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Abstract—Population topologies of Particle Swarm Optimiza-
tion algorithm (PSO) have direct impacts on the information
sharing amony particles during the evolution, and will influence
the PSO algorithms’ performance obviously. The canonical PSO
algorithms usually use static population topologies, and the
majority are the classic population topologies (such as fully
connected topology and ring topology). In this paper, we present
the strategies of dynamic random topology based on the random
generation of population topologies. The basic idea is as follows:
various random topologies are used at different stages of evolution
in the population, and the solving performance of PSO algorithms
is enhanced by improving the information exchange of population
in different evolutionary stages. This provides a new way of
thinking for the improvement of the PSO algorithm. Experimen-
tal results on a relatively new variant of dynamic probabilistic
particle swarm optimization show that our strategies can achieve
better performance compared with traditional static population
topologies. Experimental data are analyzed and discussed in the
paper, and the useful conclusions will provide a basis for further
research.

I. INTRODUCTION

As a bio-simulated evolutionary algorithm, Particle Swarm
Optimization (briefed as PSO) is rooted in the imitation
of the behavioral mechanisms such as fish and bird flocks.
Currently, PSO algorithm has been widely applied in practical
engineering fields [1][2][3].

In the evolution process of PSO, particles shares their in-
dividual experiences with others. And this kind of information
sharing is achieved through the population topology. Particles
update their velocity and position by referring to the shared
experience among particles. Therefore, population topology
decides the experience sharing form between the particles, and
has significant impact on the optimization performance.

For the population topologies of PSO algorithms, the fully
connected topology (Gbest model) and the ring topology
(Lbest model) are the usual static population topologies which
are the earliest to be proposed and widely used [4]. After that,
different population topologies have been proposed. Kennedy
analyzed four static population topologies [5]. Mendes and
Stutzle analyzed the effect of several population topologies on
PSO algorithms’ performance [6][7]. Furthermore, Clerc firstly
proposed the random topologies [8], and Ni et al. detailedly

studied the random topologies and introduced the random
topologies to a new variant of PSO [9].

However, the researchers usually focus on the static popula-
tion topologies, the research on dynamic population topologies
are relatively few. Population topologies have direct impacts on
information communication among particles. So, in different
periods of evolution, the inner information sharing mechanisms
should have different focus. Therefore, it is necessary to have
in-depth discussions on dynamic population topologies.

In this paper, based on the random topologies [9], we pro-
posed several possible strategies of dynamic population topol-
ogy. And the proposed dynamic random population topologies
are applied to a relatively new PSO variant of dynamic
probabilistic particle swarm optimization, the effectiveness of
the proposed strategies are analyzed in depth. The rest of
paper is organized as follows. Section II describes the PSO
variants which will be used in the latter experiment. In section
III, the strategies of dynamic random population topologies
are proposed and analyzed. Section IV discusses and analysis
the effectiveness of the proposed strategies through adequate
experiments. Section V make a summary of the paper.

II. VARIANTS OF PARTICLE SWARM OPTIMIZATION

A. The Particle Swarm Optimization Algorithm with Inertia
Weight

As a population based method, particles with velocities
and positions evolve through various operations. Based on the
earlier variant of PSO, Shi proposed the PSO with inertia
weight [10]. The PSO with inertia weight and its variants
are widely used in practical engineering applications, and the
particles’ position and velocity update is according to the
equation 1 and 2.

vid = w ∗ vid + c1 ∗ rand() ∗ (pid − xid)
+c2 ∗Rand() ∗ (pgd − xid)

(1)

xid = xid + vid (2)

The symbols of equation 1 and 2 are described in Table
I. The 3 parts on the right hand of equation 1 usually can be
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considered as self-memory, self-cognition and social-cognition
of a particle. And the particles’ velocities and positions evolve
through the interactions of the 3 parts.

B. The Dynamic Probabilistic Particle Swarm Optimization

A usual PSO algorithm has two attributes, velocity and
position which is similar to the PSO with inertia weight.
Kennedy first proposed a new variant of PSO without the ve-
locity attribute , which is known as Gaussian dynamic particle
swarm optimization [11]. Ni conducted further research on this
variant of PSO [12] [9]. This variant of PSO usually can be
defined as Dynamic Probabilistic Particle Swarm Optimization
(DPPSO). Unlike the usual PSO algorithms, particles have no
velocities in the DPPSO algorithms, and the particles’ position
update are according to equation 3.

