



Abstract—Minimum Population Search is a new
metaheuristic specifically designed for optimizing multi-modal
problems. Its core idea is to guarantee exploration in all
dimensions of the search space with the smallest possible
population. A small population increases the chances of
convergence and the efficient use of function evaluations – an
important consideration when scaling a search technique up
towards large scale global optimization. As the cost to converge
to any local optimum increases in high dimensional search
spaces, metaheuristics must focus more and more on gradient
exploitation. To successfully maintain its balance between
exploration and exploitation, Minimum Population Search uses
thresheld convergence. Thresheld convergence can ensure that
a search technique will perform a broad, unbiased exploration
at the beginning and also have enough function evaluations
allocated for proper convergence at the end. Experimental
results show that Minimum Population Search outperforms
Differential Evolution and Particle Swarm Optimization on
complex multi-modal fitness functions across a broad range of
problem sizes.

I. INTRODUCTION

ARGE scale global optimization (LSGO) has been
recently arising in many real-world applications such as
bio-computing [1], telecommunication [2], and financial

markets [3]. With increasing dimensionality, the search space
volume grows exponentially. Known as “the curse of
dimensionality” [4], the exponential increase of candidate
solutions leads to a decrease in the performance of most
optimization algorithms [5].

Although the search space increases exponentially, the
computational resources available often increase only
linearly with respect to the dimensions (d) of the problem. For
example, in one large scale global optimization contest (i.e.
d ≥ 1000), the allowed function evaluations (FEs) was FEs =
3000*d [5]. These mismatched growth rates between search
space volume and available FEs can cause adequate search
space coverage in low dimensional search spaces to become
exceptionally sparse coverage in high dimensional search
spaces. As a consequence, heuristics in large scale global
optimization need to become highly efficient in the use of the
available function evaluations.

As the cost to converge to any local optimum increases, the
ability to dedicate any effort to exploration decreases rapidly.
In [6], it is argued that in high dimensional search spaces,
metaheuristics must focus almost exclusively on gradient

A. Bolufé-Röhler is with the University of Havana, Havana, Cuba (phone:

53-5-242-0064; e-mail: bolufe@matcom.uh.cu).
S. Chen is with York University, Toronto, ON, Canada (e-mail:

sychen@yorku.ca).

exploitation. Favoring exploitation over exploration has
important consequences when optimizing multi-modal
problems. In multi-modal search spaces, an extra amount of
FEs has to be put into exploration in order to avoid/escape
poor local optima. Finding the correct balance between
exploration and exploitation becomes critical in large scale
global optimization. Exploring too much may not leave
enough function evaluations to converge, but dedicating all of
the computational resources to gradient exploitation can also
negatively affect performance on multi-modal functions.

Minimum Population Search (MPS) [7] is designed to
guarantee full coverage of a search space with a small
population. It is hoped that its efficient use of function
evaluations will allow MPS to scale well to high dimensional
search spaces. MPS has been shown to have competitive
performance on multi-modal problems, especially with low
budgets of FEs [7]. The current work presents a first step
towards extending MPS towards large scale global
optimization. As part of this extension, a new adaptive
version of thresheld convergence has been developed. In
MPS, the role of thresheld convergence is to control the
transition from exploration to exploitation, and increasing
dimensionality offers new opportunities and challenges in
this important task.

The next section presents a background on large scale
global optimization. Section III then describes the
development of MPS. Computational results for MPS and
other metaheuristics are presented for a broad range of
problem sizes in Section IV. The new adaptive version of
thresheld convergence for MPS is presented in Section V.
Finally, a discussion about the new metaheuristic is carried
out in Section VI before the paper is summarized in Section
VII.

II. BACKGROUND

Previous work on large scale global optimization can be
roughly classified into two main approaches: optimizing the
problems as wholes or decomposing them into a number of
sub-problems. Partitioning a large problem into sub-problems
and then solving them independently is a very intuitive
methodology. In recent years, several decomposition-based
algorithms have been proposed, ranging from total
decomposition (solving d 1-dimensional problems) [8] to
capturing the interacting variables and grouping them in one
subcomponent [9, 10].

Decomposition-based algorithms, however, may not be as
effective when facing non-separable problems [11]. In
non-separable problems, a proportion of the decision
variables have interactions amongst themselves. In such

Extending Minimum Population Search towards Large Scale Global
Optimization

Antonio Bolufé-Röhler and Stephen Chen

L

845

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

cases, it becomes necessary to detect the interacting variables
and to group them in the same sub-problem. Unfortunately,
detecting correlations may be computational costly, the
clusters of interacting variables may be large enough to
consider the decomposed sub-problem as a large scale
problem by itself, and/or the objective function may not be
separable at all [5].

