
�

Abstract—This paper proposes a novel penalty function

measure for constrained optimization using a new harmony

search algorithm. In the proposed algorithm, a two-stage

penalty is applied to the infeasible solutions. In the first stage,

the algorithm can search for feasible solutions with better

objective values efficiently. In the second stage, the algorithm

can take full advantage of the information contained in

infeasible individuals and avoid trapping in local optimum. In

addition, for adapting to this method, a new harmony search

algorithm is presented, which can keep a balance between

exploration and exploitation in the evolution process. Numerical

results of 13 benchmark problems show that the proposed

algorithm performs more effectively than the ordinary methods

for constrained optimization problems.

I. INTRODUCTION

HE harmony search(HS) algorithm, developed by Geem

et al. [1] in 2001, is a relatively new population-based

meta-heuristic optimization algorithm. It is inspired by

the music improvisation process that the musicians improvise

their state of harmony to search for a perfect instruments

pitch.

The harmony search algorithm has its characteristics of

few mathematical requirements, easy implementation and

fast convergence speed, so that it has attracted many

researchers from various fields especially these working on

solving optimization problems. For example, Mahdavi et al.

[2] presented an improved HS algorithm (IHS) by introducing

a strategy to dynamically adjust the control parameters. Later,

Omran and Mahdavi [3] proposed a global best HS algorithm

(GHS), taking advantage of the global best solution.

Although the HS algorithm has been successfully applied

to optimization problems [4]-[13], there are few about the

constrained optimization problems. As we know, most

real-world optimization are constrained optimization

problems involving constraints of a certain king. Taking a

Biao Zhang is with the College of Computer Science, Liaocheng

University, CO 252059 CHINA (phone: 13863565273; e-mail:
zhangbiao1218@ gmail.com).

Jun-hua Duan is with the College of Computer Science, Liaocheng

University, CO 252059 CHINA(email: duanjunhua@lcu-cs.com).
Hong-yan Sang is with the College of Mathematic Science, Liaocheng

University, CO 252059 CHINA(email: sanghongyanlcu@163.com).

Jun-qing Li is with the College of Computer Science, Liaocheng
University, CO 252059 CHINA(email: lijunqing.cn@gmail.com).

This research is partially supported by National Science Foundation of China

61174187, Program for New Century Excellent Talents in University
(NCET-13-0106), Specialized Research Fund for the Doctoral Program of

Higher Education (20130042110035), Science Foundation of Liaoning

Province in China (2013020016), Basic scientific research foundation of
Northeast University under Grant N110208001, Starting foundation of

Northeast University under Grant 29321006, IAPI Fundamental Research

Funds (2013ZCX02).

certain production line for an example, the goal is to

maximize the profits with the limits of material consumption,

labor cost and other factors.

The constrained optimization problems are generally

difficult to deal with. Due to the limits of constraints, it can

divide the whole search space into some portions . In addition,

the interference among constraints, the interrelationship

between the constraints and the objective function could be

considered. Consider maximizing a function
21)(xxXf ��

where two variables are defined by 1,0 21 �� xx , an optimum

value of 2)(�Xf can be got when 11 �x and 12 �x . But if

there is an equality constraints as 5.0)(21 ��� xxXg , the

feasible spaces in only 0.5% of the total search space. And the

optimum value in this case would be 5.1)(�Xf where

11 �x and 5.02 �x .

In general constrained optimization problem can be

formulated as:

Optimize),,,,()(21 nxxxfXf �� (1)

subject to inequality constraints

,,,10)(kixgi ���

and equality constraints

.,10)(mkixhi ����

The value of inequality constraints that equals “0” at the

global optimum solution are called active constraints. And the

solutions can be divided into feasible individuals and

infeasible individuals. Individuals that satisfy all of the

constraints are called feasible individuals while individuals

that do not satisfy at least one of the constraints are called

infeasible individuals. Without loss of generality,

minimization problems are considered in this paper unless

specified otherwise.

