to satisfy the needs of community
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detection in large-scale complex networks. To further improve
the time performance, we propose the ACCS algorithm in this
paper, and the basic thought is as follows.

At the beginning of ACCS algorithm, it selects some
representative nodes from the initial network as a new network
according to the degree, so as to reduce the scale of the
problem. Secondly it uses the ant colony clustering algorithm
to detect communities for the new network. And in this phase,
each sampled node is initialized to a community and randomly
distributed as an ant on the grid. Thereafter, the community
detection result will be evolved in a number of cycles. In
each cycle, each of the ants makes use of the perception of
the environment to move to a new location or stay in the
original location. Ant colony moving at each cycle forms a new
community result, whose quality is evaluated and employed
to update the pheromone of nodes. The evolution process
is repeated till all ants find and keep the most comfortable
positions, and the community structure detection of the new
network is accomplished. Then based on the community detec-
tion results obtained by above steps, this algorithm completes
the assignment of remaining nodes according to the similarity
between the un-sampled nodes and the formed community.
Finally, we merge communities by sustainably increasing the
Q value.

B. Sampling from the complex network

To reduce the scale of the problem, we use the sampling
method to select some representative nodes which can depict
the initial large-scale network. And the key question is whether
we can find the similar community structure between the new
network and the initial network. Ideally, we hope the sampled
nodes contain some nodes of each community, and the nodes
that belonging to different communities in the initial network
can also in different communities in the new network. There
are a lot of sampling methods in statistics that have been
used in the clustering of large-scale datasets. Considering the
topology characteristics of complex networks, the bigger value
of the node degree is, the greater attraction the node has on
the others [8]. Hence, we adopt a sampling method by means
of the node degree. And the sampling rate R is defined as:

R = n/N (1)

where N is the total nodes in the whole network, and n is the
number of the sampled nodes. We order all nodes in reverse
according to the node degrees, and choose the sampled nodes
by the sampling rate.

C. Clustering the sampled nodes

1) Ant colony clustering algorithm: The basic principle of
the ant colony clustering algorithm is as follows [7]. Each
ant is a simple agent who represents a node of the sampled
network. All ants have two states on a two-dimensional grid:
the active state and the sleeping state. When the ant’s fitness
is low, it has a higher probability to wake up and stays in
active state. It will leave its original position to search for a
more comfortable position to sleep. When an ant locates in
a comfortable position, it has a higher probability to sleep
until the surrounding environment changes and activates the
ant again. This process is repeated till the community structure
is obtained. During the process of ant colony clustering, we

a) The probability model. b) The roulette selection

Fig. 1. The sketch map of the ant moving strategy

proposed an ant moving strategy, into which we integrate the
label propagation in ACCS.

Fig.1 shows the ant moving strategy, Fig.1 (a) gives an ex-
ample to explain the probability model, and Fig.1 (b) presents
the roulette selection. In Fig.1 (a), first we suppose that there
are 11 red ants and 15 black ants on the grid, the ants with the
same color denote that they are in the same community. The
current position of ant i is uncomfortable, and it has edges
link to the ants j, k, l, m. And the areas of figure shown
in bold are the neighborhoods of the ant i, j, k, l, m in the
grid. As ant i feels uncomfortable at the current position, it
will turn into the active state, we select one node from all
which link to node i as the objective node. In the process of
choosing, we not only consider the combination of heuristic
information that includes the common neighbor information
and the degree of the node in the complex network, but also
employ the aggregation pheromone to reflect the clustering
situation in the grid; from this we can compute and get the
probabilities in light of Eq.(2) to Eq.(4), and the value 0.2,
0.2, 0.3, 0.3 in Fig.1 (a) means that ant j, k, l, m all has the
possibility to be the objective one. To determine the objective
node, we use the roulette selection as shown in Fig.1 (b), and
move ant i to an empty position in the neighborhood of the
objective ant on the grid. In the end, let ant i be sleeping state.

pij(t) =




[τj(t)]
α[ηj ]

β

P

l∈Neighbor(i)
[τl(t)]α[ηl]β

, j ∈ Neighbor(i)

0, otherwise
(2)

τj(t) =
∑
k∈A

τk→j(t)
dkj

(3)

ηj =

{
|c(i, j)|,

∑
l∈Neighbor(i)

|c(i, l)| 6= 0

d(j), otherwise
(4)

where pij(t) represents the possibility that the ant i moves to
an empty location of the ant j’s neighborhood where there is
an edge between two represented nodes in G(V, E), τj(t) is
the quantity of aggregation pheromone laying on the node j at
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time t(t is the number of iterations), A represents the node j’s
neighborhood in the grid, τkj(t) is the aggregation pheromone
on the node j imposed by the node k’s pheromone, and dkj

denotes the distance between two node j and k in the complex
network; ηj represents a local heuristic information, |c(i, j)|
is the number of common neighbor nodes for the two linked
nodes i and j, d(j) is the degree of the node j; Neighbor(i)
is the neighbor node set of node i in the complex network,
and parameters α and β determine the relative importance of
pheromone trail versus heuristic factor for the node j.

