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Abstract—Penalty function method is one of the most 
popular used Constraint Handling Techniques for 
Evolutionary Algorithms (EAs) solution selecting, whose 
performance is mainly determined by penalty parameters. 
This paper tries to study the penalty parameter from the 
aspect of problem characteristics, i.e., to construct a 
corresponding relationship between the problems and the 
penalty parameters. The experimental results confirm the 
relationship, which provides valuable reference for future 
algorithm design.  

Keywords—constrained optimization; constraint handling 
techniques; differential evolution; penalty parameter; ranking 
methods 

I.   INTRODUCTION 
In the real-world applications, Constrained 

Optimization Problems (COPs) are very common and 
important. The COPs can be generally expressed by the 
following formulations: 

Minimize ( )f xG   
           Subject to: ( ) 0, 1, ,jg x j l≤ =

G "  
( ) 0, 1, ,jh x j l m= = +
G "  

where 1( , , )nx x x=G "  is the decision variable. The decision 
variable is bounded by the decision space S which is 
defined by the constraints: 
                    , 1i i iL x U i n≤ ≤ ≤ ≤                                (1) 
where l is the number of inequality constraints and m-l is 
the number of equality constraints. 

The Evolutionary Algorithms (EAs) are essentially 
unconstraint search techniques [1] and can be mainly used 
to generate solutions. Equivalently, choosing the better 
solutions especially for the COPs is another important 
research area in optimization, leading to the development of 
various constrained optimization evolutionary algorithms 
(COEAs) [2]-[5]. The three most frequently used constraint 
handling techniques (CHTs) in COEAs are based on the  

concept of penalty functions, biasing feasible over 
infeasible solutions and multiobjective optimization.  

Penalty function method is generic and applicable to 
any type of constraints. Its main idea is using an amount of 
constraint violation to punish an infeasible solution which is 
realized by the penalty parameters. However, the fine 
tuning of penalty parameters limits their real applications. 

To overcome this limitation, methods were developed to 
separately compare the objective functions and constraint 
violations. For example, Deb [6] proposed a feasibility-
based rule to pair-wise compare individuals: 

1) Any feasible solution is preferred to any infeasible 
solution. 

2) Among two feasible solutions, the one having better 
objective function value is preferred. 

3) Among two infeasible solutions, the one having 
smaller constraint violation is preferred. 

Meanwhile, multiobjective optimization technique 
which considers the objective function and constraint 
violation at the same time has been employed to handle 
constraints [4], [7]-[11]. 

Besides these basic CHTs, some other concepts like 
cooperative coevolution [12]-[15] and ensemble [16]-[21] 
have also been proposed, which can give some inspiration 
for designing COEAs. These methods employed different 
subpopulations evolving parallel. Normally, the population 
size of these methods changes with the evolution process. 
Thus, it can be seen as a dynamic adjustment process. 

Among all of these aforementioned methods, the 
problem characteristics are rarely considered. But as 
Michalewicz summarized [22], it seems that Evolutionary 
Algorithms, in the broad sense of this term, provide just a 
general framework on how to approach complex problems. 
All their components, from the initialization, through 
variation operators and selection methods, to constraint-
handling methods, might be problem-specific. From this, 
we can conclude it’s essential to design a general 
framework which is related with the problem 
characteristics. 

Besides, there are already some computational time 
complexity analyses of EAs [23]-[27] that emphasize the 
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relationship between algorithmic features and problem 
characteristics which are complementary to the traditional 
time complexity analysis. Additionally, the importance of 
problem characteristics and some simple combination of 
algorithm variants have been realized, but the result is not 
so satisfactory.  

For example, Tsang and Kwan [28] pointed out the need 
to map constraint satisfaction problems to algorithms and 
heuristics. But they didn’t give an exact relationship 
between them. Mezura-Montes et al. [29] proposed a 
simple combination of two DE variants (i.e., DE/rand/1/bin 
and DE/best/1/bin) based on the empirical analysis of four 
DE variants. As only two variants are combined and the 
situations are not considered, the results are not 
competitive. 

Other methods concerning the problem characteristics 
were also reported [30]-[31]. As presented in [30], a new 
method to construct the relationship between problems and 
algorithms as well as constraint handling techniques from 
the qualitative and quantitative point of view was proposed. 
In this paper, the problem characteristics were also 
summarized systematically. In [31], the authors proposed a 
universal model through the correspondence between 
problems and culture for the first time. Different algorithms 
can be described in this framework of this model.  

