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Abstract—Clustering is a field of Data Mining that deals with
the problem of extract knowledge from data blindly. Basically,
clustering identifies similar data in a dataset and groups them
in sets named clusters. The high number of clustering practical
applications has made it a fertile research topic with several
approaches. One recent method that is gaining popularity in the
research community is Spectral Clustering (SC). It is a clustering
method that builds a similarity graph and applies spectral
analysis to preserve the data continuity in the cluster. This work
presents a new algorithm inspired by SC algorithm, the Co-
Evolutionary Multi-Objective Genetic Graph-based Clustering
(CEMOG) algorithm, which is based on the Multi-Objective Ge-
netic Graph-based Clustering (MOGGC) algorithm and extends
it by introducing an adaptative number of clusters. CEMOG
takes an island-model approach where each island keeps a
population of candidate solutions for ki clusters. Individuals in
the islands can migrate to encourage genetic diversity and the
propagation of individuals around promising search regions. This
new approach shows its competitive performance, compared to
several classical clustering algorithms (EM, SC and K-means),
through a set of experiments involving synthetic and real datasets.

I. INTRODUCTION

Clustering is a field of Data Mining whose goal is to group
data in entities named clusters. It exploits hidden similarities
in collections of data. The large corpus of literature in this field
is aligned with the high number of applications of clustering in
several domains such as Biomedicine [1], marketing [2], image
segmentation [3] and virtual worlds [4] amongst others.

There are several approaches for clustering. The classical
ones are K-means [5] and Expectation Maximization (EM) [6].
These two algorithms come from Statistics, and both build a
cluster model based on the assumption of an underlyng sta-
tistical distribution of the data. If this assumption is incorrect,
or there is no knowledge about the model, the parametric
clustering methods fail.

Non-parametric clustering comes to overcome the limi-
tations of parametric clustering. Among the different non-
parametric methods, Spectral Clustering (SC) [7] is revealing
as one promising approach. SC represents data as a graph
where each node is an instance and each edge represents the
similarity among two data, then SC groups data in the graph
by means of spectral analysis. SC has several problems related
to its robustness and graph storage [8].
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Clustering has taken much benefit of using Evolutionary
Algorithms (EAs). Clustering is essentially a search problem
of a function that maps data into clusters, just the type of
problem that EAs handle well. Not surprisingly there are
several approaches of evolutionary clustering [9].

In a previous work, we proposed a Genetic Graph-based
Clustering algorithm (GGC) [8]. It combines the classical K-
Nearest Neighbourhood (KNN) algorithm and the Minimal
Cut measure to search the best cut of the graph. Then we
extended GGC with the Multi-Objective Genetic Graph-based
Clustering Algorithm (MOGGC) [10]. This extension intro-
duces a Multi-Objective Genetic Algorithm [11] with graph-
continuity metrics to achieve lower memory consumption and
increased solution quality. The main drawback of MOGGC is
the need of a priori knowledge about the number of clusters,
k, which limits the applications of the algorithm.

This paper presents the Co-Evolutionary Multi-Objective
Genetic Graph-based Clustering (CEMOG) algorithm. The
contribution of CEMOG is the development of a new par-
titional clustering algorithm that solves the k-determination
problem of MOGGC. To this end, CEMOG uses coevolution to
simulate variable-length chromosomes in a Genetic Algorithm.
In this way, the value of k is introduced in the evolutionary
search and eventually the Pareto front provide a set of k
corresponding to the trade-off of the solutions.

The paper is structured as follows. First we introduce the
related work, section 3 describes in detail CEMOG followed
by the experimental evaluation in section 4. Finally, the last
section summarizes the conclusions and future work.

II. RELATED WORK

Over the last years evolutionary clustering has attracted
much research interest, yielding a large literature corpus.
Evolutionary Computation is a vast field that includes many
families of algorithms, all of them inspired in natural selec-
tion. Perhaps the most popular EA for clustering is Genetic
Algorithms (GAs), where a population of candidate solutions
is codified in strings named chromosomes. Then GAs apply a
set of genetic operators (typically mutation and crossover) and
a stochastic selection operator based on a fitness function to
breed the next algorithm iteration. Hruschka et al. [9] presents
a complete survey on this topic.