Xi(t+ 1) = Xi(t) + � ∗ (Xi(t)−Xi(t− 1))

+� ∗ CTi(t) + γ ∗Gen() ∗OTi(t)
(3)

CTid(t) =
K∑

k=1

Pkd/K −Xid(t) (4)

OTid(t) =
K∑

k=1

|Pid − Pkd|/K (5)

The symbols of equation 3, 4 and 5 are described in Table
II. In the equation 3, 4 and 5 , CTi(t) and OTi(t) are calculated
by the particle’s current position and the optimal positions
of its neighborhood particles. Gen() is a random number
generator which should satisfy a specific distribution such as
a Logistic distribution or a Cauchy distribution, etc.

According to the position update equation 3, the position
of a particle’s new generation is decided by four factors. The
first factor is its memory to its own position. The second factor
represents its trend from the former movement direction. The
third factor, represents the particle’s neighbors affect to the new
generation. The forth factor means the impact of the difference
between particle and its neighbors’ optimal positions on the
next generation.

DPPSO has different performance when adopting different
dynamic probabilistic evolutionary operator Gen(). As can
be seen from equation 4 and 5, the calculation of the two
important values (CTi(t) and OTi(t)) would use each neigh-
borhood particle’s experience, so the optimal information of
the whole population could be utilized. As a result, the research
on population topology of DPPSO is particularly important.

III. DYNAMIC RANDOM POPULATION TOPOLOGY
STRATEGY

A. The Classical Static Population Topologies

In the current applications of PSO, the most popular
population topologies are the fully connection topology and
the ring topology, which are also known as Gbest model and
Lbest model. Figure 1 shows the schematic connections of the
above two population topologies.

For a particle in the fully connected topology, a particle’s
neighborhood includes all the other particles in the whole
swarm. And during the evolution, only the information of the
best position which is obtained by the whole swarm will be
rapidly spread. When adapting this topology, the convergence
speed is very fast, but particles are easy to be trapped into local
optima. As for the ring topology, one or several immediate
neighborhood could be accessed by a particle. And when
adopting this topology, the communication speed in the swarm
is relatively slow. But once one of them found an optimum,
eventually the information would be spread throughout the
whole swarm slowly.

Fig. 1. The Ring topology and the Fully connected topology

B. The Random Population Topologies

In real social groups, the communication mechanisms are
never as invariable as the above two models in the whole evo-
lutionary period, but usually are somehow stochastic, dynamic
and changeable. For convenience of analysis, a population
topology in PSO could be usually abstracted into an undirected
connected graph, which is determined by G(V,E), where V
stands for vertex set, and E stands for edge set, and the number
of vertexes is n. For two vertices u and v in G, use d(u, v) to
determine the distance, i.e. the shortest path between them.

The average degree of a population topology means the
average number of neighborhood particles that one particle
maintains, which stands for the socializing degree of the
swarm. The less neighborhoods one particle has, the harder
for it to get information from the population and have effect
on others; and those with many neighborhoods, on the other
hand, can get much available information and have a greater
influence on the population. Fully connected topology has the
largest average degree which is size− 1, while ring topology
is with the least average degree, and it is 2 in Figure 1, for
example.

Definition 1 (Average degree): The Degree of a vertex is
the number of points in its neighborhood, and is defined as
kv . The Average Degree of undirected connected graph for a
population topology can be formulated as equation 6.

K =

∑
v∈V kv

|V |
(6)

Mendes firstly conducted the research on random popula-
tion topology and confirmed that the structures of population
topology of PSO have direct and crucial effect on its perfor-
mance [7]. Clerc proposed a method of Random Population
topology, and the basic idea is: generate random topologies by
means of choosing neighborhood for particles randomly [8].
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TABLE I. DESCRIPTION OF THE SYMBOLS IN THE EQUATION 1 AND 2

Symbol Description
vid The dth dimension of the particle i’s velocity
xid The dth dimension of the particle i’s position
pid The dth dimension of the best position which the particle i obtained
pgd The dth dimension of the best position which the population obtained
c1, c2 The positive factor
rand(), Rand() The random number generator between 0 and 1
w The inertia weight

TABLE II. DESCRIPTION OF THE SYMBOLS IN THE EQUATION 3, 4 AND 5
Symbol Description
t The number of particle’s evolution generation
i The particle’s index number
Xi(t) The position vector of particle i in the tth generation
k The index number of particle’s neighborhood
K The quantity of particles in its neighbor area
Pk The optimum position among the particle k’s neighborhood particles
d The dimension’s index of the particles i’s position vector
CTi(t) An abbreviation of Centralized Tendency, which is a D-dimensional vector and is determined by equation 4
OTi(t) An abbreviation of Outlier Trend, which is a D-dimensional vector and is determined by equation 5
α, β, γ The positive constant factor
Gen() A dynamic probabilistic evolutionary operator (a random number generator that is satisfy a specific distribution)

And based on Clerc’s idea, Ni et al. improved the generating
method of random population topology [9], and the improved
method of generating random population topology could be
described as algorithm 1.