Generally, due to the presence of constraints, constrained

optimization problems are difficult to solve. In this paper, a

two-stage penalty strategy is proposed to solve constrained

optimization problems using HS algorithm. In the first stage,

a higher penalty is added to infeasible individuals, so the HS

algorithm could search for feasible individuals efficiently.

And in the second stage, a “distance” value [14] is imported.

It can encourage the infeasible individuals with lower

objective function value and small constraint violation. In

addition, for adapting to this method, a new harmony search

algorithm is presented, which can keep a balance between

exploration and exploitation in the evolutionary process.

The rest of the paper is organized as follows. In Section 2,

the classical HS algorithm is introduced. In Section 3, a

ANew Penalty Function Method for Constrained Optimization

Using Harmony Search Algorithm

Biao Zhang, Jun-hua Duan, Hong-yan Sang, Jun-qing Li, Hui Yan

T

2014 IEEE Congress on Evolutionary Computation (CEC)

July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE 853

classical way dealing with constrained problems named death

penalty method is described in detail. In Section 4, the

proposed two-stage penalty strategy is proposed and a novel

harmony search algorithm is presented for adapting the new

strategy . Experimental design and comparisons are presented

in Section 5. Finally, Section 6 gives the concluding remarks.

II. THE CLASSICAL HS ALGORITHM

In the HS algorithm, each solution is called a “harmony”.

And it is represented by an n-dimension valued vector.

The harmony memory (HM) is initialized by harmony

vectors generated randomly. Then a new candidate harmony

is generated by using a memory consideration rule, a pitch

adjustment rule, and a random re-initialization scheme.

Finally, the worst harmony vector is replaced by the new

candidate vector if it is better than the worst harmony vector

in the HM. The above process is repeated until a certain

termination criterion will be met. In summary, the basic HS

algorithm consists of three basic phases, initialization,

improvisation of a harmony vector, and updating the HM.

These process are described below.

A. Initialization

The initialization of the basic HS algorithm is presented in

two steps. The control parameters including the harmony

search size(HMS), harmony memory consideration rate

(HMCR), pitch adjustment rate(PAR), distance bandwidth

(bw), and termination criterion (NI) are set in the first step.

The second step is to fill the HM with HMS number of

harmony vectors.Let))(,),2(),1((nxxxX iiii �� represents

the
thi harmony vector, which is randomly generated as

follows:

,,2,1,,2,1..

()))()(()()(

HMSiandnjts

randjLBjUBjLBjxi

�� ��

����
(2)

where ()rand is a uniform random function returning a

number between 0 and 1, and)(jLB and)(jUB are the lower

and upper bounds, for the design variable)(jx respectively.

Then, the HM is filled with the HMS number of randomly

generated harmony vectors.

B. Improvise A New Harmony

A new harmony vector newX is generated by applying three

rules: a memory consideration, a pitch adjustment and a

random selection.

In the memory consideration, each decision variable

]),1[()(njjxnew � is chosen randomly from any harmony

vector]),1[()(HMSijxi � with the probability of HMCR so

that the historical information obtained from the HM can be

well used. With the probability of HMCR�1 ,)(jxnew is

generated randomly. Furthermore, every individual obtained

by the memory consideration is adjusted by the pitch

adjustment rule with the proportion of PAR . The memory

consideration, pitch adjustment and random selection are

given below, respectively.

),,2,1()()(HMSawherejxjx anew ��� (3)

bwrandjxjx newnew ��� ())()((4)

)(())(jjjnew LBUBrandLBjx ���� (5)

C. Update Harmony Memory

The HM will be updated after newX is generated. newX will

replace the worst harmony vector wX and become a new

member of the HM, if newX is better than wX .

D. Computational Procedure

The computational procedure of the basic HS algorithm

can summarized as follows:

Step 1: Set the parameters HMS, HMCR, PAR, bw and NI.

Step 2: Initialize the HM and calculate the objective function

value of each harmony vector.