Another approach to evolutionary clustering with GAs
comes from Multi-Objective Genetic Algorithm (MOGA).
In this approach, the selection of the individual does not
depend on one criteria, but several ones. Most of the ap-
proaches to multiobjective evolutionary clustering use, with

2724

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



different names, inter and intra cluster distances, i.e., they
try to minimize the distance between data and their cluster
centroids, while maximizing the distance among the clusters
centroids. Some authors claim the superiority of this approach,
for instance, Ripon and Kwong [12] stated that tradicional
single objective algorithms suffer premature convergence that
multiobjective algorithms solve. It is clear that sometimes
using a single criteria loses important pieces of information
that would be exploited in benefit of the search.

There are some proposals of MOGAs with adaptative num-
ber of clusters. Handl et al. proposed the Multi-Objective
Clustering with automatic K-determination (MOCK) [13],
a graph-oriented clustering algorithm on a MOGA. In this
approach the chromosomes represent non-weighted graphs
with an integer representation. Each loci represents a data
instance and the allele a link to another instance. With this rep-
resentation, a cromosome may contain several subgraphs, i.e.,
graphs without links to other graphs. These isolated subgraphs
represent the clusters. Despite the graph-based representation,
this approximation cannot be considered spectral clustering
because of the lack of spectral analysis. Matake et al. proposed
an improvement of MOCK [14] to compute k more efficiently
and make the algorithm well suited for large datasets.

Another example of adaptative k multiobjective clustering
algorithm is the Variable-Length Real Jumping Genes Genetic
Algorithm (VRJGGA), proposed by Ripon et al. [12]. VR-
JGGA is an adaptative version of another algorithm named
JGGA. It uses a Variable-Length Genetic Algorithm with a
standard cluster centroid representation in a chromosome of
floats. The variance of chromosome lengths is introduced with
two custom genetic operators: cut-and-paste and copy-and-
paste.

On the contrary than previous partitional clustering al-
gorithms, Banerjee [15] used a MOGA to solve the fuzzy
clustering problem with adaptative k and noisy data. This
approach uses a quite complex representation scheme with
each individual divided into two independent strings: one
distinguish between clean and noisy data while the other one
keeps the result of the partition.

Multiobjective spectral clustering is a recent topic with a
scarce literature. One example is Wang [16], who proposed an
evolutive multiobjetictive spectral algorithm clustering algo-
rithm for datasets that contain different views of the same data,
for instance, because data come from heterogeneus sources. As
a consequence, the dataset is represented by means of several
graphs. In this context the algorithm is able to automatically
determine k by means of Pareto optimization.

To the author’s knowledge, the only attempt to address
spectral clustering with multiobjective computational intel-
ligence used Harmony Search Algorithm (HSA), this is a
search method inspired by musicians improvisation that has
an increasing number of applications. Li et al. proposed the
Spectral Clustering-based Adaptive Hybrid Multi-Objective
Harmony Search Algorithm (SCAH-MOHSA) [17], which is
a complex algorithm for community detection in graphs; it
uses spectral clustering with a Multi-Objective HSA and local

search.

III. THE CO-EVOLUTIONARY MULTI-OBJECTIVE GENETIC
GRAPH-BASED CLUSTERING (CEMOG) ALGORITHM

This section describes the Co-Evolutionary Multi-Objective
Genetic Graph-based Clustering (CEMOG) algorithm. CE-
MOG is a continuity-based clustering algorithm that was
created using MOGGC [10] as a starting point. MOGGC was
created to improve the robustness of the solutions reducing
the dependency to the metric parameters and the search space.
The main improvement of this new algorithm, compared with
MOGGC, is that it is not necessary to give an initial number
of clusters.

This approach combines MOGA with two objectives to
guide the heuristic search using a co-evolutionary structure.
CEMOG is applied in three steps:

1) Similarity Graph generation: A Similarity Function
(usually based on a kernel function) is applied to the
data instances, connecting all the points with each other.
It generates the Similarity Graph.

2) Genetic search: CEMOG uses a MOGA to find a
good graph partition. Giving an initial range of possible
number of clusters [kmin−kmax], the MOGA generates
an initial population, with a sub-population per k value,
of possible solutions and evolves them using a fitness
function to guide the algorithm to find the best solution.
It stops when a good solution is found, or a maximum
number of generations is reached.

3) Clustering association: The best solution of the Pareto
Front is chosen as a solution of the algorithm and the
data instances are assigned to the clusters according
to the solution chosen and the sub-population who has
generated this solution. The selection criterion is explain
in Section III.F.

