
 
 

 

  

Abstract—Memory is fundamental to social activities such as 
language communications, yet it remains unclear how memory 
capacity and language use influence each other during language 
evolution, especially the early stage of language origin. Here, we 
proposed an evolutionary framework to address this issue. It 
assumed a genetic transmission of memory capacity and 
integrated natural and cultural selections that respectively 
affected the choices of parents for reproducing offspring and 
teaching these offspring. Simulation results obtained under this 
framework and relevant statistical analyses collectively traced a 
coevolution of language and capacity of individual long-term 
memory for storing acquired linguistic knowledge during the 
origin of a communal language in a multi-individual population. 
In line with the coevolutionary theory of language and related 
cognitive competences, this simulation study demonstrated that 
culturally-constituted aspects (communicative success) could 
drive the natural selection of predisposed cognitive features 
(long-term memory capacity), thus showing that language 
resulted from biological evolution, individual learning, and 
socio-cultural transmissions. 

I. INTRODUCTION 
EMORY is defined in general as the cognitive processes 
whereby information is encoded, stored, retrieved, or 
integrated. It is essential for humans and non-human 

animals to sense, perceive, or change the world, via 
individual or social activities toward the environment or 
among each other. In psychology, the most influential model 
of memory classifies memory into short-term (STM) and 
long-term memory (LTM) [1]. Environmental or exchanged 
information first enters STM for a temporary storage, which 
is an antechamber to more durable LTM. STM also serves as 
working memory (WM) for activities such as comprehension, 
learning, or reasoning [2]. The dominant model of WM [3] 
further classifies WM into: (a) central executive, to supervise 
other components and relevant cognitive processes; (b) 
phonological loop, to store recently-encountered sound 
stimuli; (c) visuospatial sketchpad, to hold visual and/or 
spatial information; and (d) episodic buffer [4], to integrate 
cross-domain information to form visual, spatial, and/or 
verbal units. LTM incorporates declarative (explicit) memory 
and implicit memory, the former of which comprises 
semantic memory recording factual information or general 
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knowledge and episodic memory storing personal 
experiences [5]. Knowledge in declarative memory is often 
extracted from information in STM or WM [6]. 

These memory components are especially useful for social 
activities such as language. For example, the phonological 
loop and visuospatial sketchpad help store meaning-utterance 
mappings exchanged in recent communications, which serve 
as individual “previous experience” for acquiring lexical and 
grammatical knowledge of exchanged language [7][8]. In 
addition, empirical evidence reveals that although the STM of 
humans and other animals shows similar, limited capacities 
[9][10], the LTM of humans is superior, especially in the 
domain of language use. For example, other animals appear to 
have lower degrees (in terms of duration, number or type of 
stored items) of “episodic-like” memory mainly for 
temporarily storing information about food and its location, 
whereas the episodic and semantic memories of humans 
allow storing and constructing concrete and abstract 
knowledge of a variety of items, autobiographical events, as 
well as their correlations [11]. Furthermore, language, as the 
primary means of expressing semantic or conceptual 
knowledge, must have correlations with the memory system 
that stores such knowledge and participates in acquisition and 
processing of such knowledge. Empirical studies have 
gathered much evidence of memory constraints on language 
performance (e.g., [12][13]), yet theories of language 
evolution have not paid sufficient attention to the 
evolutionary relation between language and memory, many 
of which simply treat a sufficient memory capacity as a 
prerequisite for language evolution. Exploring evolutionary 
questions such as how the capacities of memory components 
relevant for language use are formed, or how memory 
capacity and language use affect each other during the 
evolution of language could shed important light on our 
understanding of the relation between language and general 
cognition and the process of language evolution. 

We propose an evolutionary scenario of the development 
of human memory capacity for language use, which focuses 
in particular on the LTM capacity for linguistic knowledge. 
This scenario assumes that early hominins could temporarily 
store, using their STM, meaning-utterance mappings 
exchanged in recent communications among each other. To 
interpret more linguistic utterances, early hominids started to 
extract recurrent patterns in those temporarily-stored 
instances as linguistic knowledge, and allocate LTM units to 
store this acquired knowledge. Here, different LTM 
capacities could allow recording different amount of 
linguistic knowledge, thus causing distinct degrees of mutual 
understanding among each other. In this way, the LTM 
capacity became correlated with linguistic understanding. 
Following the socio-biological explanation [14] and the 
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brain-language coevolution theory [15–18], communicative 
success could reciprocally affect the LTM capacities among 
language users, thus triggering a coevolution (a reciprocal 
influence between natural species or system components 
[19]) of language and LTM capacity. 

