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Abstract—Automatic summarization is emerging as a feasible
instrument to help biomedical researchers to access online
literature and face information overload. The Natural Language
Processing community is actively working toward the develop-
ment of effective summarization applications; however, automatic
summaries are sometimes less informative than the user needs. In
this work, our aim is to improve a summarization graph-based
process combining genetic clustering with graph connectivity
information. In this way, while genetic clustering allows us to
identify the different topics that are dealt with in a document,
connectivity information (in particular, degree centrality) allows
us to asses and exploit the relevance of the different topics.
Our automatic summaries are compared with others produced
by commercial and research applications, to demonstrate the
appropriateness of using this combination of techniques for
automatic summarization.

I. INTRODUCTION

Information overload has become a serious problem for
researchers in biomedicine-related disciplines [1]. The number
of biomedical works that are published is growing exponen-
tially, so that nowadays the PubMed database stores more than
19 million references to journal articles [2]. This information
overload undermines scientists daily work, since they are
unable to find and read all the relevant literature that is
published.

Automatic summarization is a Natural Language Processing
task (NLP) that aims to deal with this problem by automati-
cally generating an abbreviate and accurate representation of
a document (or set of documents) that serves as an indicative
summary of the content of the document(s) [3]. In this way,
summaries provide the most important information from the
sources in order to help researchers to anticipate the content of
the documents before deciding which of them to read further.

Graph-based methods are being increasingly used in
biomedical data mining and summarization tasks [4]. Graphs
have demonstrated to be very powerful tools for capturing and
representing the semantics of texts, especially when dealing
with highly specialized documents such as biomedical articles
[5], [6]. In this way, the documents are usually represented
as graphs of biomedical concepts (the nodes in the graph)
and relations among them (the links in the graph). Concepts
and relations are extracted from domain ontologies (such
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as the Unified Medical Language System (UMLS) [7], the
Systematized Nomenclature of Medicine - Clinical Terms
(SNOMED-CT) [8] or the Medical Subject Headings (MeSH)
[9]). The graph structure is exploited by a clustering method
to discover (usually based on the notion of degree centrality)
the more salient concepts in the graph (the centroids), and this
is next used to extract the most representative sentences from
the original documents and to generate the textual summary
[4], [10].

This work is focused on text summarization using an
existing research summarization system [11] which applies
graph theory to guide the selection of the most representative
sentences according to the results of a clustering technique
applied to the graph. In our previous work, a Genetic Graph-
based Clustering (GGC) algorithm [12] is tested to analyze its
performance in this domain. The main goal of this analysis
was to evaluate the influence of the clustering technique
when applied to the summarization process. While the original
technique [11] is based on a degree centrality-based approach
where the most connected concepts in the graph are consider
as the centroids of the clusters, GGC does not use centroids,
instead it separates the clusters according to the continuity
of the concept relations, i.e., the connections between the
concepts. The present work introduces a new methodology
which combines both approaches on a single algorithm. On the
one hand, the new algorithm, called Genetic Text Clustering
(GTC), considers the data continuity generated by the concept
network. On the other hand, the algorithm considers the
importance (centrality) of the concepts which belongs to the
cluster, guiding the search to find relevant clusters according
to the concepts’ relevance.

The methodologies are compared by generating summaries
of 150 biomedical scientific articles from the BioMed Central
full-text corpus for text mining research [13]. The automatic
summaries are evaluated using ROUGE [14] metrics, which
compare each automatic summary with one or more ideal
or model summaries and compute different quality measures.
Our results demonstrate the benefit of combining graph-based
metrics, such as degree centrality, with genetic algorithms
for summarization. The automatic summaries generated using
this combination of techniques are, according to ROUGE
metrics, significantly better than the ones generated using each
technique separately, and also better than those produced by
existing commercial and research summarizers.

The rest of the work is structured as follows: Section II
introduces some related work on text summarization methods
and clustering techniques. Section III describes the graph-
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based summarization method. Section IV presents the Genetic
Text Clustering algorithm. Section V presents the evaluation
methodology. Section VI shows the experimental results. Fi-
nally, Section VII provides conclusions and future work.