There are some other strategies which have been proposed
in the clustering phase, such as the aggregation pheromone
diffusion and updating model, the adaptive adjusting of fitness
threshold value, please see the specific formulas and introduc-
tions in [7].

2) Label propagation of ants: At the beginning of ant
colony clustering algorithm, each ant is seen as a community,
and carries a different label denoting the community to which
it belongs. In the process of evolution, after moving to the
new location, each ant updates its label according to the
neighbors which connect with it in the network and also in
its neighborhood on the grid, then selects the label that is the
maximum number of its neighbors belongs to.

The detail of ants’ label propagation is in the following.
Suppose the label of ant i at iteration t is li(t), there are k1 ants
in ant i’s neighborhood on the grid, and k2 ants out of k1 are
connected with ant i. Then ant i at iteration t updates its label
based on the labels of its neighbors that have already been
updated in the current iteration and that are not yet updated in
the last iteration. The formula of label updating is as follows:

li(t) = f(l1(t), · · · , lj(t), lj+1(t) . . . , lk2(t − 1)) (5)

where the function f on behalf of calculating the label that
appears most.

3) Assigning the un-sampled Nodes: When the phase that
clusters the sampled nodes is over, the next step is to assign the
un-sampled nodes into the detected communities naturally. We
use the similarity metric to evaluate the distance between nodes
and communities, and find the most comfortable community
that the node joins in, and the formula of the similarity is as
follows:

Si(J) =
∑
k∈J

aki (6)

where Si(J) denotes the similarity between the node i and
the community J . aki represents the connectivity relationship
between the node k that belongs to community J and the
node i, and aki is equal to 1 when the edge eki exists, and
zero otherwise. The formula counts all edges that the nodes
in community J link with the node i. The larger the value
of Si(J), the more similar the node with the corresponding
community. Thus we select the largest value of Si(J) as the
best community that the node i joins in, and assign the label
of the community J to the node i.

4) Merging the communities: In general, after the un-
sampled nodes assigning, we can consider the process of
community detection in large-scale complex network is com-
plete. However, it should be noted that if two communities
connected by several nodes, which we don’t choose in the

phase of sampling, it is likely to lead to community split.
So when accomplishing the assigning phase, we merge the
communities with the modularity Q as the objective function.
And the module function [1] is defined as:

Q =
M∑

s=1

[
ls
L

−
(

ds

2L

)2
]

(7)

where M is the number of communities, L is the number of
edges in the network, ls denotes the number of edges between
nodes in community s, and ds is sum of the degrees of nodes
in community s. If the edges within-community in the detected
result is less than the random one, the value of Q is negative.
On the contrary, when the value of Q is close to 1, it means the
corresponding community structure is very well. Thus, when
we merging two communities, if ∆Q which denotes the change
of Q is greater than zero, then we merge the two communities;
Otherwise, we will do nothing.

Algorithm 1 The ACCS algorithm
Input: Graph G(V,E): a complex network
Output: C: the set of communities
1. Initialization

Set parameters;
Compute the degree of nodes in G(V,E).

2. Sampling from the Complex Network
For i = 1 to N

Select n nodes from all as the new network according
to the sampling method.

3. Clustering the Sampled Nodes
For t = 0 to T ∗T is the maximum number of iterations

For i = 1 to n
Set ant’s label be i, and compute the value of fitness
function;
If ant i feels uncomfortable then

Let ant i move to a new position according to the
moving strategy;
Update the label of the ant i.

4. Assigning the Un-sampled Nodes
For i = 1 to N − n

For j = 1 to M
∗M denotes the number of detected communities ∗

Compute the similarity between the un-sampled nodes
and the communities;
Record the maximum of the similarity and
corresponding label;
Update the label of the un-sampled node.

5. Merging the Communities
For i = 1 to M

For j = 1 to M
Compute ∆Q;
If (∆Q > 0) then Merge the communities.

6. Output
Return the communities for the large-scale complex
network.

5) Algorithm description and complexity analysis: Sum-
ming up the above ideas, ACCS can be simply described as
the following four steps: Sampling nodes from the complex
network, clustering the sampled nodes, assigning the un-
sampled nodes, and merging communities. The algorithm is
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summarized in Algorithm 1. The time complexity of the
sampling phase is O(N + R · N · logN); the second phase
is O(T · k′ ·R ·N)(k′ ¿ R ·N), and you can see the specific
analysis in [7]; the third phase is O((N −R ·N) ·M); the last
phase is O(M · logM), and M ¿ N , so the O(M · logM) can
be negligible. In conclusion, the complexity of the algorithm is
O(N +R ·N ·logN +T ·k′ ·R ·N +(N−R ·N)·M), and it can
be simplified as O(N(1+R · logN +T ·k′ ·R+M −R ·M)).
As (1 + T · k′ ·R + M −R ·M) is a constant, the complexity
converges to O(N · R · logN)with the increase of N .

