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Abstract—Minimum Population Search is a new 
metaheuristic specifically designed for optimizing multi-modal 
problems. Its core idea is to guarantee exploration in all 
dimensions of the search space with the smallest possible 
population. A small population increases the chances of 
convergence and the efficient use of function evaluations – an 
important consideration when scaling a search technique up 
towards large scale global optimization. As the cost to converge 
to any local optimum increases in high dimensional search 
spaces, metaheuristics must focus more and more on gradient 
exploitation. To successfully maintain its balance between 
exploration and exploitation, Minimum Population Search uses 
thresheld convergence. Thresheld convergence can ensure that 
a search technique will perform a broad, unbiased exploration 
at the beginning and also have enough function evaluations 
allocated for proper convergence at the end. Experimental 
results show that Minimum Population Search outperforms 
Differential Evolution and Particle Swarm Optimization on 
complex multi-modal fitness functions across a broad range of 
problem sizes. 

I. INTRODUCTION 

ARGE scale global optimization (LSGO) has been 
recently arising in many real-world applications such as 
bio-computing [1], telecommunication [2], and financial 

markets [3]. With increasing dimensionality, the search space 
volume grows exponentially. Known as “the curse of 
dimensionality” [4], the exponential increase of candidate 
solutions leads to a decrease in the performance of most 
optimization algorithms [5]. 

Although the search space increases exponentially, the 
computational resources available often increase only 
linearly with respect to the dimensions (d) of the problem. For 
example, in one large scale global optimization contest (i.e. 
d ≥ 1000), the allowed function evaluations (FEs) was FEs = 
3000*d [5]. These mismatched growth rates between search 
space volume and available FEs can cause adequate search 
space coverage in low dimensional search spaces to become 
exceptionally sparse coverage in high dimensional search 
spaces. As a consequence, heuristics in large scale global 
optimization need to become highly efficient in the use of the 
available function evaluations. 

As the cost to converge to any local optimum increases, the 
ability to dedicate any effort to exploration decreases rapidly. 
In [6], it is argued that in high dimensional search spaces, 
metaheuristics must focus almost exclusively on gradient 
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exploitation. Favoring exploitation over exploration has 
important consequences when optimizing multi-modal 
problems. In multi-modal search spaces, an extra amount of 
FEs has to be put into exploration in order to avoid/escape 
poor local optima. Finding the correct balance between 
exploration and exploitation becomes critical in large scale 
global optimization. Exploring too much may not leave 
enough function evaluations to converge, but dedicating all of 
the computational resources to gradient exploitation can also 
negatively affect performance on multi-modal functions. 

Minimum Population Search (MPS) [7] is designed to 
guarantee full coverage of a search space with a small 
population. It is hoped that its efficient use of function 
evaluations will allow MPS to scale well to high dimensional 
search spaces. MPS has been shown to have competitive 
performance on multi-modal problems, especially with low 
budgets of FEs [7]. The current work presents a first step 
towards extending MPS towards large scale global 
optimization. As part of this extension, a new adaptive 
version of thresheld convergence has been developed. In 
MPS, the role of thresheld convergence is to control the 
transition from exploration to exploitation, and increasing 
dimensionality offers new opportunities and challenges in 
this important task. 

The next section presents a background on large scale 
global optimization. Section III then describes the 
development of MPS. Computational results for MPS and 
other metaheuristics are presented for a broad range of 
problem sizes in Section IV. The new adaptive version of 
thresheld convergence for MPS is presented in Section V. 
Finally, a discussion about the new metaheuristic is carried 
out in Section VI before the paper is summarized in Section 
VII. 

II. BACKGROUND 

Previous work on large scale global optimization can be 
roughly classified into two main approaches: optimizing the 
problems as wholes or decomposing them into a number of 
sub-problems. Partitioning a large problem into sub-problems 
and then solving them independently is a very intuitive 
methodology. In recent years, several decomposition-based 
algorithms have been proposed, ranging from total 
decomposition (solving d 1-dimensional problems) [8] to 
capturing the interacting variables and grouping them in one 
subcomponent [9, 10]. 

Decomposition-based algorithms, however, may not be as 
effective when facing non-separable problems [11]. In 
non-separable problems, a proportion of the decision 
variables have interactions amongst themselves. In such 
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cases, it becomes necessary to detect the interacting variables 
and to group them in the same sub-problem. Unfortunately, 
detecting correlations may be computational costly, the 
clusters of interacting variables may be large enough to 
consider the decomposed sub-problem as a large scale 
problem by itself, and/or the objective function may not be 
separable at all [5]. 