II. RELATED WORK

Our work takes ideas and techniques from different fields
of Artificial Intelligence, including Text Summarization, Graph
Clustering and Evolutionary Algorithms. In the next subsec-
tions, we review the related work in such fields that is close
to our work. We also present some related works that have
applied Evolutionary Algorithms to NLP tasks.

A. Text Summarization

Text summarization may be defined as the process of
distilling the most important information from a document
(or documents) to produce an abridged version for a partic-
ular user (or users) and task (or tasks) [15]. There are two
main approaches to the problem of automatic summarization:
extraction and abstraction. Extractive methods construct the
summaries by selecting the most relevant sentences in the
original documents, while abstractive ones build an internal
representation and use natural language generation (NLG)
techniques to write the summaries, so that abstracts may
contain novel sentences, unseen in the original sources. Ab-
stractive approaches require complex semantic representation,
inference and natural language generation, which have not
still reached a mature stage nowadays [16]. For this reason,
most works in automatic summarization focus on extractive
methods.

Traditional summarization systems include computing some
simple heuristic rules to estimate the relevance of sentences,
such as the position of the sentence in the document or the
presence of some cue words [17], [18], counting the frequency
of the words in the document to identify central terms [19],
or training different machine learning models to deal with
summarization as a classification task [20]. Recently, graph-
based methods have attracted the interest of the summarization
research community. Graphs allow for a more complete repre-
sentation of text than traditional vectorial models that reflects
the interaction between the different textual and semantic
units. Graph-based methods usually represent the documents
as graphs, where the nodes correspond to text units (such as
words, phrases, sentences or even paragraphs), and the edges
represent cohesion relationships between these units, or even
similarity measures between them (e.g. the Euclidean dis-
tance). Once the graph that represents a document is created,
the salient nodes are located in the graph and used to extract
the corresponding units for the summary. Two commonly used
metrics to identify salient information in this graph-based
representation are degree centrality and eigenvector centrality
[21], both based on connectedness.

LexRank [22] is the most popular example of a centroid-
based method to multi-document summarization. It creates an
undirected graph, where the nodes are the sentences (repre-
sented by their TF-IDF vectors) and the edges represent the

cosine similarity between them. A very similar method is
proposed by [23] to perform mono-document summarization.
As in LexRank, the nodes represent sentences and the edges
represent the similarity between them, measured as a function
of their content overlap. Litvak et al. [24] also proposed an
approach that uses a graph-based syntactic representation for
keyword extraction, which can be used as a first step in
summarization.

When dealing with biomedical documents, summarization
works usually adapting generic approaches to work with
domain-specific knowledge. In this line, [25] adapts the lexical
chaining approach [26] to work with concepts from the UMLS.
BioSquash [27] is a question-oriented extractive system for
biomedical multi-document summarization. It constructs a se-
mantic graph that contains concepts of three types: ontological
concepts (general ones from WordNet and specific ones from
the UMLS), named entities and noun phrases.

In [28], the authors represent a corpus of documents as
a graph, where the nodes are the MeSH descriptors found
in the corpus, and the edges represent hypernymy and co-
occurrence relations between them. They cluster the MeSH
concepts in the corpus to identify sets of documents dealing
with the same topic and then generate a summary from each
document cluster. Fiszman et al. [29] propose an algorithm
that makes use of semantic predications provided by SemRep
[30] to interpret biomedical text and on the use of lexical
and semantic information from the UMLS to produce ab-
stracts from biomedical scientific articles. This same method
is adapted in a later work to summarize drug information in
MEDLINE citations [31]. Ling et al. [32] focus on the genomic
domain, and present a system that ranks sentences according
to three features: the relevance of six gene aspects (such as
the DNA sequence), the relevance of the documents where the
sentences are taken from, and the position of the sentences in
the document.

More recent is the work of Shang et al. [33], where
the aim is to combine information retrieval techniques with
information extraction methods to generate text summaries of
sets of documents describing a certain topic. To do this, they
use SemRep to extract relations among UMLS Metathesaurus
concepts and a relation-level retrieval method to select the
relations more relevant to query concepts. Finally, they extract
the most relevant sentences for each topic based on the
previous ranking of relations and the location of the sentences
in different sections of the document.