III. EXPERIMENT

In the experiment, we both use the computer-generated and
real-world networks to perform our empirical study. First, we
test the performance of ACCS on many computer-generated
networks to illustrate the capability of the approach. Then,
our algorithm is compared with FN [1] on seven large-scale
real-world networks with unknown community structures.

In ACCS algorithm, there is only a new parameter which
is the sampling rate R, the value of R is directly related to
the number of sampled nodes, and thus has a great influence
on the detection results. So in this paper, we set R = 0.2 in
the computer-generated networks, and set different values of
R in the real-world networks. The determination of the rest
parameters can be seen in [7].

A. Computer-generated Networks

We adopt some random networks with known community
structure, which have been used as benchmark datasets for
testing complex network clustering algorithms [9]. This kind
of random networks is defined as LFR(N, k, γ, φ, ϕ), where
N is the number of nodes in a network, k is the average degree
of nodes, γ is the exponent of the degree distribution, φ is the
exponent of the community size distribution, and ϕ is a mixing
parameter which is used to control the ratio of edges among
different communities. When ϕ > 0.5, the neighbors of a node
inside its community are less than the neighbors belonging to
the rest groups, in this case we consider the random network
don’t have the community structure.

Moreover, here we employ two widely used accuracy
measures, which are Fraction of Vertices Classified Correctly
(FVCC) [1] and Normalized Mutual Information (NMI) [10].
The FVCC is a simple measure to evaluate the clustering
accuracy while the NMI is adopted to estimate the similarity
between the true partitions and the detected ones. For NMI,
Given two partitions A and B of a network in communities, let
C be the confusion matrix whose element Cij is the number
of nodes of community i of the partition A that are also in the
community j of the partition B. The NMI(A,B) is defined
as follows:

NMI(A, B) =

−2
CA
P

i=1

CB
P

j=1

Cij log(CijN/Ci.C.j)

CA
P

i=1

(Ci.log(Ci./N)) +
CB
P

j=1

(C.j log(C.j/N))

(8)

CA(CB) is the number of groups in the partition A(B),
Ci.(C.j) is the sum of the elements of C in row i (column j),

Fig. 2. The NMI performances

Fig. 3. The FVCC performances

and N is the number of nodes. If A = B,NMI(A,B) = 1. If
A and B are completely different, NMI(A,B) = 0. A larger
value of NMI represents a greater similarity between A and
B.

Fig.2. and Fig.3. show the NMI and FVCC performances
on computer-generated networks for different values of N , ϕ
and k. For NMI performances, we can get at least about 90%
of the true communities for the networks with N = 1000 or
= 5000 until ϕ = 0.4. For FVCC performances, we can get
100%until ϕ = 0.4. FVCC takes the largest module that is
found in true communities as a correct identification, which
will take the subdivision of the network structure as the right
one, and our algorithm subdivides the network that leads to a
lower NMI. Fig.4. and Fig.5. show the performances of ACCS
with different degree, and from the figures we can see that the
ACCS would have high efficiency with the degree increases,
that means the algorithm would have high efficiency with the
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TABLE I. REAL-WORLD NETWORKS USED IN OUR EXPERIMENT

Networks V(G) E(G) Description

CA-GrQc 5242 28980 General Relativity and Quantum Cosmolog collaboration network [15]
Word 7207 31784 Semantic network [12]

Hep-th 8361 15751 High-Energy Theory collaboration Network [13]
CA-HepTh 9877 51971 High Energy Physics - Theory collaboration network [11]
Astro-ph 16706 121251 Astrophysics collaboration Network [13]
Internet 22963 48436 A Snapshot of the Internet by Mark Newman [14]

Email-Enron 36692 367662 Enron email communication network [15]

Fig. 4. The (1000, k, 1, 1, 0.2) performances

Fig. 5. The (5000,k,1,1,0.2) performances

networks connected tightenly. On the whole, the ACCS is
still able to effectively identify the communities in computer-
generated networks.

B. Real-world Networks

As real-world networks may have some different topolog-
ical properties from the computer-generated ones, here we

adopt several widely used large-scale real-world networks
to further evaluate the performance of our algorithm. The
networks that we use are listed in Table 1. The smallest of these
networks has 5242 nodes, and 28980 edges, while the largest
one has 36692 nodes, and 367662 edges. These networks
include the scientists collaboration network, the email network,
the word network and the internet network, which are provided
by Newman, Leskovec and Palla.

