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Abstract— The surrogate model-aware evolutionary search
(SMAS) framework is an emerging model management method
for surrogate model assisted evolutionary algorithms (SAEAs).
SAEAs based on SMAS outperform several state-of-the-art
SAEAs using other model management methods and show
promising results in real-world computationally expensive op-
timization problems. However, there is little behavioral study
of the SMAS framework, and appropriate rules for its search
strategy, training data selection and key parameter selection
for different types of problems have not been provided yet.
In this paper, with a newly proposed training data selection
method, the SMAS framework’s behaviour with different search
strategies and training data selection methods is investigated.
The empirical rules in terms of problem characteristics are
obtained and the method to construct an SAEA based on the
SMAS framework is updated. Experiments using 24 widely used
benchmark test problems and the test problems in the CEC
2014 competition of computationally expensive optimization are
carried out, which validate the proposed empirical rules.

I. INTRODUCTION

Many real-world optimization problems require compu-
tationally expensive fitness function evaluations [1], [2].
Directly applying evolutionary algorithms (EAs) is often not
feasible because a large number of time-consuming function
evaluations are unaffordable. Surrogate model assisted evolu-
tionary algorithms (SAEAs) are a recent promising approach
for dealing with such expensive optimization problems. In
SAEA, a surrogate model is employed to replace compu-
tationally expensive exact function evaluations. Surrogate
models are approximation models of the fitness function
that are much cheaper to evaluate than the real evaluation
and the additional surrogate modeling process is often not
expensive. Due to this, the computational cost can be reduced
significantly.

Surrogate model management technique [3] is one of the
most important research topics in SAEA research. Model
management investigates optimal ways to have surrogate
modeling and evolutionary search collaborate, so as to
make them working together harmoniously. For a successful
SAEA, a good balance between the effectiveness and the
efficiency of the optimization must be made, which are
often contradictory. To obtain good optimization ability, a
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high quality surrogate model is necessary, but this often
implies more training data points, which can only be ob-
tained by using more expensive evaluations. At present,
several successful model management methods are receiving
much attention and many SAEAs are constructed based on
them. They include the generation control (GC) framework
[4], the trust-region local search (TLS) framework [5], [6],
the prescreening-based framework [7] (some references use
individual-based method) and surrogate model-aware evolu-
tionary search (SMAS) framework [8].

Standard EA processes are adopted in the GC framework,
the TLS framework and the prescreening-based framework.
The GC framework and the TLS framework can often obtain
good solution quality but need more expensive function
evaluations, while the prescreening-based framework often
shows high efficiency but the solution quality and robustness
still need to be improved. SMAS possesses advantages
with respect to both optimization quality and efficiency.
The GPEME algorithm [8] based on SMAS and Gaussian
process modeling obtains comparable results but uses 12%
to 50% of the number of exact function evaluations compared
to other frameworks based on more than ten benchmark
problems [5], [6], [7]. Unlike other frameworks relying on
standard EAs, SMAS develops a new evolutionary search
scheme considering high-quality modeling by controlling the
locations of candidate solutions in the optimization. SMAS
always focuses the search in the current promising subregion
and gradually moves this subregion for exploration. Because
the training data points and the candidates to be predicted
are often distributed in the same small subregion, rather than
the whole decision space like standard EA, a high-quality
surrogate model can often be constructed with much less
training data points (exact evaluations).

However, owing to the new search framework of SMAS,
the population diversity and exploration ability become new
problems, which are often not concerns for SAEA frame-
works using standard EAs. On the other hand, there are also
research works stating that standard EAs may have too much
randomness or excessive diversity [9]. Hence, it is interesting
to investigate the behavior of the SMAS framework in terms
of search ability and to provide empirical rules for key
parameter and search strategy selection. A typical SAEA
based on SMAS is GPEME [8], using differential evolution
(DE) operators and Gaussian Process (GP) modeling. DE
operators will be used here as the example to explore general
search behaviors of SMAS. More specifically, this paper aims
to answer the following questions:
• [8] shows good search ability of SMAS using only 1000
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exact evaluations for most test problems. Can the search
still be effective when using more evaluations, or can
the results hardly be improved even if more evaluations
are allowed?