When optimizing non-separable problems, increasing the 
scalability of a specific operator or a general search strategy is 
a complementary approach. Previous works focus on 
modifying the classical operators (which are usually 
developed for low dimension tasks) in an attempt to boost 
their performance in high dimensions [12]. Techniques such 
as self-adaptation, hybridization, and population reduction 
have been used to increase the scalability of different 
heuristic methods [12−14]. The Minimum Population Search 
(MPS) metaheuristic falls into this general group. However, 
instead of attempting to improve scalability from existing 
methods, the search strategy of MPS was designed from the 
very beginning to be scalable. The main idea is to provide 
strong exploration mechanisms which allow it to effectively 
cover the search space while using a (relatively) small 
population [7]. 

Smaller populations allow more generations and increase 
the efficient use of FEs. However, if the population size (n) 
becomes smaller than the dimensionality of the problem (d) 
then its population will define an n-1 dimensional 
hyperplane. New solutions generated strictly from the line 
segments formed among the population members (e.g. 
difference vectors, attraction vectors, mid-point crossover, 
etc) will “get trapped” inside this n-1 dimensional hyperplane 
which is a subset of the complete search space. This is an 
important consideration since line segments are an important 
feature of many optimization techniques such as 
Nelder-Mead (NM) [15], Differential Evolution (DE) [16], 
and Particle Swarm Optimization (PSO) [17]. 

MPS has been specifically designed to deal with this 
limitation. Using a population size equal to the 
dimensionality of the problem (n = d), new solutions are 
generated using difference vectors to be in a d-1 dimensional 
hyperplane. Full coverage of the search space is then 
achieved by taking a subsequent step that is orthogonal to this 
hyperplane. To preserve diversity and avoid premature 
convergence, the size of the hyperplane and orthogonal steps 
is controlled using thresheld convergence [18, 19]. The 
minimum step (threshold) decays as the search progresses 
and convergence is thus “held” back until the last stages of 
the search process. By controlling the decay rate of the 
threshold function, it is possible to effectively determine the 
amount of exploration and exploitation performed by the 
algorithm. 

III. MINIMUM POPULATION SEARCH 

Minimum Population Search is a recently developed 
metaheuristic specifically designed for optimizing 
multi-modal problems. Another distinctive feature of MPS is 
that its search strategy was explicitly designed from the 
beginning to be scalable to large scale global optimization. 

The key ideas were initially developed for two dimensional 
problems in [7] and later generalized for standard dimensions 
in [20]. 

A. Minimum Population Search for Two Dimensions 

MPS can use the minimum population size of n = 2 (as a 
population size of 1 makes a population-based technique 
indistinguishable from a point-search technique). In two 
dimensions, each iteration of MPS starts with the generation 
of “line points” along the subspace (line) determined by the 
two population members (x1 and x2). The “line points” are 
generated by adding the (normalized) difference vector 
formed by x1 and x2 to each population member xi. The 
direction and size of the difference vector is determined by 
the scaling factor Fi (1). 

 
)( 21 xxFx=line iii   (1) 

 
Taking a step along the line segment formed by x1 - x2 will 

only generate solutions in the subspace (line) defined by the 
two population members. An orthogonal step to this subspace 
(line) allows the search process of MPS to cover the full 
dimensionality of the (2D) problem. The direction and size of 
this exploratory step is determined by the Ostep_i factor (2). 

 
orthOline=trial istepii  _  (2) 

 
Thresheld convergence forces new solutions to be a 

minimum (min_step) threshold distance away from their 
parent solutions. To guarantee that the distance between a 
“line point” and its parent solution is smaller than the 
maximum allowed step (max_step), Fi is drawn with a 
uniform distribution from the [-max_step, max_step] interval 
(note: the x1-x2 vector is normalized before scaling). To 

 
Fig. 1.  Visualization of MPS search process in 2D: x1 and x2 are the current 
population members, the crosses are the “line points” formed from (1) and 
the diamonds are the trial points that result after (2). The dotted circle lines 
show the minimum and maximum step thresholds around x1 and x2. 
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ensure that the distance from the new trial solution (triali) to 
its parent solution (xi) stays within the acceptable [min_step, 
max_step] threshold range, the Ostep_i factor is selected with a 
uniform distribution from the [min_orthi, max_orthi] interval 
(note: the orth vector is normalized before scaling). The 
min_orthi and max_orthi values are calculated by (3) and (4), 
respectively. Since the x1-x2 vector is normalized before 
scaling, the Fi factor represents the actual distance between 
the “line point” (linei) and its corresponding parent solution 
(xi). New solutions which fall outside the feasible search 
space are clamped back to the boundaries. The two best 
solutions from the current population and the new trial 
solutions survive into the next generation. 