A. Encoding

The encoding is a simple label-based representation [9]
that follows the classical integer representation of GAs. Each
individual is a n-dimensional vector (where n is the number
of data instances) which has integer values between 1 and
the number of clusters of the sub-population it belongs. Each
individual represents a cluster selection of the dataset.

B. The k-adaptive approach

The design which helps to achieve the k-adaptive num-
ber of clusters goal is a co-evolutionary approach combined
with a multi-objective algorithm. The co-evolution is focused
on two points of view which are described below: macro-
evolution (i.e., the evolution of the whole population) and
micro-evolution (i.e., the evolution of each sub-population).

C. Macro-evolution and the exchanger operator

We use an arbitrary graph topology for migrating individ-
uals from sub-populations. The assumption is that all sub-
populations have the same representation and same goals to
solve (see Fig. 1).
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Gen. 1 Gen. 2 Gen. 3

SPopkmin

SPopkmin+1

SPopkmax−1

SPopkmax

. . .. . .

Fig. 1: Once the range of k values is set between kmin
and kmax, the set of sub-populations is generated for each
k value. The different individuals are able to jump among
sub-populations in each generation.

Each sub-population represents a possible k-value ranged
from kmin to kmax. These values generate a higher search
space which complicates the genetic search; nevertheless, the
new methodology helps to find a satisfactory solution in
a range of possible number of clusters instead of a fixed
one. The algorithm looks for the solutions in the different
sub-populations. Moreover, it also uses a exchanger to send
individuals from a population to another, modifying the envi-
ronment of the different sets of chromosomes and encouraging
genetic diversity. This exchanger improves the quality of the
solutions and reduces the local solution convergence (e.g.,
local minimum), compared with the simple modification of the
number of clusters in MOGGC which does not improve the
convergence. The exchanger developed in CEMOG exchanges
two random couples of each sub-population with its neighbour
sub-populations, i.e., a couple of individuals of population
SPopn is send to SPopn+1 and other couple to SPopn−1
(see Fig. 1). The genetic operators will modify the number of
clusters of these solutions to adapt them to the new population.

D. Micro-evolution and the MOGA operators

On the one hand, CEMOG, as a MOGA, uses the SPEA2 al-
gorithm for the genetic evolution of the set of solutions whithin
the sub-populations. SPEA2 starts with two populations P0

and P0, the first is known as the internal population and the
second is the external population which is initially empty (see
line 1 of Algorithm 1). During each generation, the algorithm
computes the fitness of both populations (Pt and Pt), and
takes the non-dominant individuals to the external population
of the next generation (see lines 3 and 4 of algorithm 1).
Whether the external population is bigger than the initial

size, it is reduced, and when the size is smaller, it is filled
with dominated individuals of the original populations using
a truncation method (see lines 5 to 9 of Algorithm 1). Next, it
fills a mating pool with individuals of Pt+1 selected by binary
tournament and applies the genetic operations to generate the
new population Pt+1 (see lines 13 and 14 of Algorithm 1).
This algorithm keeps a copy of the best Pareto Front selection
of each generation in the external population.

On the other hand, as a clustering algorithm, CEMOG
begins with a Ksize-Similarity Graph in the same way that
the Spectral Clustering algorithm [7]. The Ksize value limits
the memory used to a matrix Ksize×N where N is the number
of data instances.

Finally, the MOGA operators used can be briefly summa-
rized as follows:
• Selection: The selection process is a tournament selection

with size n.
• Crossover: The crossover exchanges strings of numbers

between the two chromosomes (both strings have the
same length).

• Mutation: The mutation probability is adaptive, when an
allele is selected for mutation, the operator changes its
value with a random integer. It works as follows:

1) For each chromosome, it randomly chooses if the
mutation is applied. The mutation probability is
fixed at the beginning.

2) When a chromosome is chosen, it decides the alleles
which are mutated. The decision considers the prob-
ability of the allele to belong to the cluster which
has assigned. If the probability is high, the allele
has a low mutation probability and vice versa. In this
algorithm, this probability is calculated applying the
metric defined in the fitness function to one allele.

3) The alleles are mutated. The new value is a random
number between 1 and the number of clusters.

E. The fitness objectives

The fitness function is divided into two objectives: improve
the data continuity degree and cluster separation.