B. Genetic and Graph Clustering

The clustering problem can be described as a blind search
on a collection of unlabeled data, where the elements with
similar features are grouped together in sets. There are three
main techniques to deal with the clustering problem [34]:
overlapping (or non-exclusive), partitional and hierarchical.

A popular clustering technique is K-means. Given a fixed
number of clusters, K-means tries to find a division (or
partition) of the dataset [35] based on a set of common fea-
tures. Other approximation, such as Expectation-Maximization
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(EM) [35], uses a variable number of clusters. More modern
clustering techniques, such as Spectral Clustering (SC) [36],
use a graph representation of the data instances and take
advantage of the graph properties to calculate the final clusters.

Graph models are useful for diverse types of data represen-
tation. They have become especially popular, being widely ap-
plied in the social network area. Graph models can be naturally
used in these domains, where each node or vertex can be used
to represent an agent, and the edges are used to represent their
interactions. Later, algorithms, methods and graph theory have
been used to analyze different aspects of the network, such
as: structure, behavior, stability or even community evolution
inside the graph [37], [38], [39], [40]. During the last years, the
use of graph-based methods in Natural Language Processing is
also gaining growing recognition. There are a variety of textual
structures that can be naturally represented as graphs, e.g.
lexical-semantic word nets, dependency trees, co-occurrence
graphs and hyperlinked documents, just to name a few.

A complete roadmap of graph clustering methods can
be found in [41], where different clustering algorithms are
described and compared using different kinds of graphs:
weighted, directed, undirected. These methods are: cutting,
spectral analysis and degree connectivity, amongst others (a
complete analysis of connectivity methods can be found in
[42]). This roadmap also provides an overview of computa-
tional complexity from a theoretical and experimental point
of view of the studied methods.

In the present work, we combine a graph representation
of biomedical textual data and a genetic algorithm to define
the final clusters for the graph. Genetic algorithms have been
traditionally used in optimization problems. The complexity of
the algorithm depends on the codification and the operations
that are used to reproduce, cross, mutate and select the
different individuals (chromosomes) of the population [43].
The algorithm applies a fitness function which guides the
search to find the best individual of the population.

Different approximation of genetic codifications to the clus-
tering problem were deeply studied by Hruschka et al. [34].
They show the different codifications, operations and fitness
functions applied in several genetic algorithms to solved the
clustering problem.

This work is based on a Genetic Graph-based Clustering
(GGC)[12] algorithm which is inspired on the Spectral
Clustering algorithm (it takes the same similarity graph as a
starting point) and improves the robustness of the solution.
The algorithm takes part on the summarization process
(described in the following Section) where it looks for the
best groups of concepts inside the concept document graph
(see Section 4).

C. Evolutionary Algorithms in Natural Language Processing

Evolutionary algorithms have been successfully applied to
different NLP problems, from grammar induction to machine
translation, through parameter optimization and search [44].

Smith and Witten [45], for instance, describe a genetic
algorithm for grammar induction. The genotype is a context-
free grammar whose fitness is evaluated on the basis of how
well it covers a training set of sample strings. Selection is
performed in inverse proportion to the grammar’s size, while
mutation is implemented by randomly choosing one grammar
(individual).

Litvak et al. [46] propose a language-independent approach
for extractive summarization based on the linear optimization
of several sentence ranking measures using a genetic algo-
rithm. An individual here is a vector of the weights of the
different sentence ranking measures; and selection retains the
best fifth of the individual solutions (i.e., those getting the
maximal ROUGE value).

Rodrı́guez et al. [47] evaluate different implementations of
evolutionary algorithms to find the alignment between two
sentences for being used in statistical machine translation. Hall
and Klein [48] propose a generative phylogenetic model for
automatically identifying cognate words from unaligned word
lists, given only the known family tree of languages.