Step 3: Improvise a new harmony newX as follows:

For(j=1 to n) do

If(HMCRr 	1) then

)()(jxjx anew � where),,2,1(HMSa ��

If(PARr 	2) then

bwrjxjx newnew ��� 3)()(

Endif

Else

)()(3 jjjnew LBUBrLBjx ����

Where)1,0(,, 321 �rrr

Endif

Endfor

Step 4: Update HM as neww XX �)()(wnew XfXfif 	 .

Step 5: If NI is completed, return the best harmony vector

BX in the HM; otherwise go back to step 3.

III. DEATH PENALTYMETHOD

How to deal with the infeasible individuals throughout the

search process is the major issue for constrained optimization.

One way for basic HS algorithm to deal with the infeasible

individuals is to completely disregard them and go on with

feasible individuals only. And the step 2 of the basic HS

algorithm may be modified as follows:

Step 2: initialize the HM strictly and all members of the HM

must satisfy all constraints and calculate the objective

function value.

The flow chart of the modified step 4 is shown in Fig.1.

But this has a drawback because HS is a probabilistic search

method and some of the information contained in the

infeasible individuals could be unutilized and this may lead to

the algorithm being stuck in a local optima. In addition, in

some highly constrained problems, initializing the HM with

all feasible individuals might be difficult.

854

IV. PROPOSED ALGORITHM

Static penalty function method is one way for constrained

problems to exploit the information contained in infeasible

individuals. This method is simple and easy to be

programmed. In this method, some penalty value is added to

the objective value of each infeasible individuals, so that it

will be penalized for violating the constraints. Generally,

penalty functions have the following form:

)()()(xcRxfxF j��� (6)

� ��

���
k

j

m

kj

jjj xhxgxc
1 1

|)(|))(,0max()(� (7)

where)(xF is the updated fitness value,)(xf is the original

fitness value, R is the penalty coefficient and)(xc j is the
thj

constraint violation (� is the tolerance value).
Here, R is a large value, so the algorithm will encourage

the feasible individuals, so HS algorithm using the static

penalty function method can search for feasible individuals

with better objective function value efficiently. The major

shortcoming of this method is to determine the penalty

coefficients. Usually, a prior knowledge of the problem is

needed or repeated experiments should be done to determine

the proper coefficients. To reduce the influence of the penalty

coefficient and exploit more information contained in the

infeasible individuals in later stage, this paper presents a

two-stage penalty function method described in detail as

follows.

To reduce the influence of the penalty coefficient in the

static penalty function method and exploit more information

contained in the infeasible individuals. This paper presents a

two-stage penalty function.

A. The First Stage

The static penalty method is applied in the first stage.

Because this measure has a large penalty value added to

infeasible individuals, so that the algorithm could search for

feasible solutions with better objective values efficiently and

narrow the search space. The fitness value in this stage can

formulated as (1) when NIg
5

2
� (g is the current generation

criterion).

B. The Second Stage

In the second stage, the fitness formulation modified here

is based on the method that was proposed by Wright and

Farmani [15]. Constraint violation of each infeasible

individual is then calculated as the sum of the normalized

violation of each constraint divided by the total number of

constraints.

�

�
m

j j

j

c

xc

m
xv

1 max

)(1
)((8)

where)(xv is constraint violation function, m is total number

of constraints. The infeasibility measure has the properties

that it increases in value with both the number of active

constraints and the maximum of each constraint violation.

This measure has a benefit for solving highly constrained

problems that have solutions on one or more of the constraint

bounds. On the other hand, solutions that is farther from the

constraint bounds are more likely to be penalized.

To exploit more information contained in the infeasible

individuals, the “distance” value [14] is imported here. It can

be formulated as follows:

22)()(')(xvxfxd �� (9)

minmax

min)(
)('

ff

fxf
xf

�

�
� (10)

where)(xf is the objective function value , and maxf and

minf are the largest and smallest objective function values of

the current population.