1) Data continuity degree: This objective function is ap-
plied to each cluster. It calculates the total edges sum for each
minimal spanning tree of each connected component of the
Ksize-Graph G (see Algorithm 2). Starting in the first node
(it supposes, without loss of generality, that the nodes are
numerically ordered), the algorithm generates two lists: the
first one initially contains all the nodes and the second one
is empty (see line 1 of Algorithm 2). While any of the lists
contain at least one element, the first list will give to the second
all nodes connected within the neighbourhood of the current
node and internally will count the minimal spanning tree edges
(see lines 3 to 9 of Algorithm 2). Due to the graph is not
full-connected, this process will follow with each connected
component (see lines 10 to 17 of Algorithm 2). This metric
measures the continuity of the data as a graph structure inside
the clusters. The arithmetic average value of the metric is the
result of this objective.
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Algorithm 1 Pseudo-code of the SPEA2 algorithm [18]

Require: N (population set); N (archive size); T (genera-
tions)

Ensure: A (non-dominated set) .
1: P0 = random population; P 0 = ∅;
2: for t = 0→ T do
3: Calculate Fitness of Pt and Pt.
4: Copy non-dominated individuals in Pt and Pt to Pt+1

5: if size(Pt+1) > N then
6: reduce Pt+1

7: else
8: Fill Pt+1 with dominated individuals in Pt and

Pt
9: if t == T or any stopping condition is satisfied then

10: Break the loop.
11: Fill the mating pool with individuals of Pt+1 selected

by binary tournament.
12: Apply the recombination and mutation to the mating

pool and set Pt+1 to the resulting population.
13: return A = {non-dominated individuals in Pt+1}

Algorithm 2 Data continuity degree algorithm

Require: C cluster with an order relationship
Ensure: ν (connectivity factor) .

1: Let L1 = C and L2 = ∅ and set ν = 1;
2: Move the first element of L1 to L2;
3: while L1 6= ∅ or L2 6= ∅ do
4: Set vi = the first element of L2 (Extract it from the

list);
5: for vj ∈ G do
6: if vj ∈ L1 and vj > vi then
7: Move vj from L1 to L2;
8: ν ++;
9: if L2 = ∅ then

10: if L1 = ∅ then
11: break;
12: Move the first element of L1 to L2;
13: return ν/|C|;

2) Clusters separation: The second objective of the fitness
function is the cluster separation. To ensure the cluster sepa-
ration the following metric has been applied to each cluster:∑

vi∈C

∑
vj∈G

{wij | vj /∈C}
|G|−|C|

|C|
(1)

where C is a cluster, G is the Ksize-Graph, vi is the vertex
i, wij is the edge weight value from node i to node j. It
calculates the arithmetic average value of the edge weights
between the different clusters.
The MOGA implementation is necessary because both objec-
tives are opposites: the first tries to improve the inter-clusters
distance and the second the intra-cluster distance. In the first
case, a single cluster would guarantee a maximum value while,

in the second case, a cluster per instance would guarantee the
maximum value.

F. Choosing the solution from the Pareto Front

Due the necessity to choose one of the solutions from the
Pareto Front, the experimental results (see Section IV) show
that the solution with the highest value of the cluster separation
metric in the Pareto Front always obtains better accuracy
values compared with human-based classification. Therefore,
this value has been chosen as the algorithm solution.

IV. EXPERIMENTAL RESULTS

This section shows the results of the experiments that we
carried out to assess the hability of CEMOG to find good k-
values and compare its performance with similar algorithms.
The first part presents the datasets which have been used to test
the algorithm. The second one describes the evaluation metrics
and the experimental set-up. Finally, the last part shows the
results on the synthetic and real-world datasets which have
been taken from the literature.

A. Evaluation Datasets

This section describes the different datasets which have been
used for the algorithm testing phase. Synthetic and real world
datasets have been used to check the algorithm accuracy. These
datasets have been extracted from different works related to
clustering problems.

1) Synthetic datasets: The datasets which have been chosen
are:
• Aggregation (Ag) [19]: This dataset is composed by 7

clusters, some of them can be separated by parametric
clustering.

• Jain (Jn) [20]: This dataset is composed by two surfaces
with different density and a clear separation.

• R15 [21]: This dataset is divided in 15 clusters which are
clearly separated.

• Spiral (Sp) [22]: In this case, there are 3 spirals close to
each other.

2) Real-World datasets: The datasets which have been
chosen have been extracted from the UCI database [23]. They
are the following ones:
• Glass (Gl): It contains 6 clusters with 9 attributes each

and 214 instances. It also has been analysed in some
clustering works as [24].