When optimizing non-separable problems, increasing the
scalability of a specific operator or a general search strategy is
a complementary approach. Previous works focus on
modifying the classical operators (which are usually
developed for low dimension tasks) in an attempt to boost
their performance in high dimensions [12]. Techniques such
as self-adaptation, hybridization, and population reduction
have been used to increase the scalability of different
heuristic methods [12−14]. The Minimum Population Search
(MPS) metaheuristic falls into this general group. However,
instead of attempting to improve scalability from existing
methods, the search strategy of MPS was designed from the
very beginning to be scalable. The main idea is to provide
strong exploration mechanisms which allow it to effectively
cover the search space while using a (relatively) small
population [7].

Smaller populations allow more generations and increase
the efficient use of FEs. However, if the population size (n)
becomes smaller than the dimensionality of the problem (d)
then its population will define an n-1 dimensional
hyperplane. New solutions generated strictly from the line
segments formed among the population members (e.g.
difference vectors, attraction vectors, mid-point crossover,
etc) will “get trapped” inside this n-1 dimensional hyperplane
which is a subset of the complete search space. This is an
important consideration since line segments are an important
feature of many optimization techniques such as
Nelder-Mead (NM) [15], Differential Evolution (DE) [16],
and Particle Swarm Optimization (PSO) [17].

MPS has been specifically designed to deal with this
limitation. Using a population size equal to the
dimensionality of the problem (n = d), new solutions are
generated using difference vectors to be in a d-1 dimensional
hyperplane. Full coverage of the search space is then
achieved by taking a subsequent step that is orthogonal to this
hyperplane. To preserve diversity and avoid premature
convergence, the size of the hyperplane and orthogonal steps
is controlled using thresheld convergence [18, 19]. The
minimum step (threshold) decays as the search progresses
and convergence is thus “held” back until the last stages of
the search process. By controlling the decay rate of the
threshold function, it is possible to effectively determine the
amount of exploration and exploitation performed by the
algorithm.

III. MINIMUM POPULATION SEARCH

Minimum Population Search is a recently developed
metaheuristic specifically designed for optimizing
multi-modal problems. Another distinctive feature of MPS is
that its search strategy was explicitly designed from the
beginning to be scalable to large scale global optimization.

The key ideas were initially developed for two dimensional
problems in [7] and later generalized for standard dimensions
in [20].

A. Minimum Population Search for Two Dimensions

MPS can use the minimum population size of n = 2 (as a
population size of 1 makes a population-based technique
indistinguishable from a point-search technique). In two
dimensions, each iteration of MPS starts with the generation
of “line points” along the subspace (line) determined by the
two population members (x1 and x2). The “line points” are
generated by adding the (normalized) difference vector
formed by x1 and x2 to each population member xi. The
direction and size of the difference vector is determined by
the scaling factor Fi (1).

)(21 xxFx=line iii  (1)

Taking a step along the line segment formed by x1 - x2 will

only generate solutions in the subspace (line) defined by the
two population members. An orthogonal step to this subspace
(line) allows the search process of MPS to cover the full
dimensionality of the (2D) problem. The direction and size of
this exploratory step is determined by the Ostep_i factor (2).

orthOline=trial istepii  _ (2)

Thresheld convergence forces new solutions to be a

minimum (min_step) threshold distance away from their
parent solutions. To guarantee that the distance between a
“line point” and its parent solution is smaller than the
maximum allowed step (max_step), Fi is drawn with a
uniform distribution from the [-max_step, max_step] interval
(note: the x1-x2 vector is normalized before scaling). To

Fig. 1. Visualization of MPS search process in 2D: x1 and x2 are the current
population members, the crosses are the “line points” formed from (1) and
the diamonds are the trial points that result after (2). The dotted circle lines
show the minimum and maximum step thresholds around x1 and x2.

846

ensure that the distance from the new trial solution (triali) to
its parent solution (xi) stays within the acceptable [min_step,
max_step] threshold range, the Ostep_i factor is selected with a
uniform distribution from the [min_orthi, max_orthi] interval
(note: the orth vector is normalized before scaling). The
min_orthi and max_orthi values are calculated by (3) and (4),
respectively. Since the x1-x2 vector is normalized before
scaling, the Fi factor represents the actual distance between
the “line point” (linei) and its corresponding parent solution
(xi). New solutions which fall outside the feasible search
space are clamped back to the boundaries. The two best
solutions from the current population and the new trial
solutions survive into the next generation.

)0,max(min__ 22
iii Fstep=orthmin  (3)

)0,max(max__ 22
iii Fstep=orthmax  (4)

The min_step and max_step values are updated by a rule

similar to that used in previous attempts to control
convergence for DE [18] and PSO [19] in which an initial
threshold is selected that then decays over the course of the
search process, see (5). Equation (5) shows how min_step is
calculated (note: max_step = 2 * min_step). In (5), α
represents a fraction of the main space diagonal, FEs is the
total available amount of function evaluations, k is the
number of evaluations used so far, and γ is the parameter that
controls the decay rate of the threshold. The implementation
presented in [7] uses α = 0.3 and γ = 3.