Fig.2 shows that the two different types of infeasible

individuals may encounter during the search process. All of

the two individuals shown in the figure are important but at

different stages during the search process. Individual “A” has

very low constraint violation but high objective value, while

individual “B” has very low objective value but high

constraint violation. Obviously, “A” can help in finding more

feasible individuals, while “B” will help in finding the global

optimum value. Through the first stage of search process,

there will be feasible individuals(at least infeasible

individuals with low constraint violation). So in the second

stage, the algorithm will encourage “B” more likely and in the

Fig. 1. The modified step 4.

Generate a
new individual

Satisfy all
constraints?

f(new)<f(worst)?

yes

yes

no

no

855

first stage, individual “A” has a high selection probability.

On the other hand, if two feasible individuals encounter in

the second stage, the distance is equal to)(' xf . Then the

individual with small objective function value will have small

distance value, so the individuals with small distance value

will be selected. And if we compare the distance value of a

feasible individual with an infeasible individual, then either

one can have smaller value. But if the two individuals have

the same objective value, the feasible individual will have

smaller distance value.

C. The Final Fitness Formulation

To sum up, the final fitness formulation can be given as

(11).

�
�

��
�

�

�

���

�

NIgwhenxd

NIgwhenxcRxf

xF
j

5

2
)(

5

2
)()(

)((11)

This fitness formulation is flexible, here are some

properties of this fitness formulation:

1) In the early stage of the search process, there may be not

feasible individuals in the HM, then individuals will be

compared based on their objective function value adding a

large penalty value, so the algorithm could find feasible

individuals with better objective value, efficiently.

2) Through the first stage, there may be feasible

individuals or infeasible individuals with low constraint

violation at least. So, in the second stage, the individuals will

be compared based on the distance value and informations

contained in infeasible individuals could be exploited. This

will help the algorithm search for global optimum.

D. The New HS Algorithm

For adapting to the properties of the two-stage penalty

measure, a new HS algorithm with dynamic control

parameters is presented in this section. Here are the

modifications when the new algorithm is compared with the

basic HS algorithm.

1) A novel memory consideration rule is presented here. In

the second stage of the search process, when a new harmony

with small distance value and low constraint violation is

appeared in the HM, it should have a higher selection

probability to find feasible individuals. So, a tournament rule

[17] is to used to select a harmony with better fitness. The

tournament rule here can be divided into two steps. Firstly,

two harmonies are chosen randomly from the HM. Then,

among them the best harmony tsx is selected. The memory

consideration is accordingly updated as follows:

],1[),()(njjxjx tsnew �� (12)

where tsx is the
thj element of the harmony tsX selected by

the tournament rule. In addition, [8] also shows that

improvising a harmony from a group of harmonies with

higher qualities can effectively help the algorithm speed up its

convergence.

2) The control parameters vary dynamically in the new

algorithm. Since the control parameters have a profound

effect on the performance of the HS algorithm, fine-tuning

these parameters can help the method enhance the

convergence rate and the precision of final solutions [10]. The

details are presented below.

The parameter bw is a distance bandwidth and bw is
closely related to the problem being solved as well. So the

bw is presented as follows:

50
01.0

jj LBUB
bw

�
�� (13)

Another two control parameters are HMCR and PAR ,

which determine the probability of fine-tuning the selected

pitch or retaining its original value. A small HMCR value

and large PAR value are able to help the algorithm search for
global optimums in the second stage. So, in the new

algorithm,HMCR and PAR is changed dynamically with the
generation number as follows:

g
NI

PARMINPARMAX
PARMINtPAR �

�
��)((14)

NI

gHMINHMAX
HMAXtHMCR

��
��

)(
)((15)

where)(tHMCR and)(tPAR are the value in generation t,

PARMAX and HMAX are the maximum values,

while PARMIN and HMIN are the minimum values.

V. EXPERIMENTAL RESULTS

The performance of the proposed algorithm is investigated

)(' xf

1

1)(xv

Fig. 2. Distance value for “A” and “B”.