• Libras Movement (LM): It contains 15 clusters with 90
attributes each and 24 instances per class (total 360). It
is identified for classification and clustering in the UCI
database [23].

• Ozone Level Detection (OL): It contains 2 clusters with
73 attributes and 2536 instances. It has been chosen
because of its simplicity according to the number of
classes.

• Wine Quality (WQ) [25]: It contains 6 clusters with 11
attributes each and 4898 instances of white wine. it is
also identified for classification and clustering in the UCI
database [23].
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SPop Size kmin kmax Gen. Cross. Mut. Eli.
Ag 200 5 9 500 0.1 0.01-10−4 10
Jn 50 2 6 200 0.2 0.2-10−4 5

R15 50 13 17 500 0.2 0.3-10−4 5
Sp 200 2 6 200 0.1 0.01-10−4 10

TABLE I: Best parameter selection (SubPopulation size,
Generations, Crossover probability, Mutation probability and
Elitism size) used in CEMOG algorithm for synthetic datasets
and the best fitness value obtained. The tournament size is 2.

• Page Block (PB): It contains 5 clusters with 10 attributes
each and 5473 instances. It has been chosen because of
its complexity.

B. Evaluation Techniques and Experimental Setup

The CEMOG algorithm has been compared against different
clustering algorithms. These algorithms have been taken from
the literature and from our previous work. The classical
algorithms which have been chosen are K-means, Expectation
Maximization and Spectral Clustering. In addition CEMOG
has been compared against MOGGC, its previous implemen-
tation [10].

The similarity between the clusters has been calculated
using the following similarity metric:

sim(Ci, Cj) =
1

2

(∑n
q=1 δ

q
Ci
δqCj

|Ci|
+

∑n
q=1 δ

q
Ci
δqCj

|Cj |

)
(2)

where n is the number of instances, Ci, Cj the clusters which
are compared, |Ci| is the number of instances of cluster Ci
and δqCi

is the Kronecker δ defined by:

δqCi
≡ δCi

(xq) =

{
0 if xq /∈ Ci
1 if xq ∈ Ci

(3)

where xq is an element. The evaluation process has calculated
the maximum accuracy for all the algorithms. All of them have
been executed 150 times per dataset. The metric which has
been applied with K-means and EM is the Euclidean Metric
defined by:

||xi − xj || =

√√√√ d∑
q=1

(xqi − x
q
j)

2 (4)

Where xi = (x1i , . . . , x
d
i ) and xj = (x1j , . . . , x

d
j ).

And the metric for SC, MOGGC and CEMOG which has
been used in the Similarity Graph Generation is the Radial
Basis Function (RBF) defined by [26]:

s(xi, xj) = e−σ||xi−xj ||2 (5)

The σ value has been calculated using the approximation
method elaborated by Andrew Ng in [27].

C. Synthetic results for the CEMOG algorithm
Tables I and II show the parameters selection for MOGGC

and CEMOG, respectively. This parameters have been chosen
after a deep search of parameters in several ranges. In these
cases, the σ parameter to generate the similarity graphs of
MOGGC and CEMOG is 100 (it has been approximated using
the method described by Ng et al. [27]). The best accuracy
results were selected for the algorithms. Table III shows the
comparison of all the algorithms considered.

Fig. 2 depicts the Pareto Front of CEMOG applied to
the synthetic datasets. Fig. 3 shows the accuracy values for
different sub-populations of each dataset. The criterion used
to choose these solutions prioritizes the cluster separation
objective in the Pareto Front considering the solution of the
data continuity objective.

CEMOG and MOGGC correctly cluster the Aggregation
dataset. The Pareto Front defined by MOGGC (see Fig. 2)
shows a dominant solution (mark with ’x’ at the top-rigth
corner). This winner solution belongs to the k = 7 sub-
population which is the solution with the best accuracy (see
Fig. 3). EM, K-means and SC have problems related to the
data form. These problems might be a consequence of local
minimum convergence in the search space.

The Spirals dataset is impossible to cluster using parametric
algorithms and the Euclidean distance (that is, K-means and
EM). This dataset is a perfect example for continuity-cluster
separation algorithms such as SC, MOGGC or CEMOG. For
that reason, all of them achieves the best accuracy values (see
Table III). Furthermore, analysing the Pareto Front defined
by CEMOG for Spirals, there is only one dominant solution
(marked with ’x’ at the to right corner), corresponding to k =
3 sub-population, which is the sub-population with the best
accuracy (see Fig. 3).