 

)0,max(min__ 22
iii Fstep=orthmin   (3) 

 

)0,max(max__ 22
iii Fstep=orthmax   (4) 

 
The min_step and max_step values are updated by a rule 

similar to that used in previous attempts to control 
convergence for DE [18] and PSO [19] in which an initial 
threshold is selected that then decays over the course of the 
search process, see (5). Equation (5) shows how min_step is 
calculated (note: max_step = 2 * min_step). In (5), α 
represents a fraction of the main space diagonal, FEs is the 
total available amount of function evaluations, k is the 
number of evaluations used so far, and γ is the parameter that 
controls the decay rate of the threshold. The implementation 
presented in [7] uses α = 0.3 and γ = 3. 

 
 )/]([_ FEskFEsdiagonal=stepmin i   (5) 

 
To ensure good spacing in the initial population, the initial 

points are selected to be on the diagonal of the search space. 
Assuming that the search space is bounded by the same lower 
and upper bound in each dimension (as in the used 

benchmark functions), the initial points are selected as 
x1=(bound/2, bound/2) and x2 =(-bound/2, -bound/2). Fig. 1 
shows the search strategy of MPS in a two-dimensional 
search space. 

B. MPS in Standard Dimensions 

If the population size becomes smaller than dimensionality 
of the problem, line segments will be restricted to the n-1 
hyperplane formed by the n population members. To avoid 
new solutions from getting trapped in this subspace of the 
whole search space, the population of MPS increases with 
dimensionality (i.e. n = d). The orthogonal step can then 
guarantee searching into all d dimensions of the search space. 
This full extension of MPS from the two dimensional version 
would require adding d-1 difference vectors to the parent 
solution and using a vector orthogonal to these d-1 difference 
vectors as the orthogonal step. A difficulty of this approach is 
the high computational cost of calculating the orthogonal 
vector. Thus, a version of MPS which is conceptually simpler 
and has a lower computational cost was developed based on 
the centroid of the population [20]. 

In MPS-centroid (or simply MPS), the “hyperplane points” 
are obtained by adding to the parent solution the difference 
vector between the parent and the centroid (instead of d-1 
difference vectors). The orthogonal step is done using a 
vector orthogonal to the parent-centroid line (2D subspace). 
Fig. 2 shows a graphical comparison in 3D between the MPS 
version using a vector orthogonal to the d-1 hyperplane and 
the centroid version. In the centroid version, the offspring 
solution (trial) can be on an entire plane (perpendicular to the 
centroid vector) as opposed to only a line that is 
perpendicular to the plane defined by x1, x2, and x3. 

In higher dimensions each population member is initialized 
using (6): sk is the kth population member, rsi are  random 
numbers which can be -1 or 1, and bound is the lower and 
upper bound on each dimension. This initialization method 
leads to a better distribution of the initial solutions in the 
search space than did uniform random solutions. 

 
Fig. 2.  An illustrated comparison between using two difference vectors (left) and the centroid (right) for generating a new trial point in MPS. In both cases x1, x2, and 

x3 are the (parent) solutions from the current population.  
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At each generation a simple set of operations are 

performed. First, the threshold values are updated (5) and the 
centroid is calculated. Then, each member is used as a parent 
solution to generate an offspring. The mechanism used to 
generate the new solutions is similar to the two-dimensional 
MPS, but the centroid is used instead of the other population 
member. The “hyperplane points” are obtained by adding the 
parent-centroid difference vector to the parent solution. The 
orthogonal step is made taking a random vector orthogonal 
(orth) to the parent-centroid difference vector. This two-step 
process for generating the new trial solutions (triali) is 
presented in (7). 

 
orthOxxFx=trial istepciiii  _)(  (7) 

 
In (7), xi and xc are the parent and the centroid, 

respectively. The Fi factor is drawn with a uniform 
distribution from [-max_step, max_step] (xi-xc is normalized 
before scaling). The Ostep_i factor is selected with a uniform 
distribution from [min_orthi, max_orthi] (the orth vector is 
also normalized). The min_orthi and max_orthi values are 
calculated as in the two-dimensional version using (3) and 
(4). Once the new solutions are created, clamping is 
performed if necessary, and the best n solutions among the 
parents and offspring survive into the next generation. The 
parameters for the threshold function are α=0.3 and γ=3. A 
detailed pseudo-code is presented in Algorithm 1. 