Algorithm 1: The improved method of generating ran-
dom population topology
1 For a population with the size of S, set up a matrix L

of S × S, and let L(i, i) = 1;
2 Determine a value of K, for every row i in the L

matrix, generate a random number m(m ̸= i), where m
is evenly distributed in {1...S} and could be repeatedly
selected. Let L(m, i) = L(i,m) = 1;

3 Use Dijkstra algorithm to calculate the distances
between particles and store these distances in a S × S
matrix D;

4 while The graph representing the generating random
population topology is unconnected do

5 Scan the distance matrix D;
6 IF there are two particles u and v are unconnected;
7 Let L(u, v) = 1;

In the matrix L obtained eventually, if L(u, v) = 1, then
u and v is connected. This method could produce a random
population topology whose average degree is slightly greater
than K. Ni’s improvement is to guarantee the connectivity of
the corresponding undirected graph of the generating random
population topology.

C. Strategies of Dynamic Random Population Topology

During the evolution of a population, it takes long time for
those distant particles to transmit information. When one parti-
cle find a local optimum and itself as well as its neighborhood
converge to this local best solution, another part of particles
faraway may converge to another local best solution. Because
these two parts of particles are relatively isolated. In the case
of static population topology, communication becomes tough,
which can lead them to continuous mining of local optima and
ignoring the exploration of global optima.

However, if dynamic population topology is adopted and
population topology is changing dynamically during the evo-
lution, information could be exchanged sufficiently between a
particle and its new neighborhoods. Although some particles
may have been converged to local optimum gradually, it still
can be newly informed by other particles in the population as
soon as a new population topology is constructed. This will
update the particles’ direction of exploration and help them
escape from local optima and reach global best solution.

In this paper, the proposed dynamic population topology
strategies are based on random population topology which
is described in section III-B. The basic idea is as follows:
when initializing a population, produce a random population
topology and set certain conditions for the reconstitution
of population topology; identify these conditions by every
evolved generation, and if conditions are met, produce a new
population topology using the method described in algorithm
1. That is to say, during the evolution, the neighborhoods
of particles would be changed and this could enable them
to exchange information with different particles. In different
period of evolution, we choose appropriate index of graph
theory characteristics (an average degree of K), and produce a
random population topology holding such characteristics, and
make it better for the population to accommodate the evolution.

In this paper, three strategies are designed for population
topology reconstitution: Fixed Cycle Based Dynamic Popu-
lation Topology, Optimum Updating Status Based Dynamic
Population Topology and Hybrid Strategy Dynamic Population
Topology. When using these three strategies, the K value
would be set upper and lower limits according to population
size and and other indicators. These strategies can be expressed
as follows.

(1) Fixed Cycle Based Dynamic Population Topology
Fixed Cycle Based Dynamic Population Topology (Dynam-

icA for short), means generating a new population topology
randomly by every certain number of generations which can be
represented by a variable M . To avoid premature convergence
at the early stage of evolution, the average degree of random
population topology is lesser (K is set to 1) in the initializing
period, which gives particles more possibility to explore the
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whole solution space. With the evolution generations growing,
particles begin to converge to an optimum. In this case, the
average degree will be increased gradually, we could use a
greater K to produce a random population topology. This could
deliver the information of optimal solution to particles as much
as possible and enable a deeper exploitation and insure a better
result. The detail strategy of DynamicA is as algorithm 2.

Algorithm 2: Fixed Cycle Based Dynamic Population
Topology (DynamicA)
1 Generate a random population topology with the initial
K (K = 1);

2 Set the evolution generation counter to 0;
3 while The termination condition is not satisfied do
4 Evolve the particles of population ;
5 Generation counter increases 1;
6 if The generation counter is evenly divisible by M

then
7 Let K = K + 2;
8 Produce a new random population topology;

(2) Optimum Updating Status Based Dynamic Popula-
tion Topology

Optimum Updating Status Based Dynamic Population
Topology (DynamicB for short), means changing the pop-
ulation topology when the present optimum haven’t been
updated for a certain time (configurable, and 200 in this paper)
of evolution. If the present optimum keeps still throughout
many generations, the average degree of generating random
population topology will decrease to avoid being trapped into
local optimum and stopping new exploration, that is to produce
random population topology with lesser K value. Because of
the decrease of K during the evolution, it is initialized with
a greater value, which may lead to a rapid convergence at the
beginning of evolution. The detailed strategy of DynamicB is
as algorithm 3.