)/]([_ FEskFEsdiagonal=stepmin i  (5)

To ensure good spacing in the initial population, the initial

points are selected to be on the diagonal of the search space.
Assuming that the search space is bounded by the same lower
and upper bound in each dimension (as in the used

benchmark functions), the initial points are selected as
x1=(bound/2, bound/2) and x2 =(-bound/2, -bound/2). Fig. 1
shows the search strategy of MPS in a two-dimensional
search space.

B. MPS in Standard Dimensions

If the population size becomes smaller than dimensionality
of the problem, line segments will be restricted to the n-1
hyperplane formed by the n population members. To avoid
new solutions from getting trapped in this subspace of the
whole search space, the population of MPS increases with
dimensionality (i.e. n = d). The orthogonal step can then
guarantee searching into all d dimensions of the search space.
This full extension of MPS from the two dimensional version
would require adding d-1 difference vectors to the parent
solution and using a vector orthogonal to these d-1 difference
vectors as the orthogonal step. A difficulty of this approach is
the high computational cost of calculating the orthogonal
vector. Thus, a version of MPS which is conceptually simpler
and has a lower computational cost was developed based on
the centroid of the population [20].

In MPS-centroid (or simply MPS), the “hyperplane points”
are obtained by adding to the parent solution the difference
vector between the parent and the centroid (instead of d-1
difference vectors). The orthogonal step is done using a
vector orthogonal to the parent-centroid line (2D subspace).
Fig. 2 shows a graphical comparison in 3D between the MPS
version using a vector orthogonal to the d-1 hyperplane and
the centroid version. In the centroid version, the offspring
solution (trial) can be on an entire plane (perpendicular to the
centroid vector) as opposed to only a line that is
perpendicular to the plane defined by x1, x2, and x3.

In higher dimensions each population member is initialized
using (6): sk is the kth population member, rsi are random
numbers which can be -1 or 1, and bound is the lower and
upper bound on each dimension. This initialization method
leads to a better distribution of the initial solutions in the
search space than did uniform random solutions.

Fig. 2. An illustrated comparison between using two difference vectors (left) and the centroid (right) for generating a new trial point in MPS. In both cases x1, x2, and

x3 are the (parent) solutions from the current population.

847

)2/* ..., ,2/* ,2/*(2 boundsrboundsrboundsr=s nik (6)

At each generation a simple set of operations are

performed. First, the threshold values are updated (5) and the
centroid is calculated. Then, each member is used as a parent
solution to generate an offspring. The mechanism used to
generate the new solutions is similar to the two-dimensional
MPS, but the centroid is used instead of the other population
member. The “hyperplane points” are obtained by adding the
parent-centroid difference vector to the parent solution. The
orthogonal step is made taking a random vector orthogonal
(orth) to the parent-centroid difference vector. This two-step
process for generating the new trial solutions (triali) is
presented in (7).

orthOxxFx=trial istepciiii  _)((7)

In (7), xi and xc are the parent and the centroid,

respectively. The Fi factor is drawn with a uniform
distribution from [-max_step, max_step] (xi-xc is normalized
before scaling). The Ostep_i factor is selected with a uniform
distribution from [min_orthi, max_orthi] (the orth vector is
also normalized). The min_orthi and max_orthi values are
calculated as in the two-dimensional version using (3) and
(4). Once the new solutions are created, clamping is
performed if necessary, and the best n solutions among the
parents and offspring survive into the next generation. The
parameters for the threshold function are α=0.3 and γ=3. A
detailed pseudo-code is presented in Algorithm 1.

IV. COMPUTATIONAL RESULTS

A set of experiments has been designed to test the
effectiveness of MPS. The experiments have been performed
using the Black-Box Optimization Benchmark (BBOB)
minimization functions [21] with a budget of FEs = 3000*d,
as in large scale global optimization contests [5]. There are 24

BBOB functions divided into five sets. Since MPS is
explicitly designed for multi-modal search spaces, this paper
focuses on Set 4-multi-modal functions with adequate global
structure and Set 5-multi-modal functions with weak global
structure. In Table I, the names of these functions are
indicated. The experiments include comparisons to PSO and
DE. The PSO algorithm is a standard version with ring
topology [17], zero initial velocities [22], and “Reflect-Z” for
particles that exceed the boundaries of the search space [23].
The DE method is the highly common and frequently
effective variant labeled DE/rand/1/bin [16].