Unlike the aforementioned methods, in this work, we 
try to study the features of penalty parameters and get the 
corresponding relationship between problem characteristics 
and penalty parameters.  

The rest of this paper is organized as follows. Section II 
briefly introduces DE. Section III illustrates the idea of 
mapping problems to penalty parameters in detail. The 
experimental results and analysis are presented in Section 
IV. Finally, Section V concludes this paper and provides 
some possible paths for future research. 

II.   DIFFERENTIAL EVOLUTION (DE) 
DE, which was proposed by Storn and Price [32], is a 

simple and efficient EA. The mutation, crossover and 
selection operations are introduced in DE. The first two 
operations are used to generate a trial vector to compete 
with the target vector while the third one is used to choose 
the better one for the next generation. To date several 
variants of DE have been proposed [33]. DE/rand/1/bin was 
adopted in this paper.  

The population of DE consists of NP n-dimensional 
real-valued vectors 

{ },1 ,2 ,, , , , 1, 2, ,i i i i nx x x x i NP= =G … …               (2) 
The mutation, crossover and selection operations are 

defined as follows. 

A. Mutation Operation 

Taking into account each individual ixG (named a target 
vector), a mutant vector { },1 ,2 ,, , ,i i i i nv v v v=G … is defined as 

1 2 3( )i r r rv x F x x= + ⋅ −G G G G                                        (3) 

where 1r , 2r  and 3r are randomly selected from [1, NP] 
and satisfying: 1 2 3r r r i≠ ≠ ≠  and F is the scaling factor.  

In this paper, if ,i jv violates the boundary constraint, it 
will be reset as follows [9]: 

{ }
{ }

, ,
,

, ,

min ,2 ,

max ,2 ,

j j i j i j j
i j

j j i j i j j

U L v if v L
v

L U v if v U

⎧ − <⎪= ⎨
− >⎪⎩

      (4) 

B. Crossover Operation 
A trial vector iuG  is generated through the binomial 

crossover operation on the target vector ixG and the mutant 
vector ivG  

,
,

,

i j j r rand
i j

i j

v if rand C or j j
u

x otherwise

≤ =⎧⎪= ⎨
⎪⎩

        (5) 

where 1,2, ,i NP= … , 1, 2, ,j n= … , randj  is a randomly 
chosen integer within the range[1,n], jrand  is the jth 
evaluation of a uniform random number generator within 
[0,1], and rC is the crossover control parameter. The 
introduction of randj j=  can guarantee the trial vector iuG  is 
different from its target vector ixG .  

C. Selection Operation 
Selection operation is realized by comparing the trial 

vector iuG  against the target vector ixG  and the better one will 
be preserved for the next generation.  

                
( ) ( )i i i

i
i

u if f u f x
x

x otherwise
≤⎧

= ⎨
⎩

G G G
G

G                            (6) 

III.   MAPPING CONSTRAINED OPTIMIZATION 
PROBLEMS TO PENALTY PARAMETERS 

A. Basic idea 
As discussed in [34], the effect of the penalty parameter 

is directly related with the solutions, but with many 
repeated experiments, the result will reflect the relationship 
between the penalty parameters and the problem 
characteristics. 

Based on this, the behavioral characteristics of different 
penalty parameter in the constraint search space are 
discussed, which will provide some reference for solving 
new constraint problems considering the problem 
characteristics.  

The basic idea is illustrated in Fig.1, where 
Pro_char_1-Pro_char_l stands for the basic elements of the 
problem characteristics and Pro_set_1-Pro_set_s are the s 
problem sets.  

By using different penalty parameters to solve different 
problems, the types of problems that the penalty parameters 
are good at solving can be obtained, and then a 
corresponding relationship can be constructed.  

B. Penalty parameter setting 
As analyzed in [34], there is no difference on ranking 

the population using penalty function method with a quite 
large penalty parameter λ (e.g., maxλ λ>> ) and a relatively 
smaller but still larger than maxλ penalty parameter λ (e.g., 
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max( ) 1floorλ λ= + ) as they are both the same as Deb’s 
feasibility-based rule; similarly, there is no difference on 
ranking the population using a quite small penalty 
parameter λ (e.g., minλ λ<< ) and a relatively larger but 
still smaller than minλ penalty parameter λ (e.g., 

min( ) 1floorλ λ= − ), as they are the same as following 
some other rules. Here, maxλ and minλ are determined by the 
current population.  

Based on this conclusion, the penalty parameter in this 
paper is selected ranging from 0.001 to 100000. It should 
also be pointed out that as there is no guidelines how to set 
the penalty parameters in such case so as to distinguish the 
effect better, a simple method with the same scale (i.e., 0, 

0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000) is 
adopted.  