In [49], genetic algorithms are also applied to two funda-
mental NLP applications: tagging, i.e., assignment of lexical
categories to words; and parsing, i.e., determination of the
syntactic structure of sentences.

III. SUMMARIZATION METHOD

We use the summarization system presented in [11], which
is briefly explained below and depicted in Figure 1. This
system has been specially designed for summarization of
biomedical literature. This new work modifies the clustering
step of the original model using the GTC algorithm instead
(see Section IV).

It consists of the following steps:
1) Document preprocessing: In this step, irrelevant sec-

tions of the document (i.e., those that do not pro-
vide important information for the summary, such as
Competing Interests or Acknowledgments) are removed.
Abbreviations and acronyms are detected and expanded,
and the title, abstract, and body sections are separated.

2) Concept recognition: The text in the document body is
mapped to concepts from the UMLS Metathesaurus and
semantic types from the UMLS Semantic Network [50],
using MetaMap [51]. MetaMap is a software to discover
UMLS Metathesaurus concepts in text. MetaMap is
invoked using the -y disambiguation option, which im-
plements the Journal Descriptor Indexing methodology
[52] and allows MetaMap to solve ambiguous mappings.
UMLS concepts belonging to very general semantic
types (e.g., Spatial concept or Language) are ignored.

3) Document representation: For each sentence, each
UMLS concept is extended with their hypernyms. All
the hierarchies for each sentence are then merged to
create a sentence graph, where the nodes represent
domain concepts and the edges represent is-a relations
between them. Next, the different sentence graphs are
merged to build a single document graph. In this graph,
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Fig. 1: Architecture of the graph-based summarization system.

new edges are added representing the following types of
relations between UMLS concepts:
• Relations between semantic types from the UMLS

Semantic Network.
• Relations between concepts from the UMLS

Metathesaurus.
Next, each edge is assigned a weight in [0,1], as shown
in equation 1. The weight of an edge e representing an
is-a relation between two vertices, Ni and Nj (where
Ni is a parent of Nj), is calculated as the ratio of the
depth of Ni to the depth of Nj from the root of their
hierarchy. The weight of an edge representing any other
relation (i.e., associated with and related to) between
pairs of leaf vertices is always 1.

d(Ni, Nj) =

{
depth(Ni)
depth(Nj)

is a relation

1 otherwise
(1)

To illustrate this process, Figure 2 shows the document
graph for the following text from [53]:

Interactions among LRF-1, JunB, c-Jun, and c-Fos
define a regulatory program in the G1 phase of
liver regeneration. In regenerating liver, a phys-
iologically normal model of cell growth, LRF-1,
JunB, c-Jun, and c-Fos among Jun/Fos/LRF-1 fam-
ily members are induced posthepatectomy. In liver
cells, high levels of c-Fos/c-Jun, c-Fos/JunB, LRF-
1/c-Jun, and LRF-1/JunB complexes are present for
several hours after the G0/G1 transition, and the
relative level of LRF-1/JunB complexes increases
during G1. We provide evidence for dramatic dif-
ferences in promoter-specific activation by LRF-1-
and c-Fos-containing complexes. LRF-1 in combi-
nation with either Jun protein strongly activates a
cyclic AMP response element-containing promoter
which c-Fos/Jun does not activate.

4) Clustering and topic recognition: Once the graph has
been generated, different clustering techniques can be
applied to group the different concepts extracted from
the text, with the aim of identifying the different topics
or themes that are dealt with in the text. In this work, a

Fig. 2: Example document graph. Dashed lines represent hy-
pernymy relations; red lines represent Metathesaurus relations;
and blue lines represent Semantic Network relations.

Genetic Text Clustering (GTC) algorithm has been tested
(see Section 4).
Regardless of the clustering algorithm that is applied, the
salience of each node in the graph may be calculated,
using the equation 2, as the sum of the weights of the
edges that are connected to it. This salience is a measure
of the node degree centrality.