Noting that available empirical studies cannot offer explicit 
answers to evolutionary questions about memory capacity 
and its role in language evolution, we adopt evolutionary 
computation techniques to evaluate this scenario. First, we 
adopt a multi-agent, language origin model [20][21] as the 
language model in our study. It simulates a simultaneous 
acquisition of lexical items and simple word orders out of a 
holistic protolanguage in a multi-individual population. There 
are two reasons to select this model. First, it implements the 
STM storing exchanged linguistic instances and the LTM 
recording linguistic knowledge acquired from these 
instances, thus enabling us to explore the coevolution of 
language and LTM (as well as other relevant competences). 
Second, it simulates instance-based learning mechanisms for 
acquiring both lexical and syntactic knowledge. Compared 
with the other studies of memory based on lexical evolution 
models (e.g., [22][23]), these learning mechanisms and 
evolved artificial languages are more comparable to the 
linguistic abilities of language learning children and the 
preliminary languages of early hominids. Second, we propose 
an evolutionary framework, which involves both natural and 
cultural selections that take effect during generation 
replacement and language learning. Under this framework, 
we conduct simulations in different conditions to 
systematically analyze the evolutions of language and LTM 
capacity. The simulation results and relevant statistical 
analyses collectively illustrate the coevolution of language 
and LTM and vividly show the roles of these selections in the 
coevolution process. 

In the following sections, we first describe the memory 
system, evolutionary framework, and simulation setup, then 
report and analyze the simulation results, and finally discuss 
the coevolution of language and memory capacity. 

II. MEMORY SYSTEM, EVOLUTIONARY FRAMEWORK, AND 
SIMULATION SETUP 

A. Memory System 
The major components of the language model are briefly 

described in the Appendix. Here, we concentrate on the 
memory system in this model. In this two-component system, 
the STM stores meaning-utterance mappings obtained in 
previous communications where this agent was the listener; 
and the LTM records linguistic knowledge (lexical and 
syntactic rules) extracted from the instances in the STM. 
These rules are used by the agent in future communications. 

Both the STM and the LTM have fixed capacities, and the 
contents in them are updated along with communications. 
When the STM is full, newly-obtained mappings will replace 
old ones stored; when the LTM is full, newly-acquired rules 
will replace those having lower strengths (rule strength 
indicates the probability of successfully applying this rule in 

communications). Rules having been unsuccessfully used for 
many times or having zero or negative strengths due to 
gradual forgetting are also discarded from the LTM. For the 
sake of simplicity, we focus on the LTM capacity for storing 
lexical rules, and fix the LTM capacities for storing other 
types of linguistic knowledge. Lexical rules are the most 
fundamental linguistic knowledge in this model, on which 
syntactic rules are built (see Appendix). 

B. Evolutionary Framework 
The evolutionary framework, inspired from [18], involved 

genetic transmission (transmitting the LTM capacity for 
storing lexical rules from adults to offspring) during 
reproduction and cultural transmission (intra-generational 
communications where adults talk to each other, and 
inter-generational communications where adults talk to 
offspring). In each round of generation replacement, first, 
intra-generational communications take place. After that, half 
of the adults are chosen as parents, each producing two (in 
order to maintain the population size) offspring (new agents) 
who have no linguistic knowledge but copy the LTM 
capacities of their parents with occasional mutation. Then, 
inter-generational transmissions start. Later on, offspring 
replace their parents and the next generation begins. Such a 
punctuated setting is to explicitly trace the evolution across 
generations. In real cases, cultural and genetic transmissions 
could be intertwined. 