The community structure of the real-world networks is
always unknown, so we employ the most commonly used
module function Q [1] to evaluate the quality of our algorithm.
Table 2 shows the performance comparison between ACCS and
FN after many experiments.

As we can see from Table 2, the run-time of ACCS is
less than FN and ACC-FP for all different sampling rates and
different networks, and the result of Q-value is complicated,
the concrete analysis as follows:

(1) The comparison between FN and ACC-FP: In network
Word, the Q-value of ACC-FP is 0.4020, which is better than
FN. In network CA-GrQc, Hep-th and CA-HepTh, the Q-
value of ACC-FP is 0.5242, 0.5213 and 0.4436 respectively,
which are all less than FN. In the network Astro-ph, Internet
and Email-Enron, ACC-FP can not get result due to the
insufficient memory, and FN can get 0.3923, 0.4097 and
0.3742 respectively.

(2) The comparison between FN and ACCS: the Q-value
of ACCS is better than FN when R = 0.2 while inferior to
FN when R = 0.1 and 0.15, Both the network CA-GrQc and
Internet belong to this case. The Q-value of network Word in
ACCS is better than FN from R = 0.15 while inferior to FN
when R = 0.1. The Q-value of ACCS is inferior to FN when
R = 0.1, 0.15, and 0.2, and the network Hep-th, CA-Hepth,
Astro-ph, Email-Enron belong to this case.

(3) The comparison between ACC-FP and ACCS: In net-
work CA-GrQc, the Q-value of ACCS is 0.5253, which is
better than ACC-FP. In network Word, Hep-th and CA-HepTh,
the Q-values of ACCS are all less than ACC-FP. And in the
rest of the networks, the ACCS can also get good results while
the ACC-FP cannot.

In summary, the Q-value in our algorithm is comparable
with that in FN and ACC-FP, but the run-time is shorter
than FN and ACC-FP, especially with the increase of the
network size. FN takes modularity Q as the objective function,
when a new node joins the community, the algorithm need
to compute the value of Q which is time-consuming. In our
algorithm, sampling strategy reduces the scale of the network,
and computing the value of Q used in the community merging
phase lowers the computational complexity which compared
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TABLE II. COMPARE SACC AND FN IN TERMS OF Q-VALUE AND RUN-TIME

Networks
Q-value/Run-Time(s)

FN ACC-FP ACCS ACCS ACCS
(R = 0.1) (R = 0.15) (R = 0.2)

CA-GrQc 0.5250/44.37 0.5242/3820.21 0.4927/29.83 0.5187/38.47 0.5253/43.20
Word 0.3821/48.25 0.4020/4131.00 0.3722/32.70 0.3840/38.84 0.4061/46.21

Hep-th 0.5560/51.83 0.5213/2790.44 0.3923/35.08 0.4907/44.13 0.5171/49.22
CA-HepTh 0.4457/82.48 0.4436/5050.75 0.4043/46.56 0.4106/53.52 0.4355/59.58
Astro-ph 0.3923/190.69 - 0.3702/86.94 0.3743/98.86 0.3811/110.08
Internet 0.4097/370.48 - 0.3820/187.32 0.4002/213.02 0.4134/259.10

Email-Enron 0.3742/760.75 - 0.2948/230.58 0.3067/270.33 0.3594/402.43

with FN. On the other hand, the bigger the sampling rate is,
the more information we can gain from the original network,
and the bigger value of Q we can get, but meanwhile the
longer run-time the algorithm consumes, so the sampling rate
R is a balance between the Q-value and the run-time in our
algorithm.

On both the real-world networks or on the computer-
generated networks, the results obtained show the capability
of our algorithm effectively deals with community detection
in large-scale networks.

IV. CONCLUSIONS

The rapid development of social media platform provides
us a lot of real-world social networks, which makes us quickly
enter the era of big data, meanwhile, taking the reason that re-
veal unknown relationships between nodes and provide useful
information for unknown nodes into account, more and more
researchers focus on the community detection of large-scale
complex networks. In this paper, an ant colony clustering al-
gorithm based on sampling to detect community in large-scale
complex networks has been proposed. The algorithm employs
a sampling method, which greatly reduces the complexity of
the algorithm. And it uses the idea of ”label propagation” in
the clustering phase, so as to distinguish which community the
node belongs to. Moreover, we propose a new similarity metric
between nodes and communities to obtain a partition of the
initial network. Experimental results confirm that ACCS can
not only greatly improve the speed of detecting community,
but also has the ability to balance between getting high quality
solutions and operation efficiency. Future research will aim at
making ”clustering the sampled nodes” and ”assigning the un-
sampled nodes” synchronized to improve quality results.
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