C. Constrained problem’s characteristics 
Constrained optimization problem can be characterized 

by different parameters, e.g., equality/inequality constraints, 
the form of the objective function, the number of local 
optimal solution, etc.  

In this paper, a standard for describing both from the 
variable and constraints as well as objective functions are 
adopted, which is similar as [29], but with more describing 
aspects. The basic four elements are: the dimension of the 
problem (i.e., the number of variables); the type of 
constraints (e.g., equality or inequality constraints); the type 
of objective functions (e.g., polynomial, nonlinear, linear 
and so on); the active constraints.  

            

Fig.1. Illustration of the basic idea 

IV.   EXPERIMENTAL STUDY 

A. Experimental settings 
23 benchmark functions [35] were used in our 

experiment. The details of these benchmark functions are 
reported in Table I, where n is the number of decision 
variables, F Sρ = is the estimated ratio between the 
feasible region and the search space, LI, NI, LE, NE is the 
number of linear inequality constraints, nonlinear 
inequality constraints, linear equality constraints and 
nonlinear equality constraints respectively, a is the number 
of active constraints at the optimal solution and *( )f xG is 
the objective function value of the best known solution.  

These benchmark functions are classified into different 
groups according to the problem characteristics described 
in Section III as shown in Table II.  

The parameters in DE are set as follows: the population 
size (NP) is set to 100; the scaling factor (F) is randomly 
chosen between 0.5 and 0.6, and the crossover control 
parameter (Cr) is randomly chosen between 0.9 and 0.95.  

B. Experimental results 
25 independent runs were performed for each test 

function using 5×105 FES at maximum, as suggested by 
Liang et al. [35]. Additionally, the tolerance value δ for the 
equality constraints was set to 0.0001. 

Table III-IV shows the best value and SR (succeed rate) 
for different penalty parameters on different problems. Here, 
“-”in Table III means not available, i.e., there is no feasible 
solution in 25 independent runs.   

From Table III-IV, it can be observed that the results by 
different penalty parameters vary considerably.  
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TABLE I.      DETAILS OF THE BENCHMARK FUNCTIONS 

Problem n Type of objective function ρ LI NI LE NE a *( )f xG  

g01 13 quadratic 0.0111% 9 0 0 0 6 -15.0000000000 

g02 20 nonlinear 99.9971% 0 2 0 0 1 -0.8036191042 

g03 10 polynomial 0.0000% 0 0 0 1 1 -1.0005001000 

g04 5 quadratic 52.1230% 0 6 0 0 2 -30665.5386717834 

g05 4 cubic 0.0000% 2 0 0 3 3 5126.4967140071 

g06 2 cubic 0.0066% 0 2 0 0 2 -6961.8138755802 

g07 10 quadratic 0.0003% 3 5 0 0 6 24.3062090681 

g08 2 nonlinear 0.8560% 0 2 0 0 0 -0.0958250415 

g09 7 polynomial 0.5121% 0 4 0 0 2 680.6300573745 

g10 8 linear 0.0010% 3 3 0 0 6 7049.2480205286 

g11 2 quadratic 0.0000% 0 0 0 1 1 -0.7499000000 

g12 3 quadratic 4.7713% 0 1 0 0 0 -1.0000000000 

g13 5 nonlinear 0.0000% 0 0 0 3 3 0.0539415140 

g14 10 nonlinear 0.0000% 0 0 3 0 3 -47.7648884595 

g15 3 quadratic 0.0000% 0 0 1 1 2 961.7150222899 

g16 5 nonlinear 0.0204% 4 34 0 0 4 -1.9051552586 

g17 6 nonlinear 0.0000% 0 0 0 4 4 8853.5396748065 

g18 9 quadratic 0.0000% 0 13 0 0 6 -0.8660254038 

g19 15 nonlinear 33.4761% 0 5 0 0 0 32.6555929502 

g20 24 linear 0.0000% 0 6 2 12 16 0.2049794002 

g21 7 linear 0.0000% 0 1 0 5 6 193.7245100700 

g22 22 linear 0.0000% 0 1 8 11 19 236.4309755040 

g23 9 linear 0.0000% 0 2 3 1 6 -400.0551000000 

g24 2 linear 79.6556% 0 2 0 0 2 -5.5080132716 

 
 