The Jain dataset is also difficult for parametric clustering. It
produces low accuracy values for EM and k-means compared
with SC, MOGGC and CEMOG. This dataset is usually used
to test continuity-clustering algorithms modifying the density
of the clusters, in this case, the first cluster has clearly lower
data density than the second cluster. According to the Pareto
Front, CEMOG also has a clear dominant solution (marked
with ’x’ at the top-right corner) which is the k value with best
accuracy. MOGGC and SC have also good results.

In the case of the R15 dataset, the experiments show that
EM obtains the best results for classical algorithms. SC obtains
worse results than EM due to the noisy information and,
therefore, the boundaries are not clearly defined. MOGGC
obtains the maximum accuracy value. In the CEMOG case,
the Pareto Front is defined by several solutions which cover
different k values (see Fig. 2). In order to define the best
solution, the cluster separation objective has been prioritized
over the data continuity objective, as was mentioned before.
Applying this criterion, the solution chosen is the top ’x’
instead of the top right. The accuracy value of the solution
is the maximum as Fig. 3 shows.

Finally, Fig. 3 shows an interesting remark. The k-values
close to the best accuracy values have generally more accuracy
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Data Pop. Gen. Cross. Mut. Eli.
Ag 1000 200 0.1 0.01-10−4 50
Jn 100 200 0.4 0.03-10−4 10

R15 100 2000 0.4 0.01-10−4 50
Sp 1000 200 0.4 0.03-10−4 50

TABLE II: Best parameter selection (Population, Generations,
Crossover probability, Mutation probability and Elitism size)
used in MOGGC algorithm for the different synthetic datasets
and the best fitness value obtained. The tournament size is 7.

Data K-means EM SC MOGGC CEMOG
Ag 86.29% 78.68% 88.66% 100% 100%
Jn 78.28 % 56.83% 100% 100% 100%

R15 80.50 % 99.66% 81.33% 100% 100%
Sp 34.61 % 34.93% 100% 100% 100%

TABLE III: Best accuracy values obtained by each algorithm
using the synthetic datasets.

than the rest, except for Jain, i.e., it seems that the distance
of k to the optimal k is correlated with its accuracy. This
observation suggests a way to automatically set the kmin and
kmax values.

D. Real-world results for the CEMOG algorithm

This section shows the experimental results of the CEMOG
algorithm applied to real world datasets. We first describe the
datasets preprocessing followed by the experimental results.
As in the previous section, CEMOG is compared against the
classical clustering algorithms (K-means, EM and SC) and
MOGGC.

1) Preprocessing: The preprocessing process is divided in
two steps: The first step studied the variables through his-
tograms and correlation diagrams to reduce the dimensionality.
The information provided by this phase showed the attributes
which were useless because, for example, were constants or
had a high correlation (more than 0.85 if we consider that the
correlation values is in range [0, 1]) with other variables. This
means that they may have variated the clustering results if
they are not eliminated because of the redundant information.
Those instances with missing values have also been deleted.
Table IV shows results of the dimension reduction.

The second preprocessing step consisted on normalization.
First, the attributes with outliers were recentralized, then the
same range was applied for all. We combined Z-score to
recentralize the distributions and MinMax to fix the range of
all the values between 0 and 1.

Data I. Attributes F. Attributes I. Instances F. Instances
LM 90 18 360 360
OL 73 28 2536 1867

TABLE IV: Dimension reduction. This table shows the Initial
Attributes and Instances with the Final Attributes and Instances
after removing highly correlated variables and variables with
missing values.
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Fig. 2: Pareto Front generated by the CEMOG sub-populations
chosen for the synthetic datasets. From top to bottom: “Ag-
gregation”, “Spiral”,“R15” and “Jain”. The arrows mark the
best solution.
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Fig. 3: Accuracy results for CEMOG algorithm ranged from
kmin to kmax. The legend shows the values for the range per
synthetic dataset.