• When more evaluations are allowed, what are the search
behaviors of SMAS for unimodal, multimodal and dis-
crete expensive optimization problems?

• There is plenty of research on parameter setting strate-
gies of DE. Are the empirical rules also applicable to
SMAS-based SAEAs using DE operators?

• DE/best/1 strategy (giving often the fastest convergence
but the least diversity) is used for the SMAS framework
in both an algorithmic investigation [8] and practical
applications [10]. Can this be justified, or is there any
other feasible or even better DE search strategy for
SMAS-based SAEAs?

Besides the number of training data points and their
locations, selecting which training data points to use and
the surrogate model style are main factors affecting the
surrogate model quality in an SAEA. Using a set of top-
ranking solutions [6], using a set of neighbouring solutions
of a point to be predicted [7], [5] and using a set of
latest evaluations [11], [8] are widely used modeling styles.
Training a single surrogate model for a whole population
of individuals is shown to be more effective than training a
separate surrogate model for each individual [11]. GPEME
uses the same method as in [11], which constructs a single
surrogate model for all the candidates in each iteration with a
set of latest evaluated data points. [12] improves the training
data selection method of SMAS and shows promising result
for mm-wave integrated circuit design optimization problem.
This paper proposes yet another training data point selection
method and compares it with the method in [12] in col-
laboration with different search strategies. For comparison
purposes, GP modeling is used in all of the methods.

The remainder of this paper is organized as follows.
Section II reviews the SMAS framework. GP modeling and
the DE operators are also introduced briefly. Section III
analyzes the behavior of SMAS considering key parameters,
search strategies and the training data selection method for
different kinds of problems. Experimental verifications are
provided in Section IV. Section V provides the concluding
remarks.

II. REVIEW OF THE SMAS FRAMEWORK

The SMAS framework can be described as follows:
Step 1: Sample α (often small) solutions from the decision

space [a, b]d, evaluate the real function values of
all these solutions and let them form the initial
database.

Step 2: If a preset stopping criterion is met, output the
best solution from the database; otherwise go to
step 3.

Step 3: Select the λ best solutions from the database to
form a population P .

Step 4: Apply the evolutionary operators on P to generate
λ child solutions.

Step 5: Select τ training data to construct a surrogate
model and use it to prescreen the λ child solutions
generated in Step 4.

Step 6: Evaluate the real function value of the estimated
best child solution from Step 5. Add this evaluated
solution and its function value to the database. Go
back to Step 2.

In terms of surrogate modeling, more effective training
data can be expected in SMAS than those generated by a
standard EA. In each iteration, the λ current best candidate
solutions form the parent population (it is reasonable to
assume that the search focuses on the promising subregion)
and the best candidate based on prescreening in the child
population is selected to replace the worst one in the parent
population. In this way, only at most one candidate is
changed in the parent population in each iteration; so the
best candidate in the child solutions in several consecutive
iterations may be quite near to each other (they will then be
evaluated and are used as training data points). Therefore,
the training data points describing the current promising
region can be much denser compared to those generated by
a standard EA population updating mechanism, which may
spread in different subregions of the decision space while
there may not be sufficient training data points around the
candidate solutions to be prescreened.

GPEME [8] is an SAEA based on the SMAS framework.
It uses GP [13] for surrogate modeling and DE operators
[14] for evolutionary search. GP modeling is widely used in
SAEAs and more details can be found in [7], [15]. DE is
an effective and popular global optimization algorithm for
real parameter optimization. It uses a differential operator
to create new candidate solutions [14]. Although there are
quite a few different DE variants, only the DE/best/1 strategy
was adopted in SAEAs based on the SMAS framework.
DE mutation strategies trade off the convergence speed and
population diversity in different manners, and the DE/best/1
strategy often has the highest convergence speed but the
lowest population diversity. In this paper, the following three
DE mutation strategies ((1) to (3)) are investigated:

(1)DE/best/1

vi = xbest + F · (xr1 − xr2) (1)

where xbest is the best individual in P (see Step 3) and xr1
and xr2 are two different solutions randomly selected from
P and are also different from xbest. vi is the ith mutant
vector in the population after mutation. F ∈ (0, 2] is a control
parameter, often called the scaling factor [14].