An agent’s communicative success (CS) reflects its fitness 
in the population. CS is measured as the mean percentage of 
integrated meanings an agent can accurately understand 
(using linguistic knowledge only) when others talk to him/her. 
In this framework, both natural and cultural selections take 
effect based on CS: natural selection selects adults who can 
better understand others (having higher CS) as parents to 
produce offspring; cultural selection selects adults having 
higher CS as teachers to talk to offspring. The mean CS of all 
agents is understanding rate (UR). A high UR indicates that 
the language used by agents can accurately exchange many 
meanings. We only address one type of cultural selection 
relevant for CS here, the roles of cultural selection in 
language evolution also manifest in other aspects (e.g., 
[24–28]). 

C. Simulation Setup 
We set up five sets of simulations. The NoChange set 

allows no cultural and natural selections or mutation on the 
LTM capacity; parents and teachers are randomly chosen and 
offspring directly copy their parents’ LTM capacities without 
adjustment. The other four sets (NoNat_NoCul, without 
natural and cultural selections; Nat_NoCul, with natural 
selection but without cultural selection; NoNat_Cul, without 
natural selection but with cultural selection and Nat_Cul, with 
both natural and cultural selections) form a 2×2 design, where 
natural and cultural selections are two factors, each having 
two levels (in effect or not). When natural selection is in 
effect (Nat_Cul and Nat_NoCul), adults with higher CS have 
higher chances to be parents; otherwise, parents are chosen 
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randomly. When cultural selection is in effect (Nat_Cul and 
NoNat_Cul), adults with higher CS have higher chances to be 
teachers; otherwise, teachers are chosen randomly. When 
offspring copy their parents’ LTM capacities, mutation 
(increase or decrease the capacity with a fixed amount) may 
occur. 

Table 1 summarizes the parameter setting in this 
framework (see Appendix for other parameters controlling 
the learning mechanisms and communications). In the 
simulations of this paper, there are 64 integrated meanings for 
agents to exchange, each having equal chances to be 
produced in communications. Agents in the first generation 
can only express eight integrated meanings using eight rules 
stored in their LTMs. This resembles a limited signaling 
system of early hominins (in fact, simulations starting from 
no linguistic knowledge reported similar results). The eight 
meanings contain all semantic constituents in all 64 
integrated meanings. The simulation results are less 
dependent on the sizes of the semantic space and the 
population; if these values increase, similar results can be 
obtained given more rounds of cultural transmission per 
generation. The number of generations is set to 2000, 
sufficient to observe the possible coevolution and evaluate 
the roles of the selections in this process. In each set, we 
conduct 50 simulations. In each simulation, UR of the 
communal language and the LTM capacities of agents are 
measured at 201 sampling points evenly distributed in 2000 
generations. We fix the capacities of STM and LTM for 
storing other types of linguistic rules to neutralize their effects 
on language evolution. As for the LTM capacity for lexical 
rules, we first analyze the effect of it on UR based on the 
NoChange set of simulations, and then, set the initial LTM 
capacity in the other sets to trace the coevolution of language 
and LTM capacity. 

III. SIMULATION RESULTS 

A. The NoChange Set 
Simulations in this set show a correlation between the LTM 

capacity and UR of the emergent language (see Fig. 1): if the 
LTM capacity is below 30, UR remains low; once it surpasses 
30, UR starts to increase along with the increase in it; and 
when it is sufficiently large, UR remains high. These results 
reveal a threshold LTM capacity (around 30), only beyond 
which can a communal language with high UR emerge. 

Noting this, we set the initial LTM capacities in the other 
four sets of simulations to two values, one around the 
threshold (30) and the other sufficiently larger (60), to see 

how natural and cultural selections affect the evolutions of 
language and LTM capacity in these conditions. In those 
simulations, the initial LTM capacities in the first generation 
are randomly chosen from Gaussian distributions, whose 
standard deviations are fixed at 5 and means at 30 (or 60). 
This manipulation preserves the general characteristic of the 
whole population and also introduces a certain degree of 
individual difference, which paves the way for evolution. 