IV. COMPUTATIONAL RESULTS 

A set of experiments has been designed to test the 
effectiveness of MPS. The experiments have been performed 
using the Black-Box Optimization Benchmark (BBOB) 
minimization functions [21] with a budget of FEs = 3000*d, 
as in large scale global optimization contests [5]. There are 24 

BBOB functions divided into five sets. Since MPS is 
explicitly designed for multi-modal search spaces, this paper 
focuses on Set 4-multi-modal functions with adequate global 
structure and Set 5-multi-modal functions with weak global 
structure. In Table I, the names of these functions are 
indicated. The experiments include comparisons to PSO and 
DE. The PSO algorithm is a standard version with ring 
topology [17], zero initial velocities [22], and “Reflect-Z” for 
particles that exceed the boundaries of the search space [23]. 
The DE method is the highly common and frequently 
effective variant labeled DE/rand/1/bin [16]. 

Algorithm 1 Minimum Population Search 

MPS (α, γ, maxFEs) 
X ← InitialPopulation()                      // Equation (6) 

while FEs < maxFEs 
  min_step ← UpdateThreshold(α, γ)                // Equation (5) 

  max_step ← min_step*2 

  xc ← CalculateCentroid() 

  for i = 1 : popsize 
    Fi ← UniformRandom(-max_step, max_step) 

    orthi ← OrthogonalVector(xi- xc)               // normalized vector 

    orth_step ← UniformRandom(min_orth, max_orth)        // Equations (3) and (4) 

    triali ← xi + Fi*(xi - xc) + orth_step*orthi            // clamping if necessary  

  endfor 
  X ← BestSolutions(X, trial) 

endwhile 
 

TABLE I 
BBOB FUNCTIONS 

Set  Function Name 
Attribute 
s u gs 

1 

1 Sphere X X X 
2 Ellipsoidal, original X X X 
3 Rastrigin X  X 
4 Büche-Rastrigin X  X 
5 Linear Slope X X  

2 

6 Attractive Sector  X  
7 Step Ellipsoidal   X 
8 Rosenbrock, original    
9 Rosenbrock, rotated    

3 

10 Ellipsoidal, rotated  X X 
11 Discus  X X 
12 Bent Cigar  X  
13 Sharp Ridge  X  
14 Different Powers  X  

4 

15 Rastrigin, rotated   X 
16 Weierstrass   X 
17 Schaffers F7   X 
18 Schaffers F7, moderately ill-conditioned   X 
19 Composite Griewank-Rosenbrock F8F2   X 

5 

20 Schwefel    
21 Gallagher’s Gaussian 101-me Peaks    
22 Gallagher’s Gaussian 21-hi Peaks    
23 Katsuura    
24 Lunacek bi-Rastrigin    

Names and selected attributes of the 24 functions in the BBOB problem 
set – separable (s), unimodal (u), global structure (gs). 
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A. Population Size 

With increasing dimensionality, it seems natural to 
increase the population size accordingly. Despite the 
exponential growth of the search space, recommendations for 
population sizes include linear growth and constant size. A 
simple guideline from Differential Evolution is to use a 
population size that is ten times the dimensionality of the 

search space [24]. In standard PSO, a fixed population size of 
n = 50 is recommended [17]. 

The next set of experiments compares the performance of 
MPS, DE, and PSO, and it aims to show the relationship 
between population size and performance as dimensions 
increase. Table II presents the results for problem sizes of  
d = 5, 10, 20, 50, and 100. DE and PSO are tested with a 
constant population size (n = 50) and with a linearly 
increasing population size (n = 2*d). The presented results 
are the mean errors from optimum for five trials on each of 
the first five instances of each function (i.e. 25 independent 
trials for each function). 

Results in Table II show that the relative performance of 
MPS versus DE and PSO increases as problem size increases. 
For d = 100, MPS provides the best results on 7 of the 10 
functions. It can also be noticed that the DE and PSO versions 
with the increasing population size (n = 2*d) achieve the best 
performance around d = 20 and comparatively worse results 
in smaller and larger dimensions. To see these trends more 
clearly, Fig. 3 shows the average performance of these 
algorithms compared to MPS. The reported values are the 
average relative performances (%-diff = (a-b)/max(a,b)) 
achieved by MPS versus DE and PSO on BBOB Sets 4 and 5. 
These values indicate by what amount (percent) the given 
algorithm (b) outperforms MPS (a) – negative values indicate 
that the algorithm (DE or PSO) is outperformed by MPS. 