TABLE II.      CLASSIFICATION OF BENCHMARK FUNCTIONS 

Problem characteristics Problems 

Number of variables 

10-20 (High) g01, g02, g03, g07, g14, g19 

5-9 (Medium) g04, g09, g10, g13, g16, g17, g18, g21, g23 

2-4 (Low) g05, g06, g08, g11, g12, g15, g24 

Type of constraints 

Only inequalities g01, g02, g04, g06, g07, g08, g09, g10, g12, g16, g18, g19, g24 

Only equalities g03, g11, g13, g14, g15, g17 

Both inequalities and equalities g05, g21, g23 

Type of objective 
function  

Polynomial (including quadratic 
and cubic) g01, g03, g04, g05, g06, g07, g09, g11, g12, g15, g18 

Nonlinear g02, g08, g13, g14, g16, g17, g19 

Linear g10, g21, g23, g24 

Type of active 
constraints  

a<N g01, g02, g04, g05, g07, g08, g09, g12, g16, g18, g19 

a=N g03, g06, g10, g11, g13, g14, g15, g17, g21, g23, g24 
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TABLE III.      BEST VALUE FOR DIFFERENT PENALTY PARAMETERS 

λ  
Pro. 

0 0.001 0.01 0.1 1 10 100 1000 10000 100000 

g01 — — — — -15 -15 -15 -15 -15 -15 
g02 -0.6858 -0.6396 -0.6427 -0.6495 -0.803619 -0.803619 -0.803619 -0.803619 -0.803619 -0.803619 
g03 — — — — — — — -1.0005 -0.9939 -1.0005 

g04 -
30420.114 

-
30469.626 

-
30344.143 

-
30527.218 

-
30510.039 -30506.204 -30482.027 -30665.538 -30665.538 -30665.538 

g05 — — — — — 5126.4967 5126.4967 5126.4967 5126.4967 5126.4967 
g06 6882.9428 6866.9363 6509.7585 6759.1629 6870.7776 -6873.0142 -6901.9516 -6948.0697 -6961.8139 -6961.8139 
g07 68.7315 40.8588 71.0100 55.2424 25.8322 24.3062 24.3062 24.3062 24.3062 24.3062 
g08 -0.095805 -0.095825 -0.095820 -0.095824 -0.095823 -0.095824 -0.095825 -0.095825 -0.095825 -0.095825 
g09 685.3741 703.7783 690.5985 684.1232 680.7736 680.6300 680.6300 680.6300 680.6300 680.6300 
g10 — — — — — — — — 7049.2480 7049.2480 
g11 — 0.8188 0.7608 0.9402 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 
g12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
g13 — — — 0.0539415 0.0539415 0.3402 0.7025 0.9621 0.8766 0.6992 
g14 — — — — — — -47.764888 -47.764888 -47.764888 -47.764888 
g15 — — — — — 961.715022 961.715022 961.715022 961.715022 961.715022 
g16 -1.4667 -1.5400 -1.7355 -1.9050 -1.9051 -1.9051 -1.9051 -1.9051 -1.9051 -1.9051 
g17 — — — — —  8853.5339 8860.2247 8862.5701 8871.5957 
g18 — — — — -0.866025 -0.866025 -0.866025 -0.866025 -0.866025 -0.866025 
g19 51.2803 45.3600 47.2818 42.2332 32.6559 32.6559 32.6559 32.6559 32.6559 32.6559 
g21 — — — — — — — 193.7280 193.7658 193.7732 
g23 — — — — — — — -400.0551 -399.7722 -384.6801 
g24 -5.4878 -5.4903 -5.4934 -5.4927 -5.5080 -5.5080 -5.5080 -5.5080 -5.5080 -5.5080 

 
 

TABLE IV.      SUCCESS RATE FOR DIFFERENT PENALTY PARAMETERS 

λ  
Pro. 