B. The Other Four Sets 
Simulations in these sets reveal a coevolution of language 

(indicated by UR) and LTM capacity. 
In the condition with the initial LTM capacity being 30, for 

UR, a two-way analysis of covariance (ANCOVA [29]) 
(dependent variable: mean UR over 50 simulations; fixed 
factors: natural and cultural selections; covariate: sampling 
points throughout generations) shows that: natural selection 
has a significant main effect on UR (F(1, 40195) = 
47979.969, p < .001, ηp

2 = .544), but cultural selection does 
not (F(1, 40195) = 96.206, p = .422, ηp

2 = .000); and there is 
no significant interaction between the two selections (F(1, 
40195) = 1.297, p = .532, ηp

2 = .051). The covariate, 
generation (sampling points), also interacts significantly with 
UR (F(1, 40195) = 8951.653, p < .001, ηp

2 = .182). Using 
ANCOVA, not ANOVA, is to partial out the influence of the 
covariant. 

Fig. 2(a) shows that the marginal mean UR (average UR at 
all sampling points of all simulations from the corresponding 
set; note that the two types of selection take effect throughout 
2000 generations, comparing absolute values at each 
sampling point is inappropriate to clarify their general effects, 
therefore, we first compare such average values throughout 
simulations, the absolute values at different sampling points 
can be seen in Fig. 3 and Fig. 5 that trace the mean UR and 
LTM capacity throughout 2000 generations in different sets) 
in the sets with natural selection (Nat_NoCul and Nat_Cul) is 
significantly higher than that in the sets without 
(NoNat_NoCul and NoNat_Cul), but the marginal mean UR 
in the sets with cultural selection (NoNat_Cul and Nat_Cul) is 
not much different from that in the sets without 
(NoNat_NoCul or Nat_NoCul). These results reveal that it is 
natural selection, rather than cultural selection, that drives the 

 
Fig. 1. Average peak-UR (highest UR throughout 2000 generations) in 
the NoChange set of simulations. Error bars denote standard errors. 

TABLE I 
PARAMETER SETTING FOR THE EVOLUTIONARY FRAMEWORK. 

Parameters Values 
Population size 10 
Mutation rate 0.05
Amount of adjustment on LTM capacity 1 
Number of intra-generational transmissions per generation 100 
Number of inter-generational transmissions per generation 200 

40 
40 

STM size 
LTM for categories and syntactic rules 
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origin of a communal language with high UR. 

As for the LTM capacity, a similar ANCOVA (dependent 
variable: mean LTM capacity over 50 simulations) shows 
that: natural selection has a significant main effect on LTM 
capacity (F(1, 40195) = 29360.665, p < .001, ηp

2 = .422), but 
cultural selection does not (F(1, 40195) = .128, p = .721, ηp

2 = 
.000); and there is a significant interaction between the two 
selections (F(1, 40195) = 257.788, p < .001, ηp

2 = .006), but 
this effect is very small (due to its small ηp

2). Fig. 2(b) shows 
these results. Similarly, Fig. 2(b) also shows that the 
evolution of the LTM capacity is mainly achieved by natural 
selection, rather than cultural selection. In addition, the 
covariate also interacts significantly with LTM capacity, but 
this effect is small (F(1, 40195) = 1045.447, p < .001, ηp

2 = 
.025). 

Fig. 2 and the ANCOVA analyses show that natural 
selection can gradually enhance an initially-low LTM 
capacity, and lead to the origin of a communal language with 
high UR. Such coevolution can also be observed by tracing 
the mean UR and LTM capacity throughout 2000 generations 
in the sets with natural selection (see Fig. 3(a)); due to natural 
selection, both the mean UR and LRM capacity increase 
synchronically from a low value to a high value (as for UR, it 
increases from 0.125 (due to eight initially-shared rules) to 
around 0.8; as for the LTM capacity, it increases from 30 to 
about 38). By contrast, in the sets without natural selection, 
such coevolution disappears; the mean UR and LTM capacity 

only fluctuate around their initial values (Fig. 3(b)). 