(2)DE/rand/1

vi = xr3 + F · (xr1 − xr2) (2)

Compared to DE/best/1, xbest is replaced by a randomly
selected solution xr3 that is also different from xr1 and xr2 .

(3)DE/current-to-best/1 1

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (3)

1This mutation strategy is also referred to as DE/target-to-best/1.
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where xi is the ith vector in the current population.

III. BEHAVIORAL ANALYSIS OF THE SMAS
FRAMEWORK

A. Characteristics of function landscapes

Compared to conventional EA, SAEA has the effect of
smoothing the multimodal landscapes of complex problems
[16]. Good surrogate models are able to catch the important
trend of a function landscape, which is beneficial for jumping
out of local optima. Hence, we empirically divide function
landscapes into three categories: (A) functions without very
complex general trends, (B) functions with (very) rugged
landscapes, and (C) functions with integer / discrete vari-
ables. Fig. 1 shows two typical function landscapes. It can be
seen that although the 2-dimensional Ackley function (Fig.
1 (A)) is multimodal, its general trend is much simpler than
that of the 2-dimensional Rastrigin function (Fig. 1 (B)). For
functions with rugged landscapes, constructing a surrogate
model which is effective for prediction / prescreening may
become difficult. For discontinuous optimization problems,
although a good surrogate model can facilitate the prediction
/ prescreening of promising candidate solutions, the promis-
ing solutions must first be generated, and the challenges for
traditional EAs in terms of search ability remain for SAEA.
As said above, the algorithm structure of SMAS is different
from a standard EA. This motivates the investigation of the
behavior of SMAS in the context of the above three problem
categories.

B. Key parameter selection rules

DE search has been used in SAEAs based on SMAS [8]
and is also the example method in this study. The three
critical parameters are the scaling factor F , the crossover
rate CR and the population size λ. In the past decades,
various research has investigated the choice of F and CR and
different kinds of methods have been proposed [14], [17]. In
standard DE, F is suggested to be set around 0.5 or larger to
balance the exploration and exploitation. In SMAS, a large F
is often necessary. The reason is that SMAS always uses the
λ best solutions from the database as the parent population,
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Fig. 1. Two typical function landscapes

which emphasizes exploitation. To maintain the exploration
ability, a large F is needed. Our pilot experiments have
shown that F ∈ [0.75, 0.95] often achieves good results. The
crossover rate, CR, on the other hand, is problem specific.
Good values of CR generally fall into a small range for
a given problem [17]. This implies that a self-adaptation
mechanism for CR in the SMAS framework is useful. On
the other hand, fast convergence is needed for expensive
optimization problems, and it is recognized that large CR
values can speed up the convergence to a large extent [14].
Hence, another alternative is to use a relatively large CR,
such as CR ∈ [0.7, 0.9]. For problems with a not very
complex general trend (category A in Section III (A)), it
is predicted that this is an appropriate choice. However, for
category B problems, the search may be trapped into local
optima. For simplicity, F = 0.8 and CR = 0.8 are used
for all the test problems in this paper. Like standard DE, the
population size relies on the complexity of the problem. An
experimental study [8], [12] shows that λ ∈ [30, 50] often
works well for most problems with several tens of variables.
On the other hand, for SMAS, using a larger λ can help for
complex problems (e.g., category B problems) when a certain
search strategy and training data selection method are used,
as will be verified in Section IV. For those problems, using
λ between 4× d to 6× d is recommended according to our
pilot experiments, where d is the number of variables.

C. Training data selection methods

The latest training data selection method for SMAS-based
SAEA is in [12], which is as follows:

method for promising area-based training data selec-
tion (PAS)

1: Calculate the median of the λ child solutions to
obtain the vector mx.

2: Take the nearest c1 × d solutions to mx in the
database (based on Euclidean distance).