Algorithm 1 Minimum Population Search

MPS (α, γ, maxFEs)
X ← InitialPopulation() // Equation (6)

while FEs < maxFEs
 min_step ← UpdateThreshold(α, γ) // Equation (5)

 max_step ← min_step*2

 xc ← CalculateCentroid()

 for i = 1 : popsize
 Fi ← UniformRandom(-max_step, max_step)

 orthi ← OrthogonalVector(xi- xc) // normalized vector

 orth_step ← UniformRandom(min_orth, max_orth) // Equations (3) and (4)

 triali ← xi + Fi*(xi - xc) + orth_step*orthi // clamping if necessary

 endfor
 X ← BestSolutions(X, trial)

endwhile

TABLE I
BBOB FUNCTIONS

Set Function Name
Attribute
s u gs

1

1 Sphere X X X
2 Ellipsoidal, original X X X
3 Rastrigin X X
4 Büche-Rastrigin X X
5 Linear Slope X X

2

6 Attractive Sector X
7 Step Ellipsoidal X
8 Rosenbrock, original
9 Rosenbrock, rotated

3

10 Ellipsoidal, rotated X X
11 Discus X X
12 Bent Cigar X
13 Sharp Ridge X
14 Different Powers X

4

15 Rastrigin, rotated X
16 Weierstrass X
17 Schaffers F7 X
18 Schaffers F7, moderately ill-conditioned X
19 Composite Griewank-Rosenbrock F8F2 X

5

20 Schwefel
21 Gallagher’s Gaussian 101-me Peaks
22 Gallagher’s Gaussian 21-hi Peaks
23 Katsuura
24 Lunacek bi-Rastrigin

Names and selected attributes of the 24 functions in the BBOB problem
set – separable (s), unimodal (u), global structure (gs).

848

A. Population Size

With increasing dimensionality, it seems natural to
increase the population size accordingly. Despite the
exponential growth of the search space, recommendations for
population sizes include linear growth and constant size. A
simple guideline from Differential Evolution is to use a
population size that is ten times the dimensionality of the

search space [24]. In standard PSO, a fixed population size of
n = 50 is recommended [17].

The next set of experiments compares the performance of
MPS, DE, and PSO, and it aims to show the relationship
between population size and performance as dimensions
increase. Table II presents the results for problem sizes of
d = 5, 10, 20, 50, and 100. DE and PSO are tested with a
constant population size (n = 50) and with a linearly
increasing population size (n = 2*d). The presented results
are the mean errors from optimum for five trials on each of
the first five instances of each function (i.e. 25 independent
trials for each function).

Results in Table II show that the relative performance of
MPS versus DE and PSO increases as problem size increases.
For d = 100, MPS provides the best results on 7 of the 10
functions. It can also be noticed that the DE and PSO versions
with the increasing population size (n = 2*d) achieve the best
performance around d = 20 and comparatively worse results
in smaller and larger dimensions. To see these trends more
clearly, Fig. 3 shows the average performance of these
algorithms compared to MPS. The reported values are the
average relative performances (%-diff = (a-b)/max(a,b))
achieved by MPS versus DE and PSO on BBOB Sets 4 and 5.
These values indicate by what amount (percent) the given
algorithm (b) outperforms MPS (a) – negative values indicate
that the algorithm (DE or PSO) is outperformed by MPS.

Two key results are the steady decrease in performance of
DE and PSO when compared against MPS, and how a
population size correlated to the dimensionality d leads to
poor performance for DE and PSO on small and large
problems. When d and n are small, it appears that the
population does not achieve the minimum required size for
the search strategies of DE and PSO to become effective.
When d and n are large, it appears that the large populations
lead to an inefficient use of FEs (which prevents DE and PSO
from converging). Since the best overall results are achieved
with a constant population, the rest of the experiments of this
paper use a population size of n = 50 for DE and PSO.

TABLE II
PERFORMANCE AS DIMENSIONS INCREASE (FES = 3000*d)

Set F MPS
DE PSO DE PSO

n=50 n=50 n=2*d n=2*d
d = 5

4

15 1.75e+00 6.35e+00 3.16e+00 5.66e+00 4.12e+00
16 1.77e−01 1.35e+00 1.87e−01 1.02e+00 3.93e−01
17 3.85e−04 1.79e−05 1.84e−02 8.86e−03 6.77e−02
18 3.30e−02 4.79e−04 1.19e−01 1.91e−01 3.96e−01
19 2.23e−01 7.16e−01 3.08e−01 1.08e+00 3.76e−01

5

20 5.87e−01 2.66e−01 4.04e−01 2.58e−01 5.70e−01
21 8.24e−01 2.86e−01 4.40e−02 1.03e+00 8.35e−01
22 9.87e−01 2.72e−01 1.59e−01 1.19e+00 9.82e−01
23 2.37e−01 9.79e−01 5.36e−01 1.12e+00 5.71e−01
24 5.92e+00 1.22e+01 7.85e+00 7.96e+00 8.00e+00

d = 10

4

15 5.02e+00 3.32e+01 1.57e+01 1.99e+01 1.55e+01
16 5.60e−01 8.19e+00 1.85e+00 3.84e+00 2.52e+00
17 1.07e−02 9.73e−04 2.74e−01 1.87e−04 2.03e−01
18 1.95e−01 2.72e−02 8.95e−01 3.59e−02 1.17e+00
19 4.27e−01 2.72e+00 1.81e+00 2.53e+00 1.63e+00