In the condition with the initial LTM capacity being 60, as 
for UR, the ANCOVA analysis shows that: natural selection 
has a significant effect on UR (F(1, 40195) = 1915.191, p < 
.001, ηp

2 = .045), but this effect is small; cultural selection has 
a significant effect, but this effect is very small (F(1, 40195) = 
16.443, p < .001, ηp

2 = .000); and there is no significant 
interaction between the two selections (F(1, 40195) = .036, p 
= .850, ηp

2 = .000). The covariate also interacts significantly 
with UR, but this effect is very small (F(1, 40195) = 17.230, p 
< .001, ηp

2 = .000). 
As for the LTM capacity, the ANCOVA analysis shows 

that: natural selection has a significant effect, but this effect is 
very small (F(1, 40195) = 95.775, p < .001, ηp

2 = .002); 
cultural selection has a significant effect, but this effect is 
very small (F(1, 40195) = 98.046, p < .001, ηp

2 = .002); and 
there is a significant interaction between the two selections, 
but this effect is also very small (F(1, 40195) = 267.043, p < 
.001, ηp

2 = .007). The covariate has no significant effect (F(1, 
40195) = 3.482, p = .062, ηp

2 = .000). 
The ANCOVA analyses report several effects of natural 

and cultural selections, but most of them are small (due to 
their small ηp

2). See Fig. 4, UR and the LTM capacity do not 
change much throughout 2000 generations: the change in UR 
is within 0.15 and that in the LTM capacity is within 1, 

 
(a) 

 
(b) 

Fig. 2. (a) Marginal mean UR as a function of natural (Nat) and cultural 
(Cul) selections; (b) Marginal mean LTM capacity as a function of 
natural and cultural selections. Error bars denote standard errors. The 
initial LTM capacity is 30. 

 
(a) 

 
(b) 

Fig. 3. (a) Mean UR and LTM capacity throughout 2000 generations in 
conditions where natural selection is in effect; (b) Mean UR and LTM 
capacity throughout 2000 generations in the conditions where natural 
selection is not in effect. The initial LTM capacity is 30. 
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smaller than the adjusting amount of LTM capacity. These 
results show that when the initial LTM capacity is sufficiently 
large, both natural and cultural selections cannot greatly 
influence the communal language or further adjust the LTM 
capacity; in other words, the coevolution of language and 
LTM capacity as shown in the first condition disappears. 

The disappearance of the coevolution can also be observed 
in Fig. 5 that traces the mean UR and LTM capacity in the sets 
with and without natural selection. The mean UR and LTM 
capacity in all sets fluctuate around certain values and the 
small differences between the mean UR and LTM capacities 
in the sets with and without natural selection reflect the small 
effects of natural or cultural selection on these indices. Note 
that the mean UR in Fig. 5 is lower than 1.0 as in Fig. 1. This 
is because that the simulations in the NoChange set proceed 
without mutations, which could accumulate the random walk 
effect on the LTM capacities and mean UR to a certain extent. 
Also, there are no individual differences in the initial LTM 
capacity in the NoChange set, whereas in the other sets some 
individuals may have quite distinct LTM capacities, thus 
affecting the mean UR and LTM capacities in the population. 

IV. DISCUSSIONS AND CONCLUSIONS 
There is no doubt that: human language is much more 

abundant, in quantity and type, than the artificial language 
simulated in our model; our language model does not take 

into account many aspects that are also relevant for memory 
(e.g., forming, storing, or retrieving semantics and utterances 
in different memory components) and language 
communications (e.g., communications using compressed 
signals or combing information from other domains); and the 
observed threshold of the LTM capacity also depends on 
particular simulation settings (the threshold capacity has to be 
bigger than the number of all semantic constituent; otherwise, 
agents cannot store sufficient lexical rules to express all 
meanings). Nonetheless, our simulations reveal that during 
language origin, an initially-low LTM capacity can be 
enhanced to serve communicative purpose better. In addition, 
when the evolved capacity is enough for language 
communications, the effect of such coevolution becomes less 
explicit. These results indicate an internal correlation 
between language and memory, thus ensuring that if 
linguistic complexity increases (e.g., more expressions are 
available, requiring storing and applying more and additional 
type of linguistic knowledge), capacities of related memory 
components will also adapt accordingly. 