The coefficient c1 is often selected from [4, 6] [12].
According to the general idea of SMAS, both the λ child
solutions and the training data points are around the cur-
rent promising area. Thus, a set of training data points in
proportion to the number of variables are selected to model
the general trend of the targeted area. Because the nearest
neighbouring points are more useful than points far from
the targeted area [7], [6], the training data points are sorted
based on their distance to mx. On the other hand, for rugged
landscapes (category B in Section III (A)), the surrogate
model may not be sufficient to describe the complex shape of
the current promising area. Therefore, an alternative method
is proposed:

method for individual solution-based training data
selection (ISS)

1: For each solution in the λ child solutions, take
the nearest c2 × d solutions in the database (based
on Euclidean distance) as temporary training data
points.
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2: Combine all the temporary training data points
and remove the duplicated ones.

To trade off the model quality and the training cost, em-
pirical results suggest c2 ∈ [0.5, 1]. This method emphasizes
the modeling of the area surrounding each child solution and
also builds a single surrogate model for the whole population
to improve the model quality, instead of building a separate
model for each child solution (see [11] for the reason).

D. DE search strategies

DE/best/1, DE/rand/1 and DE/current-to-best/1 trade off
the convergence speed and the population diversity in differ-
ent manners and are widely used in standard DE, especially
the former two. The key of SMAS is to concentrate the
search and the surrogate modeling in the current promising
subregion, which is achieved by two factors: (1) the pop-
ulation update, (2) the mutation and crossover. Therefore,
it is necessary to move the child population towards the
current best solution in the DE mutation. The DE/current-
to-best/1 and DE/best/1 strategies are thus appropriate to
be used in SMAS, and the former can lead to a higher
diversity. Although DE/rand/1 is widely used in standard DE,
it is not an appropriate strategy for SMAS, because child
solutions spreading in different subregions of the decision
space may be generated and a high-quality surrogate model
is often difficult to be constructed using such training data
points. In Section IV, this conclusion will be verified with
an example. Even assuming that an acceptable surrogate
model is constructed, the convergence is quite slow using
DE/rand/1.

Whether the additional population diversity of DE/current-
to-best/1 compared to DE/best/1 offers substantial help or not
is function landscape specific. For a category A landscape,
where the general trend is not very complex, DE/best/1
should be able to obtain a reasonably good result because
the probability is often low that the algorithm gets stuck in
local optima when the general trend is correctly modeled.
When using DE/current-to-best/1, the evolution speed may
be slower but the search ability can be better. It is therefore
difficult to compare these two strategies without experimental
study. Nevertheless, a tendency is that DE/current-to-best/1
can have advantages when the number of variables increases.
The two reasons are: (1) More exploration is needed for
problems with a large scale; (2) When the number of vari-
ables is large, given a certain number of training data (limited
by the allowed number of exact function evaluations), high
quality surrogate modeling becomes more difficult in many
cases, and some promising solutions might not correctly be
prescreened. DE/current-to-best/1 provides more promising
candidate solutions of different types because of the reason-
able population diversity. This increases the probability that
at least some type of promising solutions can be prescreened
correctly by the available surrogate model. For a category
B landscape (rugged) and a category C landscape (discon-
tinuous), DE/current-to-best/1 has advantages because of the
enhanced exploration ability. For a category C landscape,

using the simulation method from [8], our pilot experiments
show that a good result cannot be obtained using DE/best/1,
even when the quality of the surrogate model is high. Note
that for complex problems, the ISS method should be used
together with DE/current-to-best/1. The PAS method has
often difficulty to achieve high-quality surrogate modeling
for category B and category C landscapes, the improved
exploration ability of DE/current-to-best/1 therefore makes
little sense without the support of good surrogate models.
When using DE/best/1 together with the PAS method for
category B and category C landscapes, the convergence can
be quite fast and a reasonably acceptable solution may be
obtained, because at least a portion of the general trend can
often be modeled correctly. For some real-world expensive
optimization problems, the computing budget is typically
very tight 2 and obtaining highly optimized solutions is often
not a requirement. In such circumstance, using DE/best/1 and
the PAS method is also a good choice.