A

B

856

TABLE II
RESULTS FOUND USING THE PROPOSED ALGORITHM

Test
function

Optimum
value

Best Worst Mean
Standard
Deviation

Infeasible runs

g01 -15.000 -14.999 -14.893 -14.959 0.022914 0

g02 0.803619 0.725457 0.654311 0.700954 0.039653 0

g03 1.000 1.000 0.951 0.988 0.013714 0

g04 -30665.539 -30665.377 -30405.339 -30581.909 24.256724 0

g05 5126.498 5125,324 5112.324 5115.246 1.252652 0

g06 -6961.814 -6961.660 -6960.897 -6961.268 0.244345 0

g07 24.306 24.552 31.231 27.612 1.654452 0

g08 0.095825 0.095825 0.076144 0.080709 0.013589 0

g09 680.630 680.656 680.779 680.742 0.072523 0

g10 7049.331 7082.562 7110.263 7010.156 2.085432 0

g11 0.750 0.749 0.749 0.749 0.000003 0

g12 1.00000 0.990860 0.891323 0.95251 0.088769 0

g13 0.053950 0.057111 0.070276 0.059453 0.072566 0

TABLE I

SUMMARY OF MAIN CHARACTERISTICS OF THE BENCHMARK PROBLEMS

Test
function

Max/Min n
Type of
function

Feasibility ratio LI NE NI a

g01 Min 13 Quadratic 0.011% 9 0 0 6

g02 Max 20 Nonlinear 99.990% 1 0 1 1

g03 Max 10 Nonlinear 0.002% 0 1 0 1

g04 Min 5 Quadratic 52.123% 0 0 6 2

g05 Min 4 Nonlinear 0.000% 2 3 0 3

g06 Min 2 Nonlinear 0.006% 0 0 2 2

g07 Min 10 Quadratic 0.000% 3 0 5 6

g08 Max 2 Nonlinear 0.856% 0 0 2 0

g09 Min 7 Nonlinear 0.521% 0 0 4 2

g10 Min 8 Linear 0.001% 3 0 3 3

g11 Min 2 Quadratic 0.000% 0 1 0 1

g12 Max 3 Quadratic 4.779% 0 0 9 0

g13 Min 5 Nonlinear 0.000% 0 3 0 3

TABLE III
RANK SUM TEST RESULTS

Test
Function

g01 g02 g03 g04 g05 g06 g07 g08 g09 g10 g11 g12 g13

P1 1 1 1 1 1 1 1 1 1 1 0 1 0

P2 1 1 1 1 1 1 1 1 1 1 0 1 1

857

in this section by comparing with the common algorithms

described in section 3. These three algorithm was tested on 13

test functions from [18]. We can observe that the test

functions involve various types of problems. Some are

maximization problems while others are minimization

problems. On the other hand, the functions also vary from

linear, nonlinear, quadratic, cubic, to polynomial. The

number and the type of constraints(LI- linear inequality,

NE-nonlinear equality, and NI- nonlinear inequality) are also

different. The feasibility ratio is an estimate of the ratio of the

feasible space to that of the entire of the ratio of the feasible

space to that of the entire search space. a and n represent the
number of active constraints and decision variable involved,

respectively.

The basic HS algorithm is applied to the common measures.

The parameter settings for these two algorithms are set as

those in [1]: 9.0�HMCR , 3.0�PAR and 01.0�bw ;

For the proposed algorithm, the parameters are set as these:

99.0�HMAX , 85.0�HMIN , 99.0�PARMAX ,

35.0�PARMIN . The 5�HMS is same for all the

algorithms. Thirty independent replications are carried out for

each function and the NI is set to 50000. The best, the worst,
the mean results of each test function are reported in Table II.

The numbers of infeasible runs from the 30 trials for each test

function are also recorded in the same table. In addition, the

best values that are identical to the already know optimum

values are highlighted.