The statistical analyses of the simulation results show that 
the coevolution of language and LTM capacity is achieved 
mainly by natural selection, rather than cultural selection or 
both. In our simulations, cultural selection chooses adults 
with higher CS to be teachers talking to offspring. Even if 
these teachers have sufficient LTM capacities for storing 

 
(a) 

 
(b) 

Fig. 4. (a) Marginal mean UR as a function of natural (Nat) and cultural 
(Cul) selections; (b) Marginal mean LTM capacity as a function of 
natural and cultural selections. Error bars denote standard errors. The 
initial LTM capacity is 60. 

 
(a) 

 
(b) 

Fig. 5. (a) Mean UR and LTM capacity throughout 2000 generations in 
conditions where natural selection is in effect; (b) Mean UR and LTM 
capacity throughout 2000 generations in the conditions where natural 
selection is not in effect. The initial LTM capacity is 60. 
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linguistic knowledge, without natural selection, these agents 
would not necessarily have higher chances to reproduce 
offspring and transfer their capacities to their offspring. 
Meanwhile, given both natural and cultural selections, adults 
having higher CS also have higher chances to reproduce 
offspring, but the offspring would learn only from these 
adults. As shown in [27], such a biased sampling affects 
mutual understandability within and across multi-individual 
populations or generations. 

Although the coevolution is achieved mainly via natural 
selection, cultural transmissions are indispensable, which 
provide opportunities for agents to develop their linguistic 
knowledge and form their CS for natural and/or cultural 
selection to take effect. In line with previous research on the 
roles of cultural selection in shaping simple lexicon [23], 
fundamental language structures [28][30], color terms 
[24][26], and other aspects, our study also reflects the role of 
culture in human cognition in general [31]. 

This coevolution is also consistent with our early study [18] 
tracing a possible coevolution of language and a 
language-related learning mechanism (e.g., joint attention). 
Both studies show that in the context of language evolution, 
genetic assimilation is able to help retain and expand 
communicatively-effective features [32]. Similar to joint 
attention, LTM is not language-specific, exists before 
language origin, and also participates in general interactive 
activities. Once its capacity becomes relevant for linguistic 
comprehension and communicative success can offer capable 
individuals some functional advantage (e.g., reproduction 
opportunity), under the drive of communicative success, 
memory could piggyback on language, having its capacity 
adjusted along with language origin. One difference between 
the two studies lies in that for joint attention, the coevolution 
also makes the level of joint attention ratcheted at a suitable 
high level, whereas for memory, if the initial capacity is 
sufficient for language use, without natural or cultural 
selection, this capacity will not greatly change. 

Both studies demonstrate that language evolution resulted 
from biological evolution (e.g., genetic assimilation of some 
language-related competences such as joint attention or 
memory), individual learning (e.g., learning mechanisms that 
require those competences), and socio-cultural transmission 
[33][34]. In addition, they also revise previous views on 
language evolution, such as the biological evolution leading 
to language readiness and the cultural evolution of modern 
languages take place at distinct stages of language evolution 
[35] and high degrees of certain cognitive characteristics 
must be innate to humans and serve as prerequisites for 
language and human communication system [36]. We 
suggest that there could be no clear-cut distinction between 
the roles of biological and cultural evolutions in language 
origin and distinct levels of certain language-related 
competences in humans could be possibly due to a 
coevolution with language. 

APPENDIX: THE LANGUAGE MODEL 

A. Language, Individuals and Linguistic Knowledge 
This model encodes language as meaning-utterance 

mappings (M-U mappings). Individuals share a semantic 
space containing a fixed number of integrated meanings 
having a “predicate<agent>” or “predicate<agent, 
patient>” structure. Here, predicate, agent, and patient are 
thematic notations. Predicates refer to actions that 
individuals can conceptualize (e.g., “run” or “chase”), and 
arguments entities on or by which actions are performed (e.g., 
“fox” or “tiger”). Some predicates can take one argument, 
e.g., “run<tiger>” meaning “a tiger is running”; others can 
take two, e.g., “chase<tiger, fox>” meaning “a tiger is chasing 
a fox”, where the first constituent in < >, “tiger”, denotes the 
agent (action instigator) of the predicate “chase”, and the 
second, “fox”, the patient (entity undergoing the action) of 
the predicate. For the sake of simplicity, integrated meanings 
having identical agent and patient constituents (e.g., 
“fight<fox, fox>”) are excluded.  