Salience(Ni) =
∑
j|Nj

d(Ni, Nj) (2)

5) Sentence selection: The last step consists of computing
the similarity between each sentence graph (Si) and each
cluster (Cj), and selecting the sentences for the summary
based on these similarities. To compute sentence-to-
cluster similarity, we add the salience of the common
concepts between the sentence graph and the cluster.
Finally, a single score for each sentence is calculated,
as the sum of its similarity to each cluster adjusted to
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the cluster’s size (see equation 3). The N sentences with
highest scores are then selected for the summary.

Scr(Sj) =
∑
Ci

sim(Ci, Sj)

|Ci|
(3)

IV. THE GENETIC TEXT CLUSTERING (GTC) ALGORITHM

Once the document graph is generated (see step 3 of the
summarization method), a clustering algorithm is applied to
separate the topics within it. This is done by grouping together
in the same topic those concepts that are highly interconnected.
The new algorithm combines the degree centrality of the nodes
in the graph (as measured by their salience, see Equation 2)
and the graph continuity in order to extract the main topics
and keep the continuity among them. This algorithm is applied
in three steps:

1) Similarity Graph generation: a similarity function
(usually based on a kernel) is applied to the data
instances (i.e., the domain concepts), connecting all the
points with each other. It generates the Similarity Graph.

2) Genetic search: Giving an initial number of clusters
kclusters, the GA generates an initial population of
possible solutions and evolves them using a fitness
function to guide the algorithm to find the best solution.
It stops when a good solution is found, or a maximum
number of generations is reached.

3) Clustering association: The solution with the highest
fitness value is chosen as a solution of the algorithm and
the data instances are assigned to the kclusters clusters
according to the solution chosen.

A. Encoding and Genetic operators

The Encoding is a simple label-based representation [34].
Each individual is a n-dimensional vector (where n is the
number of data instances) which has integer values between 1
and the number of clusters. They represent a possible solution.
i.e., a cluster selection for each data instance of the dataset.

During the evolution process, the operators can create in-
valid individuals. These individuals represent solutions where
one or more clusters have no elements. In this problem of
partitional clustering, these solutions are not valid because the
number of clusters is initially given. In this work, no attempt
to repair invalid solutions is done. Instead, to avoid the invalid
individuals generation problem, they receive a 0 fitness value.
The operators used can be briefly summarized as follows:
• Selection: The selection process selects a subset of the

best individuals. These chromosomes are reproduced and
also passed to the next generation. It is called a (µ+ λ)
selection [43], where µ represents those chromosomes
which are chosen, and λ the new chromosomes generated.

• Crossover: The crossover operation exchanges strings
of numbers between the two chromosomes (both strings
have the same length). To reduce the search space, it
previously relabels those individuals which have different
numerical values but represent the same solution (i.e. if
there are two chromosomes which represent the same

solution but the labels of their clusters are different, these
labels are changed in order to maximize the similarity
between them).

• Mutation: The mutation randomly chooses different
chromosomes to change the values of some of their
alleles. The new value is a random number between 1
and the number of clusters.

B. The Fitness Function

The fitness function is an hybrid fitness divided in two parts:
i) improving the data continuity degree and ii) improving the
total salience of the clusters that are generated.

On the one hand, the continuity is guaranteed through a
KNN (K-Nearest Neighbour) metric. To control the clusters
salience, this metric has been added to the fitness (see Equation
5). It guarantees that the clusters are composed of concepts
which are relevant in the graph. The K value for KNN is
initially given by the user, nevertheless, in this work we have
fixed it to 2 because it is the minimal value to guarantee the
continuity and additionally it avoids over-fitting. The Genetic
Algorithm maximizes the value of:

TotalKNN · TotalSal
|C|

(4)

where:

TotalSal =
∑
Cα∈C

∑
Ni∈Cα Sal(Ni)

maxCα{
∑
Ni∈Cα Sal(Ni)}

(5)

TotalKNN =
∑
x∈C

|{y|y ∈ Γ(x) ∧ y ∈ Cx}|
|Γ(x)|

(6)

In these formulas, Sal(Ni) represents the salience of the
node i (see Equation 2), C represents the set of clusters, Cα
represents a cluster and Γ(x) represents the neighborhood of
the element x.