From Table II, we notice that the proposed algorithm could

find feasible solutions for all the 30 runs of all the 13 test

functions. And it was able to find very good results. The

proposed algorithm found the known optimum in 5 of the 13

functions. In g01, g03, g08, g11 and g12, the values are

exactly equal to the already known optimum values. In the

rest of the test functions, the optimum values could not be

found but the best results are very close to. In addition, all the

“mean” and “standard deviation” values show the algorithm

has good stability.

Table V compares the best results of the proposed

algorithm with other two algorithms. Comparing the static

penalty method and the death penalty method, the proposed

algorithm generated better results for most of the test

functions except g08 and g11 in which the values are equal.

And the death penalty method for g05 and g13 is invalid.

When the proposed algorithm is compared to the static

penalty function, the proposed algorithm performed

outstandingly for most of the test functions except g01, g08

and g11 for which the value of the best results are equal. And

for g09, the proposed algorithm generated worse results but

exactly equal to the result generated by the static penalty

method. In general, we can say that the proposed algorithm

can perform better than the two common algorithms for

constrained optimization problems.

From Tables I, II, IV and V, it can be observed that the new

algorithm generates better results than the other two

algorithms directly. On the other hand, to investigate whether

the results perform better than the compared algorithms in a

statistically significant way, the Wilconxion’s rank tests on

the mean values showed in Table IV is conducted for the

two-stage penalty method against static penalty method and

death penalty method as 1p and 2p , respectively. The

results of the rank sum tests are expressed as the h value.

The h value equals 1 or 0 when the new algorithm performs
significantly better or not than the compared algorithms.

When the h value comes to -1, it illustrates that the results

generated by the new algorithm is worse significantly than the

other two algorithms. From Table III, it can be observed that

the proposed algorithm yields 11 and 12 significantly better

results when comparing with the other two algorithms,

respectively.

TABLE IV
COMPARISON OF MEAN RESULTS

Test

Function

Two-stage

penalty method

Static penalty

method

Death penalty

method

g01 -14.959 -13.003 -9.253

g02 0.700954 0.699820 0.620031

g03 0.988 0.897 0.786

g04 -30581.909 -30482.347 -29992.920

g05 5115.246 4871.352 Invalid

g06 -6961.268 -6930.104 -6882.324

g07 27.612 29.527 30.286

g08 0.080709 0.075825 0.073825

g09 680.742 680.222 680.187

g10 7010.156 7002.453 7005.235

g11 0.749 0.749 0.749

g12 0.95251 0.850441 0.951548

g13 0.059453 0.098837 Invalid

TABLE V
COMPARISON OF BEST RESULTS

Test

Function

Two-stage

penalty method

Static penalty

method

Death penalty

method

g01 -14.999 -14.998 -10.746

g02 0.725457 0.700109 0.62618 6

g03 1.000 0.997 0.670540

g04 -30665.656 -30665.347 -30618.920

g05 5125.324 4971.758 Invalid

g06 -6961.660 -6961.304 -6960.727

g07 24.552 26.557 30.286

g08 0.095825 0.095825 0.095825

g09 680.656 680.650 680.789

g10 7082.562 7100.657 7104.895

g11 0.749 0.749 0.749

g12 0.990860 0.950451 0.951548

g13 0.057111 0.128437 Invalid

858

VI. CONCLUSION

In this paper, we have developed a two-stage penalty

method for constrained optimization problem. In the first

stage, the algorithm can find feasible individuals or at least

infeasible individuals with low constraints. And in the second

stage, the main objective of the algorithm is to exploit the

information hidden in infeasible individuals. In addition, for

adapting to the properties of the measure, a new HS algorithm

is also presented in this paper. The performance of our

algorithm was tested on 13 benchmark functions. The

algorithm can find feasible solutions in every run for

problems and can find competitive results with the two

common algorithms.

ACKNOWLEDGMENT

This research is partially supported by National Science

Foundation of China 61174187, Program for New Century

Excellent Talents in University (NCET-13-0106),

Specialized Research Fund for the Doctoral Program of

Higher Education (20130042110035), Science Foundation of

Liaoning Province in China (2013020016), Basic scientific

research foundation of Northeast University under Grant

N110208001, Starting foundation of Northeast University

under Grant 29321006, IAPI Fundamental Research Funds

(2013ZCX02).