5

20 1.22e+00 1.82e+00 8.38e−01 5.02e−01 8.77e−01
21 2.23e+00 1.18e+00 6.83e−01 1.80e+00 9.00e−01
22 3.43e+00 1.82e+00 1.40e+00 2.95e+00 2.60e+00
23 1.49e−01 1.47e+00 8.40e−01 1.42e+00 8.93e−01
24 1.39e+01 4.50e+01 3.45e+01 3.87e+01 3.41e+01

d = 20

4

15 1.12e+01 1.15e+02 6.13e+01 1.11e+02 4.15e+01
16 1.51e+00 1.80e+01 6.72e+00 1.82e+01 5.11e+00
17 2.84e−02 5.67e−03 1.05e+00 7.44e−04 1.00e+00
18 4.15e−01 1.91e−01 3.59e+00 7.25e−02 3.03e+00
19 5.67e−01 4.93e+00 3.94e+00 4.95e+00 2.07e+00

5

20 1.68e+00 2.57e+00 1.17e+00 2.10e+00 1.08e+00
21 5.39e+00 4.67e+00 8.64e−01 4.22e+00 9.13e−01
22 7.04e+00 3.26e+00 2.15e+00 2.81e+00 2.24e+00
23 1.98e−01 2.17e+00 1.47e+00 2.06e+00 1.15e+00
24 3.09e+01 1.31e+02 1.21e+02 1.33e+02 8.79e+01

d = 50

4

15 5.19e+01 3.87e+02 2.93e+02 3.40e+02 2.02e+02
16 3.91e+00 3.26e+01 1.65e+01 2.27e+01 1.15e+01
17 1.31e−01 1.54e−02 2.93e+00 3.52e−01 2.07e+00
18 1.58e+00 3.15e−01 1.22e+01 3.13e+00 1.02e+01
19 8.78e−01 6.96e+00 7.06e+00 6.44e+00 5.24e+00

5

20 2.24e+00 2.81e+00 1.44e+00 2.98e+00 1.53e+00
21 4.46e+00 3.82e+00 1.93e+00 4.54e+00 1.57e+00
22 4.69e+00 6.00e+00 2.66e+00 4.37e+00 2.57e+00
23 2.50e−01 3.66e+00 2.85e+00 3.12e+00 2.53e+00
24 8.38e+01 4.37e+02 4.87e+02 4.01e+02 4.03e+02

d = 100

4

15 1.36e+02 9.29e+02 8.16e+02 9.33e+02 1.06e+03
16 7.14e+00 4.23e+01 2.50e+01 2.70e+01 2.53e+01
17 3.02e−01 3.12e−01 5.20e+00 2.12e+00 5.68e+00
18 2.83e+00 1.33e+00 1.96e+01 6.12e+00 2.15e+01
19 1.52e+00 7.96e+00 9.47e+00 7.10e+00 9.90e+00

5

20 2.30e+00 1.54e+00 1.82e+00 4.42e+00 7.32e+00
21 3.92e+00 6.25e+00 2.02e+00 5.05e+00 2.49e+00
22 2.51e+00 8.17e+00 3.05e+00 5.65e+00 2.82e+00
23 3.37e−01 4.24e+00 3.63e+00 3.33e+00 3.46e+00
24 2.15e+02 9.98e+02 1.25e+03 9.60e+02 1.33e+03

Mean error over 25 trials from known optimum.

Fig. 3. Relative performance of MPS on BBOB Sets 4 and 5 versus DE and
PSO.

849

B. Hyperplane Search

If the population size of an evolutionary algorithm is
smaller than the dimensionality of the problem then its
population will define an n-1 dimensional hyperplane. New
solutions generated strictly from the line segments formed
among the population members will “get trapped” inside this
n-1 dimensional hyperplane which is a subset of the complete
search space. This situation occurs for DE and PSO where the
primary mechanisms of difference vectors and attraction
vectors act within the n-1 dimensional hyperplane defined by
the n population members. To escape the n-1 dimensional
hyperplane these heuristics rely on secondary search
mechanisms. In PSO, the secondary mechanism is the
“random vectors” of ε1 and ε2 which involve independent
random numbers generated during each position update for
each individual dimension. In DE, it is the use of a crossover
operator which acts on the axial dimensions as opposed to the
population’s hyperplane.

The following experiment is designed to compare the
effectiveness of the “out of the hyperplane” exploration of
DE, PSO, and MPS. For the three algorithms, the population
size was set equal to the dimensionality of the problem (i.e.
n = d) and the distance from each new solution to the current
d-1 hyperplane was measured. The average step size into this
“missing dimension” was compared to the average step size
for each dimension within the hyperplane. Fig. 4 shows the
size of the step into the “missing dimension” compared to the
steps in the “hyperplane dimensions” (as a percentage).
Results are presented for d = 5-100 dimensions.