Integrated meanings are encoded by utterances, each 
comprising a string of syllables from a signaling space. An 
utterance encoding an integrated meaning can be segmented 
into subparts, each mapping one or two constituents; and 
subparts can combine to form an integrated meaning. 

Individuals are simulated as artificial agents, who, based 
on general learning mechanisms, can acquire linguistic 
knowledge from the M-U mappings obtained in recent 
communications, produce utterances to encode integrated 
meanings and comprehend utterances during 
communications with others. During reproduction, some 
agents are chosen as parents to produce offspring (new agents 
who have no linguistic knowledge but copying the LTM 
capacities of their parents). After learning from teachers, 
these offspring replace their parents. 

Linguistic knowledge is encoded by lexicon, syntax, and 
categories. An individual’s lexicon comprises lexical rules 
(see Fig. A1). Some are holistic, each mapping an integrated 
meaning onto an utterance (sentence), e.g., “run<tiger>” ↔ 
/abcd/ indicates that the meaning “run<tiger>” can be 
encoded by the utterance /abcd/, and also that /abcd/ can be 
decoded as “run<tiger>”; others are compositional, each 
mapping one or two constituent(s) onto a subpart of an 
utterance, e.g., “fox” ↔ /ef/ or “chase<wolf, #>” ↔ /gh*i/ 
(“#” denotes an unspecified constituent, and “*” unspecified 
syllable(s)).  

A syntactic rule records a local order (before or after) 
between two lexical rules. 

Categories are formed for syntactic rules acquired from 
some lexical items to be applicable to other lexical items 
having the same thematic notation (agent, patient, or 
predicate). A category (see Fig. A1) has a list of lexical rules 
and a list of syntactic rules that specify the orders in utterance 
between these lexical rules and those from other categories. 
For simplicity, we simulate a nominative-accusative language 
and exclude passive voice. Then, a category associating 
lexical rules encoding the thematic notation of agent is also 
denoted as a subject (S) category, since agent corresponds to 
the syntactic role of S. Similarly, patient corresponds to 
object (O), and predicate to verb (V). A local order between 
categories can be denoted by the syntactic roles (e.g., an order 
before between an S and a V category can be denoted by SV. 

Each lexical or order rule has a strength (within [0.0 1.0]), 
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denoting how often this rule is applied successfully in 
communications. A compositional rule also has association 
weights to categories containing this rule, indicating how 
often the syntactic rules in those categories can be 
successfully applied on this rule in communications. Rule 
strength and association weight enable a strength-based 
competition among rules in production and perception during 
communications and a forgetting of linguistic knowledge. 

B. General Learning Mechanisms 
Agents are equipped with general learning mechanisms to 

acquire linguistic rules (see [20][21] for details). Lexical rules 
are acquired from constituent(s) and syllable(s) repetitively 
appearing in two or more meaning-utterance mapping in the 
STM. New mappings, before being stored to the STM, are 
compared with those already existent. If the STM is full, the 
newly-added mapping replaces the oldest one. For example, 
an agent can detect the recurrent pattern “fox” and /a/ by 
comparing “hop<fox>”↔/ab/ and “run<fox>”↔/acd/. If the 
agent has no rule recording this pattern, it will create a lexical 
rule “fox” ↔ /a/ and put it in the LTM for future use. 

Categories and order rules are acquired based on thematic 
roles of lexical rules and order relations of their utterances in 

meaning-utterance mappings stored in the STM. If an agent 
notices that in some previous experiences the utterances of 
two or more lexical rules having the same thematic role are 
consistently before (or after) the utterance of another lexical 
rule (or the utterances of another set (category) of lexical 
rules all having identical thematic roles), the agent can 
associate these lexical rules into a category having the 
corresponding syntactic role, create a syntactic rule to record 
the local order with respect to the other lexical rule(s), and put 
this syntactic rule to the same category. The categorical and 
syntactic knowledge is also stored in the LTM. In this way, 
the agent can form categories linking lexical rules with local 
orders. 