V. EVALUATION METHODOLOGY

One of the most difficult and costly tasks in text summa-
rization is to evaluate the automatically generated summaries.
Deciding whether a summary has a good quality is very
subjective, and there is no agreement about the evaluation
criteria that should be adopted [54]. Summarization evaluation
techniques may be classified into two broad categories:
• Intrinsic: directly related to the quality of summariza-

tion.
• Extrinsic: concerned with the function or task in which

the summaries are used, for instance, relevance assess-
ment or reading comprehension.

This work is oriented to intrinsic summarization because
the method used is not designed for any specific task. Intrinsic
evaluation techniques test the summarization focusing on two
desirable properties of the summary [55]:
• Coherence: refers to text readability and cohesion.
• Informativeness: measures how much information from

the source is preserved in the summary.
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The evaluation of the summaries may be manual, however,
this process requires human judges that need to be expert in the
domain of the documents. Human evaluation requires to read
both the summaries and the original documents to interpret
the texts and extract the salient information, which is very
time-consuming. It has also been proven difficult and highly
subjective [56]. As a consequence, automatic metrics are usu-
ally employed to evaluate the quality of automatic summaries.
However, these metrics only measure informativeness [57].
Research in automatic evaluation of coherence is still very
preliminary [58].

In this work, the Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) package [14] is used to evaluate the
informativeness of the automatic summaries. ROUGE is the
de facto standard for summarization evaluation and compares
an automatic summary (called peer) with one or more human-
made summaries (called models or reference summaries) and
uses the proportion of n-grams in common between the peer
and model summaries to estimate the content that is shared
between them. The ROUGE metrics produce a value in [0,1],
where higher values are preferred, as they indicate a greater
content overlap between the peer and model summaries. The
following ROUGE metrics are used in this work: ROUGE-
2 (R-2) and ROUGE-SU4 (R-SU4). R-2 evaluates bigram
occurrence, while R-SU4 evaluates “skip bigrams”, that is,
pairs of words having intervening word gaps no larger than
four words.

A. Evaluation corpus

To evaluate the automatic summaries, we use a collection of
150 biomedical scientific articles randomly selected from the
BioMed Central full-text corpus for text mining research [13].
This corpus contains approximately 85,000 papers of peer-
reviewed biomedical research. As stated in [59], the document
sample size is large enough to allow significant evaluation
results.

As done in previous works [11], [25], the abstracts of the
articles are used as gold standard (i.e., as model summaries for
the ROUGE evaluation). Such abstracts, written by the authors
of the articles, are supposed to summarize the main points of
the documents.

B. Experiments

The previous work was focused on comparing different
perspectives of the GGC application [60]. Two experiments
where carried out in order to compare whether a deep or
a relaxed search was necessary to find good solutions (see
Table I for the parameter settings). Due to that GGC needs an
initial number of clusters, different values of k were compared
during the experiments. This work has used the information
provided by these experiments and has compared both methods
using the same relaxed search for both algorithms (see Table
I). Using this information, we compared the results of both
algorithms applied to 150 biomedical documents. In order
to evaluate the adequacy of our approach, the summaries
generated by the summarizer have been also compared to those

Parameter GGC & GTC
Breed 50
Crossover Prob. 0.8
Generation 500
Mutation Prob. 0.15
Population 900

TABLE I: Parameter values for both GGC and GTC algo-
rithms.

ROUGE-2 ROUGE-SU4
GGC k=2 0.261 0.244
GGC k=3 0.269 0.254
GGC k=4 0.273 0.255
GGC k=5 0.270 0.252
GGC k=6 0.264 0.248
GGC k=7 0.267 0.250
GGC k=8 0.264 0.245
GGC k=9 0.253 0.238
GGC Best k 0.347 0.319
GTC k=2 0.278 0.260
GTC k=3 0.260 0.245
GTC k=4 0.271 0.253
GTC k=5 0.269 0.254
GTC k=6 0.270 0.254
GTC k=7 0.278 0.261
GTC k=8 0.262 0.249
GTC k=9 0.274 0.254
GTC Best k 0.357 0.329
LexRank 0.308 0.277
LEAD 0.257 0.265
AutoSummarize 0.245 0.232
Random baseline 0.173 0.230