REFERENCES

[1] Z . W. Geem, J. H. Kim and G. V. Loganathan, “A new heuristic

optimization algorithm:harmony search,” Simulation, vol.76, pp.
60-68, 2001.

[2] M. Mahdavi, M. Fesanghary and E. Damangir, “An improved harmony

search algorithm for solving optimization problems, ” Appl. Math.
Comput, vol.188, pp.2687-2699, 2010.

[3] M. G. H. Orman andM.Mahdavi, “Global-best harmony search,” Appl.

Math. Comput, vol.198, pp.643-656, 2008.
[4] B. Alatas, “Chaotic harmony search algorithms,” Appl. Math. Comput,

vol.216, no.9, pp.2687-2699, 2010.

[5] D. X. Zou, L. Q. Gao, J. H. Wu and S. Li, “Novel global harmony
search algorithm fro unconstrained problems,” Neurocomputing, vol.73,

pp.3308-3318, 2010.

[6] Y. M. Cheng, L. Li, T. Lansivaara, S. C. Chi and Y. J. Sun, “An
improved harmony search minimization algorithm using different slip

surface generation methods for slope stability analysis,” Eng. Optim,

vol.40, pp.95-115, 2008.
[7] Z. W. Geem, “Optimal cost design of water distribution networks using

harmony search,” Eng. Optim, vol.38, pp.259-280, 2006.

[8] Z. W. Geem, “Novel derivative of harmony search algorithm for
discrete design variables,” Appl. Math. Comput, vol.199, no.1,

pp.223-230, 2008.

[9] H. Ceylan and S. Haldenbilen, “Transport energy modeling with
meta-heuristic harmony search algorithm, ” An Application to Turkey,

Energy Policy, vol.36, no.7, pp.2527-2535, 2008.

[10] Z. W. Geem and K. S. Lee, “Application of harmony search to vehicle
routing, ” Am. J. Appl. Sci, vol.2, pp.1552-1557, 2005.

[11] S. Das, A. Mukhopadhyay and A. Roy, “Exploratory power of the

haromony search algorithm: analysis and improvements for global
numerical optimization,” IEEE T, Syst. Man. Cybernet. B Cybernet,

vol.99, pp.1-18, 2010.

[12] M. Fesanghary, M. Mahdavi and Y. Alizadeh, “Hybridizing harmony
search algorithm with sequential quadratic programming for

engineering optimization problems, “ Comput.Methods Appl. Mech.
Eng, vol.197, pp.3080-3091, 2008.

[13] Z. W. Geem, “Novel derivative of harmony search algorithm for

discrete design variables,” Appl. Math. Comput, vol.199, no.1,
pp.223-230, 2008.

[14] Biruk Tessema and Gary G. Yen, “A self Adaptive Penalty Function
Based Algorithm for Constrained Optimization,.” IEEE Congress On

Evolutionary Computation, pp.246-253, 2006.
[15] J. A. Wright and R. Farmani, “Genetic algorithm: A fitness formulation

for constrained minimization,” in Proc. Genetic and Evolutionary

Computation Conf, pp. 725-732, 2001.
[16] Raziyeh Farmani and Jonathan A. Wright, “Self-Adaptive Fitness

Formulation for Constrained Optimization,” IEEE Transactions On

Evolutionary Computation, vol.7, no.5, pp.445-455,2008.
[17] Jing Chen, Quan-ke Pan, Jun-qing Li, “harmony search algorithm with

dynamic control parameters,” Applied Mathematics and

Computation,vol.219, pp.592-604, 2012.
[18] T. P. Runarsson and X. Yao, “Search biases in constrained evolutioanry

optimization,” IEEE Transaction on Systems, and Cybernetics, Part C,

vol.35, no.2, pp.233-244, 2005.

859