C. Communication Scenario 
A linguistic communication involves two agents (a speaker 

and a listener), who perform a number of utterance exchange. 
In production, the speaker (hereafter as “she”) first selects 

randomly an integrated meaning from the semantic space. 
She then activates her lexical, syntactic, and category rules to 
form candidate sets, each offering a sentence to encode the 
selected meaning. For each set, she calculates the combined 
strength (see [20][21] for details). After calculation, she 
chooses the set having the highest combined strength, builds 
the utterance accordingly, and transmits the utterance to the 
listener. If lacking enough rules to encode the meaning, she 
occasionally (the creation rate 0.5) creates a holistic rule to 
encode the meaning, and sends the utterance of this rule to the 
listener. 

In comprehension, the listener (hereafter as “he”) receives 
the utterance from the speaker and an environmental cue. The 
cue, as non-linguistic information, contains an integrated 
meaning plus a cue strength. Cues are unreliable (not always 
containing the speaker’s intended meaning). This is to avoid 
explicitly transferring meanings in exchanged utterances via 
non-linguistic information, which would make linguistic 
communication unnecessary. We define reliability of cue (RC) 
to denote how often the listener obtains a correct cue 
(containing the speaker’s intended meaning) in an utterance 
exchange; otherwise, he receives a wrong cue (containing an 
integrated meaning randomly chosen from the semantic space 
and distinct from the speaker’s intended meaning). In the 
simulations of this paper, RC is set to 0.6. The effect of RC on 
language evolution is discussed in [18]. 

The listener activates his lexical, syntactic and category 
rules stored in his STM that can interpret the heard sentence 
as integrated meaning(s). He then compares the cue’s 
meaning with the one(s) comprehended by linguistic rules, 
and sets up candidate sets for comprehension. If the cue’s 
meaning completely or particularly matches the one 
interpreted by some linguistic rules, the cue and those 
linguistic rules form a candidate set. Otherwise, the cue itself 
forms a candidate set. If some linguistic rules can offer a 
complete interpretation, they form another set as well. 

The listener calculates the combined strength of each set. 
For a set without a cue, its combined strength is calculated 
exactly the same as that in production. For a set with a cue, 
the cue strength is added to the combined strength. After 
calculation, he chooses the set having the highest combined 

 
Fig. A1. Examples of lexical rules, syntactic rules, and categories. “#” 
denotes unspecified semantic item, and “*” unspecified syllable(s). S, 
V, and O are syntactic roles of categories. Numbers enclosed by ( ) 
denote rule strengths, and those by [ ] association weights. “<<” 
denotes the local order before, and “>>” after. Compositional rules can 
combine, if specifying each constituent in an integrated meaning 
exactly once, e.g., rules (c) and (d) can combine to form “chase<wolf, 
bear>”, and the corresponding utterance is /ehfg/. Lexical and syntactic 
knowledge collectively encode integrated meanings, e.g., to express 
“fight<wolf, fox>” using the lexical rules from the S, V, and O 
categories and the syntactic rules SV and SO, the resulting sentence is 
/bcea/ or /bcae/, following SVO or SOV. 
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strength for comprehension. If this combined strength 
exceeds a confidence threshold (0.75), the utterance exchange 
is deemed successful. Then, the listener stores the perceived 
meaning-utterance mapping to her STM, and both the speaker 
and the listener reward the rules in their chosen sets by adding 
a fixed amount (0.1) to their strengths and association weights, 
and penalize competing ones in the other sets by deducting 
the same amount from their strengths and association weights. 
Otherwise, the utterance exchange is deemed failed. Then, the 
listener discards the perceived mapping, and both the speaker 
and the listener penalize their rules in their chosen sets. 

The cue strength equals to the confidence threshold, so that 
the linguistic information and non-linguistic information are 
treated equally. Throughout the utterance exchange, there is 
no direct check whether the speaker's encoded meaning 
matches the listener’s decoded one. The adjustment on rule 
strength leads to conventionalization of linguistic knowledge. 

For the linguistic rules stored in the LTM, agents 
frequently deduct a fixed amount (0.01) from their strengths 
and association weights. Then, lexical or syntactic rules 
having zero or negative strengths are discarded, lexical rules 
having zero or negative association weights to some 
categories are removed from those categories, and categories 
having no lexical members are discarded as well. This 
forgetting operation simulates the update of the LTM content. 
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