Based on the above analysis, the rules for selecting the
training data and the search strategy are summarized as
follows:

• For continuous optimization problems with a very tight
computing budget, use the DE/best/1 mutation strategy
with the PAS method.

• For discrete optimization problems, use the DE/current-
to-best/1 mutation strategy with the ISS method.

• If there is prior knowledge of the problem landscape and
the computing budget is not so tight, use the DE/current-
to-best/1 mutation strategy and use the PAS method for
category A landscapes and the ISS method for category
B landscapes.

• If there is no prior knowledge of the problem land-
scape and the computing budget is not so tight, use
the DE/current-to-best/1 mutation strategy with the ISS
method.

IV. EXPERIMENTAL STUDY

A. Test problems and classifications

24 widely used benchmark test problems are used, which
are shown in the Appendix. 20 runs are performed for
each of them. For 10-dimensional problems, 1000 exact
evaluations are used; for 20-dimensional problems, 1500
exact evaluations are used; for 30-dimensional problems,
2000 exact evaluations are used. The behaviors of GPEME
[8] using different combinations of methods for training data
and mutation strategy selection are studied. All the F and
CR are set to 0.8. In the training data selection methods,
c1 is set to 6 and c2 is set to 0.5 for all the problems. In
the lower confidence bound prescreening, ω is set to 2. The
number of initial samples is set to 5×d according to [12]. For
10-dimensional problems, λ is set to 30; for 20-dimensional

2The tightness of the computing budget is related to the problem com-
plexity, but it may not be known beforehand. Hence, the evaluation time
of a single solution versus the practical time to finish the optimization is
considered here.
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TABLE I
CLASSIFICATION OF THE TEST PROBLEMS

Category Problems
A Sphere (TF1-TF3), Ellipsoid (TF4-TF6), Rotated el-

lipsoid (TF7-TF9), Ackley (TF13-TF15), Griewank
(TF16-TF18)

B Rosenbrock (TF19-TF21), Rastrigin (TF22-TF24)
C Step (TF10-TF12)

TABLE II
STATISTICS OF THE BEST FUNCTION VALUES OBTAINED FOR TF1-TF24

USING DE/BEST/1 WITH THE PAS METHOD

Problem best worst average std
TF1 1.5e-20 1.105e-18 2.71e-19 3.78e-19
TF2 3.67e-14 4.037e-13 1.839e-13 1.510e-13
TF3 2.09e-11 3.442e-10 1.300e-10 9.10e-11
TF4 0 1.054e-7 1.05e-8 3.33e-8
TF5 5.4e-13 3.892e-11 5.79e-12 1.178e-11
TF6 4.38e-10 7.097e-9 2.500e-9 2.234e-9
TF7 1.72e-16 4.462e-7 4.46e-8 1.411e-7
TF8 4.4e-11 6.217e-9 1.626e-9 1.967e-9
TF9 1.74e-6 8.298e-5 1.983e-5 2.860e-5

TF10 0 1.0000 0.3000 0.4830
TF11 0 5.0000 1.8000 1.3984
TF12 0 8.0000 3.2000 2.3476
TF13 0.0002 1.1551 0.1173 0.3647
TF14 0.0001 1.4235 0.2580 0.5472
TF15 0.0001 5.2219 1.4354 1.5602
TF16 0.0271 0.5063 0.2006 0.1673
TF17 0.0000 0.0172 0.0039 0.0066
TF18 0.0000 0.0123 0.0012 0.0039
TF19 0.7377 9.5938 3.0674 2.5592
TF20 4.0519 17.0733 13.8642 3.7562
TF21 22.5733 78.7295 31.1038 16.8010
TF22 5.9698 35.4970 18.6024 8.7344
TF23 15.0031 75.2502 37.8471 16.5290
TF24 40.7934 292.1517 116.9145 100.1807

problems, λ is set to 40 and for 30-dimensional problems, λ
is set to 50.