As it can be seen in Fig. 4, the ability of MPS to search out
of the hyperplane can be almost similar to its ability to search
inside the hyperplane. However, as dimensions increase the
search steps beyond the hyperplane become smaller
compared to the inside dimensions. The same happens for DE
and PSO. In the case of DE, its ability to search beyond the
hyperplane is clearly restricted. Although the effects of
dimension-by- dimension crossover can allow escapes from
the hyperplane, the small ratio of activity in these “exterior”
dimensions means that DE will adjust quite slowly to new
hyperplanes. PSO, shows an out of the hyperplane

exploration in between DE and MPS.

V. AN ADAPTIVE THRESHOLD FUNCTION FOR MPS

In large scale global optimization, it becomes necessary to
“wisely exploit response surfaces and possess high
efficiency” in the use of FEs [6]. Previous work has shown
that MPS satisfies the second requirement. However, MPS
does not directly exploit search gradients. Instead, it attempts
to provide a full coverage of the search space by performing a
methodical exploration based on controlled minimum and
maximum search steps. Although this search strategy is
effective for solving multi-modal problems, MPS may
benefit from an increased exploitation when performing large
scale global optimization. The threshold function is best
suited for the task of balancing exploration and exploitation.
By adjusting the threshold decay rate, it is possible to control
the transition from exploring the search space and detecting
the best regions to performing local search and exploiting the
best regions already found.

Larger populations in higher dimensional problems
provide information that MPS can use to develop adaptive
threshold functions and improve performance [25]. However,
determining the correct balance between exploration and
exploitation does not only depend on the dimensionality of a
problem, but on the characteristics of the function as well. If
the distance among the different attraction basins could be
known a priori, then the threshold could be held longer at this
“ideal search scale”. Allocating more function evaluations to
this threshold level could promote a better exploration of
different basins and increase the chances of finding the best
regions before performing a more intense/local search.

In the threshold function (5), the α parameter establishes
the initial size, but it is γ which controls the convergence rate.
By adaptively adjusting γ, it is possible to control the
convergence speed and stabilize the threshold at the “ideal
search scale”. A simple strategy is used to adjust γ. If an
improvement is achieved, i.e. at least one offspring survives
to the next generation, it suggests that exploration is paying
off and convergence should be delayed – subsequently γ is
decreased. Otherwise, if no improvements are achieved, it
implies that the current search scale has been sufficiently
explored so more local search may now be necessary –
subsequently γ is increased.

Fig. 5 compares the standard and adaptive threshold
functions. The adaptive threshold is shown for Rastrigin
(F15) and the Gallagher (F21) functions. The (initial)
threshold parameters are α = 0.1 and γ = 3 and the step size to
increase/decrease γ is 0.005. As it can be seen, the threshold
value of the adaptive function decreases until it stabilizes at a
potentially “ideal search scale”. This “ideal” scale is
appropriately different for functions with differing
characteristics. To guarantee convergence at the end, the
threshold size is decreased during the last 20% of the FEs
with a constant γ = 3.

In Table III, the adaptive threshold version (MPS_Ad) is
compared to standard MPS, DE, and PSO on functions with
d = 200. The presented results are the mean errors, the relative
performances, and the p-values of a t-test. As it can be seen,

Fig. 4. Step size into the “missing dimension”.

850

both MPS versions clearly outperform DE and PSO on most
of the functions. Improvements are larger on multi-modal
functions with adequate global structure (Set 4), than on
functions with weak global structure (Set 5). This result
suggests that MPS's search strategy, based on a methodical
and full-dimensional search, is capable of detecting and
exploiting the regularities underlying the function's structure.
In general, the worst comparative results occur for functions
21 and 22 (Gallagher’s Gaussian functions [26]). As specified
in [21], the key property of these functions is the existence of
optima “with position and height being unrelated and
randomly chosen”. This random feature in these search
spaces presents a difficult challenge for adapting the
threshold size.

Compared to DE, both MPS versions achieve meaningful
and significant improvements (%-diff > 10% and p < 0.05 for
the t-test) on all the multi-modal functions. The adaptive
version of MPS outperforms PSO on 9 of the 10 functions.
Both MPS versions achieve significant improvements over
PSO on 8 of the 10 functions (including all 5 of the functions
in Set 4 with adequate global structure). The use of the
adaptive threshold improves MPS on 8 of the 10 functions for

an overall improvement of 12.3%. Compared to DE and
PSO, the adaptive MPS provides an overall improvement of
67.2% and 58.0%, respectively.

VI. DISCUSSION

Line segments formed among the population members are
at the core of many population based heuristics such as DE,
PSO, and MPS. Line segments are useful to detect and
exploit search gradients, especially when differentiation is
not possible. However, line segments also require a
population large enough to guarantee full coverage of the
search space.

With increasing dimensions, larger populations are
necessary to maintain good coverage of an exponentially
increasing search space. However, if the balance between
exploration and exploitation is not properly adjusted, then
large populations may not leave enough FEs to achieve
convergence (see Fig. 3). This is one of the reasons why a
constant population size is a popular guideline for the design

of metaheuristics. However, with a fixed population size,
coverage becomes sparser as dimensions increase. Further, as
population size becomes smaller in comparison to the
dimensionality, line segments will get trapped in an n-1
dimensional hyperplane which can become a very small
subspace with respect to the whole search space. Without the
appropriate search mechanisms, the ability to search beyond
the hyperplane will then continuously decrease (see Fig. 4).