TABLE II: Results from the application of GGC and GTC
algorithms for different values of k and the best value obtained.
These results are compared with a commercial application
(Microsoft AutoSummarize), a research prototype (LexRank),
and two baselines (Lead and Random). The best scores are
shown in bold and the second best results in italics.

produced by other summarization systems on the same evalua-
tion collection. The first is a commercial application, Microsoft
AutoSummarize, which uses a tradition term-frequency based
approach. The second is a research application, LexRank [22]
(see Section II-A). The rest are two baselines: Lead (which
chooses the first sentences of the document to generate the
summary) and Random (which chooses random sentences of
the text to generate the summary).

VI. RESULTS AND DISCUSSION

Table I shows the Genetic Parameter selection for both
algorithms, these parameters have been selected in order to
carry out a relaxed search. Table II presents the results for each
algorithm separated by k-values. This table shows the average
results for each value of k, for the new model, for the best k
and for the other techniques. The best k solution represents the
best solution per document comparing the different solutions
per k value. The clustering analysis has been carried out 50
times per document and k value. The solution with higher
fitness value has been chosen for the evaluation phase.

GGC (see Table II) shows good results compared with
all baselines and systems according to ROUGE-2 metric;

2745



however, the results are generally worse when the ROUGE-
SU4 metric is applied. LexRank obtains better results than
GGC (for k from 2 to 9). Choosing the best result for each
value of k and document (see “Best k” in Table II), the results,
using both metrics, are the best compared with the rest of
algorithms.

GTC (see Table II) shows better results than GGC for both
metrics. According to ROUGE-2 metric, the “Best k” value
outperforms the results of the GGC algorithm. Also, according
to ROUGE-SU4 metric, the value of the different k solutions
is closer to the Lead baseline and LexRank values, which are
the best (compared with k from 2 to 9), although, in this
experiment, the rest of the algorithms are beaten. Choosing
again the best result for each value of k (see “Best k” in Table
II) the algorithm achieves the best scores in both metrics.

The k value is not always the same for both algorithms
(GGC and GTC). This should be a consequence of the
algorithm objectives. GGC is focused only on the cluster
continuity while GTC is also focused on the centrality degree,
thus generating different solutions.

These results show that GGC, which is totally focused on
the cluster continuity, obtains good results; however, if the
clustering is also focused on the total salience of the concepts,
the results improve. GTC concentrates on the salience of the
graph, joining concepts which are relevant within the graph.
This improves the number of important concepts in the chosen
sentences giving more information to the reader about the
text; while GGC is focused only on the continuity of the
concepts, joining these concepts which are related with each
other. These results show that both approaches are mutually
beneficial. Other important consideration of these results is the
parameter selection. The parameters have been chosen for a
relaxed search, i.e., they look for good solutions in the search
space using a low number of individuals and population. This
also concerns to the algorithm speed, making the algorithm to
find a good solution faster than using a deep search.

VII. CONCLUSIONS AND FUTURE WORK

This work has performs a Genetic Graph-based Cluster-
ing (GGC) algorithm, using the Graph Salience to increase
the topic relevance during the clustering process. The new
algorithm, called Genetic Text Clustering (GTC) has shown
that the combination of continuity-based measures and degree
centrality (salience) obtains better results than the original
techniques. The new graph-based summarization process has
been evaluated using 150 biomedical documents which has
shown that the algorithm also obtains better results than
other research and commercial techniques. The following main
conclusions have been extracted:

• The topic importance is highly relevance during the
summarization process. The combination with continuity-
based clustering helps to determine the importance of the
sentences in the summary by providing more information
about the relevance of the different topics that are dealt
with in the text.

• This new methodology beats classical and commercial
algorithms.

There are also some issues which might be studied in the
future:
• The fitness function should add some other metrics re-

lated to other properties of the graph such as the density.
• The invalid solutions generated during the crossover or

mutation operations might be repaired.
• Finally, other summarization processes might be com-

pared with the current methodology.
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