The problem characteristics are analyzed and classified for
verification purpose (see in Table I). Note that although the
Ackley function and the more than 10-dimensional Griewank
function are multimodal, their general trends are not very
rugged, so they are classified to category A. For the Rosen-
brock function, the general trend matches category A for
some subregions, but near the narrow valley where the global
optimum is located, the general trend is rugged, so it is
classified into category B.

B. Performances and discussions

The statistics of the best function values obtained for TF1
to TF24 are reported in Table II, Table III and Table IV using
different search strategy and training data selection methods.

The convergence trends (using the median value) are
shown in Fig. 2 and Fig. 3.

Some observations can be derived from the above s-
tatistics. Firstly, for most of the problems with category
A landscape, the convergence is clearly faster when using
the PAS method than using the ISS method. On the other

TABLE III
STATISTICS OF THE BEST FUNCTION VALUES OBTAINED FOR TF1-TF24

USING DE/CURRENT-TO-BEST/1 WITH THE PAS METHOD

Problem best worst average std
TF1 3.5e-21 7.990e-19 1.136e-19 2.425e-19
TF2 6.4e-15 2.401e-13 5.26e-14 6.91e-14
TF3 4.5e-12 2.139e-10 5.02e-11 6.09e-11
TF4 1.5e-20 1.045e-18 4.01e-19 3.66e-19
TF5 6.18e-14 6.819e-13 3.373e-13 2.091e-13
TF6 7.5e-11 4.777e-9 1.004e-9 1.423e-9
TF7 1.06e-16 2.318e-14 3.10e-15 7.14e-15
TF8 8.8e-12 4.077e-10 8.17e-11 1.328e-10
TF9 1.3e-6 5.818e-4 9.31e-5 1.596e-4

TF10 0 1.0000 0.3000 0.4830
TF11 0 2.0000 1.1 0.6009
TF12 0 6.0000 3.0000 2.4037
TF13 0.0002 0.0014 0.0006 0.0004
TF14 0.0001 2.6997 0.2701 0.8537
TF15 0.0001 1.3404 0.5342 0.6356
TF16 0.0222 0.8789 0.1458 0.2771
TF17 0.0000 0.0123 0.0029 0.0051
TF18 0.0000 0.0465 0.0056 0.0139
TF19 1.6798 8.5125 4.2805 2.1279
TF20 14.6455 18.7358 15.8824 1.2498
TF21 25.3921 27.0233 26.5369 0.6615
TF22 3.9904 50.8884 24.8280 16.0412
TF23 19.9002 168.3490 84.2205 62.9253
TF24 35.8185 274.0313 225.7966 68.7886

TABLE IV
STATISTICS OF THE BEST FUNCTION VALUES OBTAINED FOR TF1-TF24

USING DE/CURRENT-TO-BEST/1 WITH THE ISS METHOD

Problem best worst average std
TF1 3.59e-14 2.439e-13 1.396e-13 6.31e-14
TF2 9.1e-8 2.015e-6 5.16e-7 5.75e-7
TF3 2.89e-5 2.236e-4 1.082e-4 6.07e-5
TF4 1.85e-14 3.768e-13 1.195e-13 1.108e-13
TF5 8.0e-9 6.903e-7 2.344e-7 2.423e-7
TF6 4.33e-5 4.419e-4 2.188e-4 1.514e-4
TF7 7.33e-12 3.361e-9 5.49e-10 1.023e-9
TF8 5.6e-6 3.470e-4 7.33e-5 1.170e-4
TF9 0.0230 0.2600 0.0783 0.0761

TF10 0 0 0 0
TF11 0 1 0.15 0.3663
TF12 0 2 0.8 0.8309
TF13 0.0123 0.0896 0.0496 0.0288
TF14 0.0034 2.3158 0.6101 0.8391
TF15 0.0814 1.3602 0.3339 0.3822
TF16 0.0172 0.0911 0.0411 0.0290
TF17 0.0003 0.0174 0.0075 0.0065
TF18 0.0135 0.4551 0.1414 0.1238
TF19 0.0778 4.0537 2.6176 1.1591
TF20 14.7134 19.0486 16.4620 1.4707
TF21 26.8365 29.4628 27.7370 0.9069
TF22 6.9647 16.9143 10.7456 2.8837
TF23 14.9263 84.3081 28.4888 20.2593
TF24 26.3768 196.2803 114.8459 59.3901
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Fig. 2. Median of the best objective function values obtained for TF1 to TF12 over 20 runs