Matching the population to the minimum size necessary to
fully cover the search space is a key feature of MPS. Taking a
step orthogonal to the n-1 dimensional hyperplane explicitly
considers the need to continuously explore in all d
dimensions of the search space. However, if not enough FEs
are left for convergence, a population size which increases
with dimensionality may become a liability. The purpose of
thresheld convergence is to address this limitation by
controlling (through the α and γ parameters) the transition
from global to local search. If correctly adjusted, the
threshold function can guarantee that enough FEs are left to
achieve convergence.

In higher dimensional problems, larger populations

Fig. 5. Standard and adaptive threshold functions.

TABLE III
TOWARDS LARGE SCALE OPTIMIZATION

Set F
MPS_Adaptive MPS DE PSO

mean error mean error %-diff p-value mean error %-diff p-value mean error %-diff p-value

4

15 3.52e+02 3.91e+02 -9.9% 0.00 2.25e+03 -84.3% 0.00 2.33e+03 -84.8% 0.00
16 9.61e+00 9.07e+00 5.5% 0.02 5.14e+01 -81.3% 0.00 3.56e+01 -73.0% 0.00
17 6.85e−01 7.64e−01 -10.3% 0.00 1.59e+00 -56.9% 0.00 7.66e+00 -91.0% 0.00
18 3.47e+00 3.95e+00 -12.2% 0.00 5.21e+00 -33.4% 0.00 2.87e+01 -87.9% 0.00
19 1.45e+00 2.32e+00 -37.4% 0.01 9.38e+00 -84.5% 0.00 1.28e+01 -88.6% 0.00

Mean set 4 -12.9% -68.1% -85.1%

5

20 2.20e+00 2.27e+00 -2.9% 0.01 2.24e+01 -90.1% 0.00 2.40e+00 -8.2% 0.01
21 1.77e+00 2.26e+00 -21.5% 0.04 2.91e+00 -39.1% 0.01 1.92e+00 -7.7% 0.13
22 4.25e+00 4.07e+00 4.2% 0.14 6.29e+00 -32.4% 0.00 2.72e+00 35.9% 0.00
23 2.78e−01 4.43e−01 -37.2% 0.01 3.47e+00 -91.9% 0.00 3.14e+00 -91.1% 0.00
24 5.20e+02 5.25e+02 -1.0% 0.09 2.33e+03 -77.7% 0.00 3.07e+03 -83.0% 0.00

Mean set 5 -11.7% -66.3% -30.8%
Total mean -12.3% -67.2% -58.0%

Mean error from known optimum and relative improvements of MPS, DE, and PSO versus the Adaptive MPS.

851

provide information that can be used to develop adaptive
threshold functions and improve performance (see Table III).
Enhancing MPS through an adaptive threshold function leads
to a better balance of global and local search according to the
dimensionality and characteristics of the problem. Although
the proposed adaptive threshold is an important step toward
detecting the “ideal search scale”, further improvement may
be possible. Since the distance among attraction basins may
differ according to the search space region, future work may
aim to maintain individual threshold functions for each
member (or subset) of the population.

DE and PSO have had many enhancements since their
original design, including standard PSO. Since the initial
development of MPS is already highly competitive, further
enhancements are very promising. In order to increase
performance in LSGO, an important research direction will
be hybridizing MPS with search techniques with a stronger
local-search/exploitation strategy. Once the threshold step
achieves the “ideal search scale” and MPS's population finds
promising attraction basins, the convergence toward the
corresponding (local) optima could be performed through
more efficient gradient exploitation techniques. Further
improvements may also be achieved through multiple restarts
(resizing the minimum and maximum steps) and the
combination of MPS with decomposition techniques (such as
cooperative coevolution) [9].

VII. SUMMARY

Building up from the original two-dimensional design, this
paper extends Minimum Population Search towards large
scale global optimization. MPS increases the population to
the minimum necessary size in order to guarantee full
coverage and continuous exploration in all d dimensions of
the search space. With a linearly increasing population, it
becomes crucial to correctly balance exploration and
exploitation to ensure convergence (to any local optima).
MPS adjusts this balance by using thresheld convergence. A
new enhancement allows adaptively adjusting the decay rate
as the search proceeds so that MPS can stabilize the threshold
size at a hopefully “ideal search scale”. Altogether, Minimum
Population Search is shown to be a simple and effective
algorithm for solving complex multi-modal problems. The
initial development of MPS is already highly competitive
with well-established metaheuristics such as DE and PSO, so
future improvements such as hybridization with local search
and decomposition techniques are very promising.