Two key results are the steady decrease in performance of 
DE and PSO when compared against MPS, and how a 
population size correlated to the dimensionality d leads to 
poor performance for DE and PSO on small and large 
problems. When d and n are small, it appears that the 
population does not achieve the minimum required size for 
the search strategies of DE and PSO to become effective. 
When d and n are large, it appears that the large populations 
lead to an inefficient use of FEs (which prevents DE and PSO 
from converging). Since the best overall results are achieved 
with a constant population, the rest of the experiments of this 
paper use a population size of n = 50 for DE and PSO. 

TABLE II 
PERFORMANCE AS DIMENSIONS INCREASE (FES = 3000*d) 

Set F MPS 
DE PSO DE PSO 

n=50 n=50 n=2*d n=2*d 
d = 5 

4 

15 1.75e+00 6.35e+00 3.16e+00 5.66e+00 4.12e+00
16 1.77e−01 1.35e+00 1.87e−01 1.02e+00 3.93e−01
17 3.85e−04 1.79e−05 1.84e−02 8.86e−03 6.77e−02
18 3.30e−02 4.79e−04 1.19e−01 1.91e−01 3.96e−01
19 2.23e−01 7.16e−01 3.08e−01 1.08e+00 3.76e−01

5 

20 5.87e−01 2.66e−01 4.04e−01 2.58e−01 5.70e−01
21 8.24e−01 2.86e−01 4.40e−02 1.03e+00 8.35e−01
22 9.87e−01 2.72e−01 1.59e−01 1.19e+00 9.82e−01
23 2.37e−01 9.79e−01 5.36e−01 1.12e+00 5.71e−01
24 5.92e+00 1.22e+01 7.85e+00 7.96e+00 8.00e+00

d = 10 

4 

15 5.02e+00 3.32e+01 1.57e+01 1.99e+01 1.55e+01
16 5.60e−01 8.19e+00 1.85e+00 3.84e+00 2.52e+00
17 1.07e−02 9.73e−04 2.74e−01 1.87e−04 2.03e−01
18 1.95e−01 2.72e−02 8.95e−01 3.59e−02 1.17e+00
19 4.27e−01 2.72e+00 1.81e+00 2.53e+00 1.63e+00

5 

20 1.22e+00 1.82e+00 8.38e−01 5.02e−01 8.77e−01
21 2.23e+00 1.18e+00 6.83e−01 1.80e+00 9.00e−01
22 3.43e+00 1.82e+00 1.40e+00 2.95e+00 2.60e+00
23 1.49e−01 1.47e+00 8.40e−01 1.42e+00 8.93e−01
24 1.39e+01 4.50e+01 3.45e+01 3.87e+01 3.41e+01

d = 20 

4 

15 1.12e+01 1.15e+02 6.13e+01 1.11e+02 4.15e+01
16 1.51e+00 1.80e+01 6.72e+00 1.82e+01 5.11e+00
17 2.84e−02 5.67e−03 1.05e+00 7.44e−04 1.00e+00
18 4.15e−01 1.91e−01 3.59e+00 7.25e−02 3.03e+00
19 5.67e−01 4.93e+00 3.94e+00 4.95e+00 2.07e+00

5 

20 1.68e+00 2.57e+00 1.17e+00 2.10e+00 1.08e+00
21 5.39e+00 4.67e+00 8.64e−01 4.22e+00 9.13e−01
22 7.04e+00 3.26e+00 2.15e+00 2.81e+00 2.24e+00
23 1.98e−01 2.17e+00 1.47e+00 2.06e+00 1.15e+00
24 3.09e+01 1.31e+02 1.21e+02 1.33e+02 8.79e+01

d = 50 

4 

15 5.19e+01 3.87e+02 2.93e+02 3.40e+02 2.02e+02
16 3.91e+00 3.26e+01 1.65e+01 2.27e+01 1.15e+01
17 1.31e−01 1.54e−02 2.93e+00 3.52e−01 2.07e+00
18 1.58e+00 3.15e−01 1.22e+01 3.13e+00 1.02e+01
19 8.78e−01 6.96e+00 7.06e+00 6.44e+00 5.24e+00