Algorithm 3: Optimum Updating Status Based Dynamic
Population Topology (DynamicB)
1 Generate a random population topology with the initial
K (K = 9);

2 Set a variable b to count the unchanging times of an
optimum, b is initialized to 0;

3 while The termination condition is not satisfied do
4 Evolve the particles of population;
5 if The optimum has been updated then
6 Set b to 0;
7 else
8 b = b+ 1;
9 if b has reached 200 then

10 Let K = K − 2;
11 Produce a new random population topology;
12 Set b to 0;

(3) Hybrid Strategy Dynamic Population Topology
Hybrid Strategy Dynamic Population Topology (Dynamic-

C for short) combines the characteristics of DynamicA and

DynamicB, and once one condition either in DynamicA or
DynamicB is met, generate a new random population topology.
The detail strategy of DynamicC is as algorithm 4.

Algorithm 4: Hybrid Strategy Dynamic Population
Topology (DynamicC)
1 Generate a random population topology with the initial
K (K = 1);

2 Set the evolution generation counter to 0;
3 Set the unchanging times b to 0;
4 while The termination condition is not satisfied do
5 Evolve the particles of population;
6 Generation counter increases 1;
7 if The generation counter is evenly divisible by M

then
8 Let K = K + 2;
9 else if The optimum has been updated then

10 Set b to 0;
11 else
12 b = b+ 1;
13 if b has reached 200 then
14 Let K = K − 2;

15 Produce a new random population topology;
16 Set b to 0;

IV. EXPERIMENT RESULTS AND ANALYSIS

A. Experiment Settings

In this paper, comparison and evaluation are conducted
among the fully connected topology (Gbest), the ring topology
(Lbest) and the three dynamic random population topologies
(DynamicA, DynamicB and DynamicC), five population topol-
ogy types in total. The PSO algorithm adopts the DPPSO-
Logistic, which is a variant of dynamic probabilistic particle
swarm optimization, and Gen() is a random number genera-
tor which satisfies the Logistic distribution. Five benchmark
functions are tested which are Rastrgin, Schaffer F6, Ackley,
Schwefel and Sphere. The details of these benchmark functions
can be seen in Table III.

In this experiment, size of population is set to 20, and
except Schaffer F6 is tested in 2 dimension, all other functions
are tested in dimension of 30. Experiment was repeated 50
times. The evaluation indicators of the experiment are con-
cerned as follows. Firstly, by a certain number of genera-
tions, compare the precision of the optimal values obtained
in each algorithm, i.e. the values of optima obtained finally,
the indicator is denoted as Perform., which could reflect the
quality of the solution each algorithm obtained. Secondly, by a
certain number of generations, set an accuracy value for each
benchmark function which is given as Accepted error in Table
III, and compare the success rate that the fitness value reached
the accuracy during the evolution, the success rate is denoted
as Prob., which shows the stability of an algorithm.

B. Results and Analysis

Data tables and evolutionary trend figures are used to
compare and evaluate the performance of DPPSO-Logistic
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TABLE III. THE BENCHMARK FUNCTIONS USED IN THIS EXPERIMENT AND INSTRUCTIONS

Sphere
Formula f(x⃗) =

n
∑

i=1

x2

i

Dimension Optimal solution Optimal value Range Accepted error

30 (0, 0, 0..., 0) 0 (−100, 100) 0.01

Schaffer F6
Formula f(x⃗) =

sin2
√

x2
1
+x2

2
−0.5

[1+0.001(x2
1
+x2

2
)]2
− 0.5

Dimension Optimal solution Optimal value Range Accepted error

2 (0, 0) 0 (−100, 100) 0.00001

Schwefel
Formula f(x⃗) = 418.9829 ⋅ n +

n
∑

i=1

xisin
√

|xi|

Dimension Optimal solution Optimal value Range Accepted error

30 (0, 0, 0..., 0) 0 (−500, 500) 6000

Ackley
Formula f(x⃗) = −20 ⋅ exp(−0.2

√

1

n ⋅
n
∑

i=1

x2

i )− exp( 1

n ⋅
n
∑

i=1

cos(2πxi)) + 20 + exp(1)

Dimension Optimal solution Optimal value Range Accepted error

30 (0, 0, 0..., 0) 0 (−30, 30) 5

Rastrigin
Formula f(x⃗) =

∑n
i=1

[x2

i − 10cos(2πxi) + 10]

Dimension Optimal solution Optimal value Range Accepted error

30 (0, 0, 0..., 0) 0 (−5.12, 5.12) 100

adopting different population topologies. The obtained Perfor-
m. and Prob. data are shown in Table IV, and boldface values
in the table indicate the dominant.
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Fig. 2. Comparison of evolutionary trend about five topologies (Sphere)

For Sphere Function which is unimodal, as can be seen
in Table IV and Figure 2, in terms of index values, the three
dynamic random population topologies had a slight lead, but
not much notable; as for the evolutionary trends, the fully
connected topology (Gbest) took the lead at the early stage,
while these three dynamic topologies showed their excellence
in the middle and latter period.