 

 Fig. 3. Median of the best objective function values obtained for TF13 to TF24 over 20 runs

hand, both of them can obtain satisfactory results at last.
When using the PAS method, the performance of using

DE/current-to-best/1 is often slightly better than that of using
the DE/best/1 strategy. For some 30-dimensional problems,
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Fig. 4. Convergence curves for the 20-dimensional Rosenbrock function

DE/current-to-best/1 shows an obviously better performance
because of the higher exploration ability, such as the 30-
dimensional Ackley function. Secondly, for category B prob-
lems, it can be observed that although reasonably acceptable
results are obtained for most problems, more evaluations are
needed to have a clear picture on the convergence trend
for several problems. For the 10-dimensional Rosenbrock
function and the 10/20-dimensional Rastrigin function, the
convergence trends are relatively clear. An observation is
that DE/current-to-best/1 with the PAS method performs the
worst, the reason of which has been described in Section
III (D). Using DE/current-to-best/1 with the ISS method
often obtains results with a better quality at last, while
using DE/best/1 with the PAS method can obtain a faster
convergence in the beginning and the final results are often
reasonably acceptable. Thirdly, for category C landscapes,
it can be seen that using DE/current-to-best/1 with the ISS
method has obvious advantages compared to other methods.
Fourthly, for continuous optimization, it can be seen that
using DE/best/1 with the PAS method is often a good choice
when the computing budget is very tight. These observations
verify the analysis and the empirical rules presented in
Section III.

Next, the experiment of using 5000 exact evaluations
for the 20-dimensional Rosenbrock function is carried out
(Fig. 4). The above conclusion is validated again. It can
be observed that only using DE/current-to-best/1 with the
ISS method can jump out of local optima. It also verifies
that DE/rand/1 is not a feasible choice for SMAS. Although
using DE/rand/1 has a higher population diversity than
using DE/current-to-best/1, a high-quality surrogate model
is difficult to be constructed by the generated training data
points. Fig. 4 shows the convergence curves using λ = 5×d.
Experiments show that when using λ = 40, local optima
can still be jumped out with DE/current-to-best/1 and the
ISS method, but the convergence speed is slower. This
shows that with appropriate search and training data selection
methods, enlarging the population size is an effective method
to handle complex problems (e.g., category B landscapes) by
the SMAS framework.

Test functions F1 to F24 from CEC 2014 competition [18]

TABLE V
STATISTICS OF THE BEST FUNCTION VALUES OBTAINED FOR F1-F24

OVER 20 RUNS

Problem best worst median mean std
F1 1.34E-08 2.74E-04 1.55E-07 1.41E-05 6.12E-05
F2 4.38E-08 2.64E-06 4.39E-07 7.08E-07 7.49E-07
F3 2.65E-07 6.29E-06 2.89E-06 2.96E-06 1.52E-06
F4 2.32E-08 2.38E-05 2.69E-07 2.56E-06 6.46E-06
F5 4.48E-07 1.80E-05 4.26E-06 1.42E-05 3.92E-05
F6 2.08E-05 6.17e-4 3.76E-05 7.33E-5 1.30E-4
F7 9.22E-07 4.62E-05 8.36E-06 1.28E-05 1.18E-05
F8 3.75E-05 6.24E-04 1.67E-04 1.99E-04 1.62E-04
F9 0.003 0.2924 0.0362 0.048 0.0645
F10 0 0 0 0 0
F11 0 1 0 0.1 0.3078
F12 0 2 1 0.6 0.5982
F13 3.15E-04 1.6463 8.95e-4 0.2238 0.5503
F14 5.25E-04 3.5719 0.0019 0.5792 1.1467
F15 0.0016 2.3169 0.9314 0.8854 0.8233
F16 0.0099 0.8459 0.0992 0.279 0.3346
F17 6.42E-06 0.057 0.0075 0.0083 0.0128
F18 4.21E-05 0.0148 2.90E-04 0.0027 0.0051
F19 0.2132 9.6114 5.288 5.2884 2.1684
F20 14.0813 81.6163 15.9776 22.1117 18.7612
F21 18.8617 164.15 33.5428 54.281 36.8855
F22 13.0691 85.4369 56.1722 50.5976 23.8103
F23 33.0937 167.0889 83.4525 88.7364 41.5934
F24 53.2462 310.5249 244.9737 198.7347 85.6271