5 

20 2.24e+00 2.81e+00 1.44e+00 2.98e+00 1.53e+00
21 4.46e+00 3.82e+00 1.93e+00 4.54e+00 1.57e+00
22 4.69e+00 6.00e+00 2.66e+00 4.37e+00 2.57e+00
23 2.50e−01 3.66e+00 2.85e+00 3.12e+00 2.53e+00
24 8.38e+01 4.37e+02 4.87e+02 4.01e+02 4.03e+02

d = 100 

4 

15 1.36e+02 9.29e+02 8.16e+02 9.33e+02 1.06e+03
16 7.14e+00 4.23e+01 2.50e+01 2.70e+01 2.53e+01
17 3.02e−01 3.12e−01 5.20e+00 2.12e+00 5.68e+00
18 2.83e+00 1.33e+00 1.96e+01 6.12e+00 2.15e+01
19 1.52e+00 7.96e+00 9.47e+00 7.10e+00 9.90e+00

5 

20 2.30e+00 1.54e+00 1.82e+00 4.42e+00 7.32e+00
21 3.92e+00 6.25e+00 2.02e+00 5.05e+00 2.49e+00
22 2.51e+00 8.17e+00 3.05e+00 5.65e+00 2.82e+00
23 3.37e−01 4.24e+00 3.63e+00 3.33e+00 3.46e+00
24 2.15e+02 9.98e+02 1.25e+03 9.60e+02 1.33e+03

Mean error over 25 trials from known optimum. 

Fig. 3.  Relative performance of MPS on BBOB Sets 4 and 5 versus DE and 
PSO. 
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B. Hyperplane Search 

If the population size of an evolutionary algorithm is 
smaller than the dimensionality of the problem then its 
population will define an n-1 dimensional hyperplane. New 
solutions generated strictly from the line segments formed 
among the population members will “get trapped” inside this  
n-1 dimensional hyperplane which is a subset of the complete 
search space. This situation occurs for DE and PSO where the 
primary mechanisms of difference vectors and attraction 
vectors act within the n-1 dimensional hyperplane defined by 
the n population members. To escape the n-1 dimensional 
hyperplane these heuristics rely on secondary search 
mechanisms. In PSO, the secondary mechanism is the 
“random vectors” of ε1 and ε2 which involve independent 
random numbers generated during each position update for 
each individual dimension. In DE, it is the use of a crossover 
operator which acts on the axial dimensions as opposed to the 
population’s hyperplane. 

The following experiment is designed to compare the 
effectiveness of the “out of the hyperplane” exploration of 
DE, PSO, and MPS. For the three algorithms, the population 
size was set equal to the dimensionality of the problem (i.e.  
n = d) and the distance from each new solution to the current 
d-1 hyperplane was measured. The average step size into this 
“missing dimension” was compared to the average step size 
for each dimension within the hyperplane. Fig. 4 shows the 
size of the step into the “missing dimension” compared to the 
steps in the “hyperplane dimensions” (as a percentage). 
Results are presented for d = 5-100 dimensions. 

As it can be seen in Fig. 4, the ability of MPS to search out 
of the hyperplane can be almost similar to its ability to search 
inside the hyperplane. However, as dimensions increase the 
search steps beyond the hyperplane become smaller 
compared to the inside dimensions. The same happens for DE 
and PSO. In the case of DE, its ability to search beyond the 
hyperplane is clearly restricted. Although the effects of 
dimension-by- dimension crossover can allow escapes from 
the hyperplane, the small ratio of activity in these “exterior” 
dimensions means that DE will adjust quite slowly to new 
hyperplanes. PSO, shows an out of the hyperplane 

exploration in between DE and MPS. 

V. AN ADAPTIVE THRESHOLD FUNCTION FOR MPS 

In large scale global optimization, it becomes necessary to 
“wisely exploit response surfaces and possess high 
efficiency” in the use of FEs [6]. Previous work has shown 
that MPS satisfies the second requirement. However, MPS 
does not directly exploit search gradients. Instead, it attempts 
to provide a full coverage of the search space by performing a 
methodical exploration based on controlled minimum and 
maximum search steps. Although this search strategy is 
effective for solving multi-modal problems, MPS may 
benefit from an increased exploitation when performing large 
scale global optimization. The threshold function is best 
suited for the task of balancing exploration and exploitation. 
By adjusting the threshold decay rate, it is possible to control 
the transition from exploring the search space and detecting 
the best regions to performing local search and exploiting the 
best regions already found. 