For Schaffer F6 Function, Table IV and Figure 3 illustrated
that, DynamicA performed best in the three dynamic random
population topologies and was better than anyone else. Overall,
dynamic random ones performed better than static ones.

For Schwefel Function, from Table IV and Figure 4 we can
see, fully connected topology (Gbest) had a fast convergence
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Fig. 3. Comparison of evolutionary trend about five topologies (Schaffer’s
F6)

at early stage of the evolution, but in the middle and later
period, DynamicA and DynamicB could still maintain a better
ability of exploration. In a word, from both index values and
evolutionary trends, dynamic random population topologies
were all superior to static ones.

For Ackley Function, which can be seen in Table IV and
Figure 5, DynamicA performed best among all. Generally
speaking, in view of evolutionary trends, the evolutionary
speeds and the value of solutions obtained by the three
dynamic random population topologies were all ahead of those
of static.

For Rastrigin Function, as can be seen in Table IV and
Figure 6, DynamicC and DynamicA performed better among
the three dynamic random population topologies, DynamicB
was slightly worse compared with the previous two topologies,
but they were all better than classical static topologies. Also,
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TABLE IV. PERFORMANCE COMPARISON OF DPPSO-LOGISTIC ADOPTING DIFFERENT POPULATION TOPOLOGIES

Benchmark Function Topology Gbest Lbest DynamicA DynamicB DynamicC

Sphere Perform. 8.72E-32 6.11E-14 1.32E-32 1.70E-24 7.15E-30

Prob. 0.84 0.63 0.80 0.77 0.78

Schaffer F6 Perform. 0.000777273 3.35E-16 0 0 0

Prob. 0.88 0.87 0.95 0.94 0.94

Schwefel Perform. 6965.39 8065.65 6570.06 6564.42 6609.49

Prob. 0.14 0.00 0.20 0.20 0.20

Ackley Perform. 2.1255558 3.94E-07 0.0459366 0.0782762 0.082886

Prob. 0.97 0.94 0.96 0.97 0.96

Rastrigin Perform. 130.52 112.92 81.01 89.57 80.43

Prob. 0.16 0.12 0.76 0.60 0.67
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Fig. 4. Comparison of evolutionary trend about five topologies (Schwefel)
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Fig. 5. Comparison of evolutionary trend about five topologies (Ackley)

for index Prob., dynamic random population topologies were
all better than static ones.

Experiment above compared and evaluated the three pro-
posed dynamic random population topologies with two stat-
ic population topologies (fully connected topology and ring
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Fig. 6. Comparison of evolutionary trend about five topologies (Rastrigin)

topology). For most indicators, results demonstrate that these
three proposed dynamic topologies are more dominant than
static topologies. For unimodal function where there is no
worry about getting trapped in local optimal, a tighter con-
nection between particles can speed up the convergence and
lead to a better solution, an increasing average degree is
conducive to converging to optimum for particles. In terms
of multimodal functions, population topologies are adjusted
dynamically according to the average degrees at different
stages, and the results are usually rather ideal.

V. CONCLUSION

Combining with graph theory characteristics of population
topologies, this paper proposed three dynamic population
topology strategies based on random population topology
structures: Fixed Cycle Based Dynamic Population Topology,
Optimum Updating Status Based Dynamic Population Topol-
ogy and Hybrid Strategy Dynamic Population Topology. They
are compared with classical static population topologies (the
fully connected topology and the ring topology). All these
topologies are tested and analyzed on five benchmark functions
adopting DPPSO-Logistic algorithm. Results demonstrate that
dynamic random topologies raised in this paper have an
obvious superiority. That is to say, it could be of great benefit
to the optimal information transfer by changing particles’
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neighborhoods dynamically during the evolution and making
them realize information exchanging with different particles,
furthermore, performance of PSO algorithm is improved. This
offers a new thought to the development of PSO. Moreover,
several problems deserve further discussion which include how
to set index like average degree in initializing period and how
to choose a suitable dynamic population topology strategy.
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