of computationally expensive optimization are used. For 10,
20 and 30-dimensional problems, the allowed number of ex-
act function evaluations are 500, 1000 and 1500, respectively.
According to the summarized rules in Section III, DE/best/1
with the PAS method is selected for such tight computing
budget, except F10-F12 based on the Step function, where
DE/current-to-best/1 with the ISS method is used and λ is
set to 5× d. The results are shown in Table V.

V. CONCLUSIONS

The SMAS framework outperforms several other state-of-
the-art surrogate management methods for computationally
expensive optimization problems, but its search behavior
has seldom been investigated. In this work, the parameter
setting, the search strategy (trading off of convergence speed
and population diversity), the training data selection method
(further improving the surrogate model quality) and the
correlation between these have been investigated for different
types of function landscapes in the context of SMAS. Em-
pirical rules for selecting the appropriate search strategy and
the training data selection method have been proposed, which
provide a reference for the appropriate use of SMAS. The
effectiveness of the rules have been verified by experiments.
Future work includes investigating the ensemble of different
search and training data selection strategies and self-adaptive
methods.
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APPENDIX

Benchmark problems:
A. TF1, TF2, TF3: Sphere Problem

min f(x) =
∑d
i=1 x

2
i

x ∈ [−5.12, 5.12], i = 1, . . . , d
TF1 : d = 10, TF2 : d = 20, TF3 : d = 30

(4)

B. TF4, TF5, TF6: Ellipsoid Problem

min f(x) =
∑d
i=1 ix

2
i

x ∈ [−5.12, 5.12], i = 1, . . . , d
TF4 : d = 10, TF5 : d = 20, TF6 : d = 30

(5)

C. TF7, TF8, TF9: Rotated Ellipsoid Problem

min f(x) =
∑d
i=1 i · xr2i

xr =M ∗ x,M is from CEC 2014 competition [18]
x ∈ [−5.12, 5.12], i = 1, . . . , d
TF7 : d = 10, TF8 : d = 20, TF9 : d = 30

(6)

D. TF10, TF11, TF12: Step Problem

min f(x) =
∑d
i=1(bxi + 0.5c)2

x ∈ [−5.12, 5.12], i = 1, . . . , d
TF10 : d = 10, TF11 : d = 20, TF12 : d = 30

(7)

E. F13, F14, F15: Ackley Problem

min f(x) = −20e−0.2
√

1
d

∑d
i=1 x

2
i − e 1

d

∑d
i=1 cos(2πxi)

x ∈ [−32.768, 32.768], i = 1, . . . , d
TF13 : d = 10, TF14 : d = 20, TF15 : d = 30

(8)
F. TF16, TF17, TF18: Griewank Problem

min f(x) = 1 +
∑d
i=1

x2
i

4000 −
∏d
i=1 cos(

xi√
i
)

x ∈ [−600, 600], i = 1, . . . , d
TF16 : d = 10, TF17 : d = 20, TF18 : d = 30

(9)

G. TF19, TF20, TF21: Rosenbrock Problem

min f(x) =
∑d
i=1(100(xi+1 − x2i )2 + (1− xi)2)

x ∈ [−2.048, 2.048], i = 1, . . . , d
TF19 : d = 10, TF20 : d = 20, TF21 : d = 30

(10)
H. TF22, TF23, TF24: Rastrigin Problem

min f(x) = 10d+
∑d
i=1(x

2
i − 10cos(2πxi))

x ∈ [−5.12, 5.12], i = 1, . . . , d
TF22 : d = 10, TF23 : d = 20, TF24 : d = 30

(11)
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