Larger populations in higher dimensional problems 
provide information that MPS can use to develop adaptive 
threshold functions and improve performance [25]. However, 
determining the correct balance between exploration and 
exploitation does not only depend on the dimensionality of a 
problem, but on the characteristics of the function as well. If 
the distance among the different attraction basins could be 
known a priori, then the threshold could be held longer at this 
“ideal search scale”. Allocating more function evaluations to 
this threshold level could promote a better exploration of 
different basins and increase the chances of finding the best 
regions before performing a more intense/local search. 

In the threshold function (5), the α parameter establishes 
the initial size, but it is γ which controls the convergence rate. 
By adaptively adjusting γ, it is possible to control the 
convergence speed and stabilize the threshold at the “ideal 
search scale”. A simple strategy is used to adjust γ. If an 
improvement is achieved, i.e. at least one offspring survives 
to the next generation, it suggests that exploration is paying 
off and convergence should be delayed – subsequently γ is 
decreased. Otherwise, if no improvements are achieved, it 
implies that the current search scale has been sufficiently 
explored so more local search may now be necessary – 
subsequently γ is increased. 

Fig. 5 compares the standard and adaptive threshold 
functions. The adaptive threshold is shown for Rastrigin 
(F15) and the Gallagher (F21) functions. The (initial) 
threshold parameters are α = 0.1 and γ = 3 and the step size to 
increase/decrease γ is 0.005. As it can be seen, the threshold 
value of the adaptive function decreases until it stabilizes at a 
potentially “ideal search scale”. This “ideal” scale is 
appropriately different for functions with differing 
characteristics. To guarantee convergence at the end, the 
threshold size is decreased during the last 20% of the FEs 
with a constant γ = 3. 

In Table III, the adaptive threshold version (MPS_Ad) is 
compared to standard MPS, DE, and PSO on functions with  
d = 200. The presented results are the mean errors, the relative 
performances, and the p-values of a t-test. As it can be seen, 

 

Fig. 4.  Step size into the “missing dimension”. 
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both MPS versions clearly outperform DE and PSO on most 
of the functions. Improvements are larger on multi-modal 
functions with adequate global structure (Set 4), than on 
functions with weak global structure (Set 5). This result 
suggests that MPS's search strategy, based on a methodical 
and full-dimensional search, is capable of detecting and 
exploiting the regularities underlying the function's structure. 
In general, the worst comparative results occur for functions 
21 and 22 (Gallagher’s Gaussian functions [26]). As specified 
in [21], the key property of these functions is the existence of 
optima “with position and height being unrelated and 
randomly chosen”. This random feature in these search 
spaces presents a difficult challenge for adapting the 
threshold size. 

Compared to DE, both MPS versions achieve meaningful 
and significant improvements (%-diff > 10% and p < 0.05 for 
the t-test) on all the multi-modal functions. The adaptive 
version of MPS outperforms PSO on 9 of the 10 functions. 
Both MPS versions achieve significant improvements over 
PSO on 8 of the 10 functions (including all 5 of the functions 
in Set 4 with adequate global structure). The use of the 
adaptive threshold improves MPS on 8 of the 10 functions for 

an overall improvement of 12.3%. Compared to DE and 
PSO, the adaptive MPS provides an overall improvement of 
67.2% and 58.0%, respectively. 

VI. DISCUSSION 

Line segments formed among the population members are 
at the core of many population based heuristics such as DE, 
PSO, and MPS. Line segments are useful to detect and 
exploit search gradients, especially when differentiation is 
not possible. However, line segments also require a 
population large enough to guarantee full coverage of the 
search space. 

With increasing dimensions, larger populations are 
necessary to maintain good coverage of an exponentially 
increasing search space. However, if the balance between 
exploration and exploitation is not properly adjusted, then 
large populations may not leave enough FEs to achieve 
convergence (see Fig. 3). This is one of the reasons why a 
constant population size is a popular guideline for the design 

of metaheuristics. However, with a fixed population size, 
coverage becomes sparser as dimensions increase. Further, as 
population size becomes smaller in comparison to the 
dimensionality, line segments will get trapped in an n-1 
dimensional hyperplane which can become a very small 
subspace with respect to the whole search space. Without the 
appropriate search mechanisms, the ability to search beyond 
the hyperplane will then continuously decrease (see Fig. 4). 

Matching the population to the minimum size necessary to 
fully cover the search space is a key feature of MPS. Taking a 
step orthogonal to the n-1 dimensional hyperplane explicitly 
considers the need to continuously explore in all d 
dimensions of the search space. However, if not enough FEs 
are left for convergence, a population size which increases 
with dimensionality may become a liability. The purpose of 
thresheld convergence is to address this limitation by 
controlling (through the α and γ parameters) the transition 
from global to local search. If correctly adjusted, the 
threshold function can guarantee that enough FEs are left to 
achieve convergence. 