REFERENCES
[1] S. Klein, M. Staring, and J. Pluim, “Evaluation of optimization methods

for nonrigid medical image registration using mutual information and
b-splines,” IEEE Trans. Image Processing, vol. 16, pp. 2879–2890,
Dec. 2007.

[2] F. Luna, A. J. Nebro, E. Alba, and J. J. Durillo, “Solving large-scale
real-world telecommunication problems using a grid-based genetic
algorithm,” Engineering Optimization, vol. 40, pp. 1067–1084, Nov.
2008.

[3] J. F. Chang and P. Shi, “Using investment satisfaction capability index
based particle swarm optimization to construct a stock portfolio,”
Information Sciences, vol. 14, pp. 2989–2999, July 2011.

[4] R. E. Bellman, Dynamic Programming, Princeton, NJ: Princeton
University Press, 1957.

[5] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark
Functions for the CEC’2013 Special Session and Competition on
Large-Scale Global Optimization,” Nature Inspired Computation and
Applications Laboratory, USTC, China, Tech. Rep, 2012.

[6] W. Chu, X. Gao, and S. Sorooshian, “A new evolutionary search
strategy for global optimization of high-dimensional problems,”
Information Sciences, vol. 181, pp. 4909–4927, Nov. 2011.

[7] A. Bolufé-Röhler and S. Chen, “Minimum Population Search – Lessons
from building a heuristic technique with two population members,” in
Proc. IEEE CEC, 2013, pp. 2061–2068.

[8] V. Gardeux, R. Chelouah, P. Siarry, and F. Glover, “EM323 : A Line
Search based algorithm for solving high-dimensional continuous
non-linear optimization problems,” Soft Computing, vol. 15, pp
2275–2285, Nov. 2011.

[9] M. Potter and K. De Jong, “Cooperative Coevolution: An Architecture
for Evolving Coadapted Subcomponents,” Evolutionary Computation,
vol. 8, pp. 1–29, Mar. 2000.

[10] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Trans. Evolutionary Computation, vol. 16,
pp. 210–224, June 2011.

[11] M. N. Omidvar, X. Li, X. Yao, “Cooperative Co-evolution with Delta
Grouping for Large Scale Non-separable Function Optimization,” in
Proc. IEEE CEC, 2010, pp. 1762–1769.

[12] Y. Wang and B. Li, “Two-stage based Ensemble Optimization for
Large-Scale Global Optimization,” in Proc. IEEE CEC, 2010, pp.
4488–4495.

[13] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer,
“High-dimensional Real-parameter Optimization Using Self-adaptive
Differential Evolution Algorithm with Population Size Reduction,” in
Proc. IEEE CEC, 2008, pp. 2032–2039.

[14] S. Zhao, J. J. Liang, P. N. Suganthan, and M. F. Tasgetiren, “Dynamic
Multi-swarm Particle Swarm Optimizer with Local Search for Large
Scale Global Optimization,” in Proc. IEEE CEC, 2008, pp. 3845–3852.

[15] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence properties of the Nelder-Mead simplex method in low
dimensions,” SIAM J. Optimization, vol. 9, pp. 112–147, 1998.

[16] R. Storn and K. Price, “Differential Evolution – A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimization, vol. 11, pp. 341–359, Dec. 1997.

[17] D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” in Proc. IEEE SIS, 2007, pp. 120–127.

[18] J. Montgomery and S. Chen, “A simple strategy for maintaining
diversity and reducing crowding in differential evolution,” in Proc.
IEEE CEC, 2012, pp. 2692–2699.

[19] S. Chen and J. Montgomery, “A simple strategy to maintain diversity
and reduce crowding in particle swarm optimization,” in Proc.
Australasian AI, 2011, pp. 281–290.

[20] A. Bolufé-Röhler and S. Chen, “Minimum Population Search – A
Scalable Metaheuristic for Multi-Modal Problems”, in press.

[21] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-box
optimization benchmarking 2009: noiseless functions definitions,”
INRIA Tech. Rep. RR-6829, 2009.

[22] A. Engelbrecht, “Particle swarm optimization: velocity initialization,”
in Proc. IEEE CEC, 2012, pp. 70–77.

[23] S. Helwig, J. Branke, and S. Mostaghim, “Experimental Analysis of
Bound Handling Techniques in Particle Swarm Optimization,” IEEE
Trans. Evolutionary Computation, vol. 17, pp. 259–271, Apr. 2013.

[24] R. Storn, “On the usage of differential evolution for function
optimization,” in Proc. IEEE NAFIPS, 1996, pp. 519–523.

[25] A. Bolufé-Röhler, S. Estévez-Velarde, A. Piad-Morffis, S. Chen and J.
Montgomery, “Differential evolution with thresheld convergence,” in
Proc. IEEE CEC, 2013, pp. 40–47.

[26] M. Gallagher and B. Yuan, “A General-Purpose Tunable Landscape
Generator,” IEEE Trans. Evolutionary Computation, vol. 10, pp.
590–603, Oct. 2006.

852