Glass (Gl), Wine Quality (WQ) and Page Block (PB)
datasets contain a few number of attributes. After the analysis
of the variables, the correlation showed that the dimensionality
reduction was not necessary. However, in the case of Libras
Movement (LM) and Ozone Level Detection (OL) datasets,
there were a lot of attributes that did not contribute to
the analysis due to the high correlation between them (see
Table IV). These attributes were eliminated leaving 18 of 90
attributes for Libras Movement and 28 of 73 for Ozone Level
Detection. In the Ozone Level Detection dataset, there were
several instances with missing values, all these instances were
omitted for the analysis (see Table IV).

2) Algorithm execution: The experiments followed the
same procedure than the previous synthetic datasets experi-
ments. The value of σ was approximated to 100 for Glass, 2
for Libras Movement and Ozone Level Detected and 0.1 for
Wine Quality and Page Block. The results and best k value for
CEMOG are shown in Table VI.

In the following, we describe the results for each dataset.
Glass dataset is difficult for clustering; the results show that

both, the classical and the new algorithms have problems to
blindly separate the classes. In this case, SC obtains the best
classical algorithms results. MOGGC obtains good results -
better than the classical algorithms indeed; however, CEMOG
obtains the best results. A remarkable fact is that the k
selection process has chosen k = 5 while the original number
of classes is 7. This might explain why the other clustering
algorithms have worse results than CEMOG.

Libras Movements dataset is also a difficult classification
case, again the classical and the new algorithms have problems
to blindly separate the classes. In this case, k-means obtains
the best results from the classical algorithms. MOGGC obtains
the best general results and CEMOG obtains similar results
than MOGGC because the k selection has chosen a different
k value of the number of classes.

Ozone Level Detected is easier for the continuity-clustering

Data SPop. kmin kmax Gen. Cross. Mut. Eli.
Gl 100 5 9 100 0.5 0.01-10−4 10

LM 100 13 17 200 0.5 0.01-10−4 10
OL 100 2 6 200 0.5 0.01-10−4 10
WQ 100 5 9 2000 0.4 0.01-10−4 50
PB 1000 3 7 1000 0.4 0.2-10−4 50

TABLE V: Best parameter selection (Sub-Population, Genera-
tions, Crossover probability, Mutation probability and Elitism
size) used in CEMOG algorithm for the different real datasets
and the best fitness values obtained. The tournament size is 7.

Data K-means EM SC MOGGC CEMOG
Gl 45.79% 47.20% 47.20% 47.66% 52.34% (k=5)

LM 46.94% 43.61% 46.11% 50.00% 48.05% (k=14)
OL 76.06% 60.15% 94.38% 96.46% 96.46% (k=2)
WQ 23.64% 28.50% 40.08% 40.08% 40.08% (k=7)
PB 45.30% 56.97 % 75.15% 75.15% 75.15% (k=5)

TABLE VI: Best accuracy values obtained by each algorithm
during the experimental results applied to the UCI datasets.

algorithms. In this case, SC, MOGCC and CEMOG obtain the
best classification results, all with the same accuracy value.

Wine Quality is a difficult problem for clustering techniques.
The worst results are achieved by the parametric algorithms
(the accuracy is lower than the 30%). The results of the non-
parametric techniques are the same.

Page Block is also a difficult problem for the parametric
approximation. These algorithms have achieved low accuracy
while SC and MOGGC and CEMOG have achieved the
same solutions, with better accuracy. Analysing the parametric
clustering results, they show that the data instances within the
clusters should be separated between them instead of having
a clear union between them.

Due to SC, MOGGC and CEMOG are focused on
continuity-based clustering, it might be the reason because
these algorithms achieve similar results. The main advantage
of CEMOG compared against the others is that it does not
need a fixed number of clusters and also find more solutions
which can be promising.

V. CONCLUSIONS AND FUTURE WORK

This work proposes CEMOG, a new k-adaptive spectral
clustering algorithm, inspired by MOGGC, that combines Co-
Evolution with Multi-Objective Genetic Algorithms. CEMOG
uses a simple integer encoding in a GA combined with
the SPEA2 algorithm. In comparison to MOGGC, the new
algorithm is a k-adaptive approach,which obtains good results
in a bigger search space. The results show that the new
algorithm obtains excellent results that are better than the
classical algorithms, and has a similar (or better) clustering
results than previous obtained using MOGGC.

The future work will be focused on several improvements
that could be made to CEMOG. On the one hand, the effects
of noisy information should be deeply analysed, whereas, on
the other hand, the kmin, kmax selection might be also an
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adaptive process. Finally, other fitness functions which could
improve the CEMOG algorithm convergence, and the clusters
quality, could be studied.
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