0 0.001 0.01 0.1 1 10 100 1000 10000 100000 

g01 0 0 0 0 1 1 1 1 1 1 
g02 0 0 0 0 0.92 0.88 0.92 0.72 0.76 0.80 
g03 0 0 0 0 0 0 0 0.28 0 0.04 
g04 0 0 0 0 0 0 0 1 1 1 
g05 0 0 0 0 0 1 1 0.24 0 0 
g06 0 0 0 0 0 0 0 0 0.56 0 
g07 0 0 0 0 0 1 1 1 1 1 
g08 0.16 0.16 0.12 0.40 0.32 0.68 1 1 1 1 
g09 0 0 0 0 0 1 1 1 1 1 
g10 0 0 0 0 0 0 0 0 0.32 0 
g11 0 0 0 0 1 1 1 1 0.60 0.68 
g12 1 1 1 1 1 1 1 1 1 1 
g13 0 0 0 1 0.20 0 0 0 0 0 
g14 0 0 0 0 0 0 1 0.96 0.48 0.48 
g15 0 0 0 0 0 1 0.36 0.16 0.04 0.20 
g16 0 0 0 0 1 1 1 1 1 1 
g17 0 0 0 0 0 — 1 0 0 0 
g18 0 0 0 0 1 1 1 1 1 1 
g19 0 0 0 0 1 1 1 1 1 1 
g21 0 0 0 0 0 0 0 0 0 0 
g23 0 0 0 0 0 0 0 1 0 0 
g24 0 0 0 0 1 1 1 1 1 1 
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TABLE V.      CORRESPONDING RELATIONSHIP BETWEEN PENALTY PARAMETER AND PROBLEMS 

Result λ  Problem Problem characteristics  

Always any g08、g12 Low dimension, NI, a<N 

Continuity 

1λ ≥  
g01、g16 、g18、g19、 

g24、g02、g11 

High/Median dimension, LI/NI, not 
linear, a<N 

or low dimension, NI, linear, a=N 

10λ ≥  g07、g09 High/Median dimension, NI, polynomial, 
a<N 

100λ ≥  g14 High dimension, LE, nonlinear, a=N 

1000λ ≥  g04 Median dimension, NI, a<N 

Intermittent 

0.1 g13 Median dimension, NE, nonlinear_1, a=N 

10 g15 Low dimension, LE+NE, a=N 

100 g17 Median dimension, NE, nonlinear_2, a=N 

1000 g03、g23 High/Median dimension, NE, a=N 

10000 g06、g10 High/Low dimension, LI/NI, a=N 

10/100/1000 g05 Low dimension, LI+NE, a<N 

 

C. Corresponding relationship 
This section is mainly from the micro-level to determine 

the specific corresponding relationship, i.e., first find the 
problem set (Pro_set_1-Pro_set_s) for each penalty 
parameter λ , and then summarize the problem 
characteristics for each λ  that they are suited to solve from 
the perspective of different combination of basic elements. 
A basic principle of this part is to find the unique features 
that other problems do not have.  

Also, it’s important to identify some of the problems 
that can reach the best value for certain penalty parameter 
value λ  or after certain value of λ , which will provide 
useful conclusion.  

To sum up, the corresponding relationship between 
constrained optimization problems and penalty parameters 
can be listed in Table V. Here, in the column of “result”, 
“Always” means that the penalty parameters will not affect 
the results; “Continuity” means that when penalty 
parameter is lager than some value, it can always find the 
optimal value; “Intermittent” means that the optimal value 
can be obtained only with certain penalty parameter values. 

Considering the importance of the type of constraints, 
they are classified into nine types in this section, i.e., LI, NI, 
LI+NI, LE, NE, LE+NE, LI+NE, NI+NE, NI+LE+NE. In 
accordance with the concept of permutations and 
combinations, there should be 16 different combinations for 
these four elements, which is also one of the limitations for 
this paper.  

Besides, for functions g13 and g17, though the type of 
objective functions are both nonlinear, the objective 
function of g13 is exponential, while that of g17 is the 
summarization of two piecewise linear functions, so they 
are labeled as nonlinear_1 and nonlinear_2 respectively in 
Table V.  

From the analysis, we can conclude that the element of 
problem characteristics plays an important role in getting a 

reasonable corresponding relationship, which will also be 
the future work.  

V.   CONCLUSION 
This paper has presented a new way to get the 

corresponding relationship between constrained 
optimization problems and the penalty parameters in 
penalty function methods. 23 benchmark functions with 
typical problem characteristics collected in the IEEE 
CEC2006 special session on constrained real-parameter 
optimization were utilized to verify the corresponding 
relationship.  

The relationship obtained reflects some characteristics 
of penalty parameters to some extent, but the inner 
mechanisms of penalty parameters should be theoretically 
studied. Also, whether the relationship is related with the 
evolutionary algorithms is to be verified in future research.  

The problem characteristics summarized in this paper 
are based on the benchmark functions, but as Z. 
Michalewicz concluded [22], there is no comparison in 
terms of complexity between real-world problems and toy 
problems, and real-world applications usually require 
hybrid approaches where an ‘evolutionary algorithm’ is 
loaded with non-standard features (e.g., decoders, problem-
specific variation operators, memory), so how to apply 
these conclusions to the real-world problems is still a 
challenging work and will be our future work.  
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