In higher dimensional problems, larger populations 

 

Fig. 5.  Standard and adaptive threshold functions. 

TABLE III 
TOWARDS LARGE SCALE OPTIMIZATION 

Set F 
MPS_Adaptive  MPS DE   PSO 

mean error mean error %-diff p-value mean error %-diff p-value mean error %-diff p-value

4 

15 3.52e+02 3.91e+02 -9.9% 0.00 2.25e+03 -84.3% 0.00 2.33e+03 -84.8% 0.00 
16 9.61e+00 9.07e+00 5.5% 0.02 5.14e+01 -81.3% 0.00 3.56e+01 -73.0% 0.00 
17 6.85e−01 7.64e−01 -10.3% 0.00 1.59e+00 -56.9% 0.00 7.66e+00 -91.0% 0.00 
18 3.47e+00 3.95e+00 -12.2% 0.00 5.21e+00 -33.4% 0.00 2.87e+01 -87.9% 0.00 
19 1.45e+00 2.32e+00 -37.4% 0.01 9.38e+00 -84.5% 0.00 1.28e+01 -88.6% 0.00 

Mean set 4   -12.9% -68.1%   -85.1% 

5 

20 2.20e+00 2.27e+00 -2.9% 0.01 2.24e+01 -90.1% 0.00 2.40e+00 -8.2% 0.01 
21 1.77e+00 2.26e+00 -21.5% 0.04 2.91e+00 -39.1% 0.01 1.92e+00 -7.7% 0.13 
22 4.25e+00 4.07e+00 4.2% 0.14 6.29e+00 -32.4% 0.00 2.72e+00 35.9% 0.00 
23 2.78e−01 4.43e−01 -37.2% 0.01 3.47e+00 -91.9% 0.00 3.14e+00 -91.1% 0.00 
24 5.20e+02 5.25e+02 -1.0% 0.09 2.33e+03 -77.7% 0.00 3.07e+03 -83.0% 0.00 

Mean set 5   -11.7% -66.3%   -30.8% 
Total mean   -12.3% -67.2%   -58.0% 

Mean error from known optimum and relative improvements of MPS, DE, and PSO versus the Adaptive MPS.
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provide information that can be used to develop adaptive 
threshold functions and improve performance (see Table III). 
Enhancing MPS through an adaptive threshold function leads 
to a better balance of global and local search according to the 
dimensionality and characteristics of the problem. Although 
the proposed adaptive threshold is an important step toward 
detecting the “ideal search scale”, further improvement may 
be possible. Since the distance among attraction basins may 
differ according to the search space region, future work may 
aim to maintain individual threshold functions for each 
member (or subset) of the population. 

DE and PSO have had many enhancements since their 
original design, including standard PSO. Since the initial 
development of MPS is already highly competitive, further 
enhancements are very promising. In order to increase 
performance in LSGO, an important research direction will 
be hybridizing MPS with search techniques with a stronger 
local-search/exploitation strategy. Once the threshold step 
achieves the “ideal search scale” and MPS's population finds 
promising attraction basins, the convergence toward the 
corresponding (local) optima could be performed through 
more efficient gradient exploitation techniques. Further 
improvements may also be achieved through multiple restarts 
(resizing the minimum and maximum steps) and the 
combination of MPS with decomposition techniques (such as 
cooperative coevolution) [9]. 

VII. SUMMARY 

Building up from the original two-dimensional design, this 
paper extends Minimum Population Search towards large 
scale global optimization. MPS increases the population to 
the minimum necessary size in order to guarantee full 
coverage and continuous exploration in all d dimensions of 
the search space. With a linearly increasing population, it 
becomes crucial to correctly balance exploration and 
exploitation to ensure convergence (to any local optima). 
MPS adjusts this balance by using thresheld convergence. A 
new enhancement allows adaptively adjusting the decay rate 
as the search proceeds so that MPS can stabilize the threshold 
size at a hopefully “ideal search scale”. Altogether, Minimum 
Population Search is shown to be a simple and effective 
algorithm for solving complex multi-modal problems. The 
initial development of MPS is already highly competitive 
with well-established metaheuristics such as DE and PSO, so 
future improvements such as hybridization with local search 
and decomposition techniques are very promising. 
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