
 
 

 

  

Abstract—Dynamic objective problem (DOP) raises two 
challenging issues to evolutionary algorithm: comparing two 
individuals evaluated at different time instances and tracing the 
jumping global optimum. This paper presents a dynamic 
objective evolutionary algorithm (DOEA) that handles these 
issues through search history. The presented algorithm, namely 
dynamic objective history driven evolutionary algorithm 
(DyHdEA), stores the entire search history including the 
position, the fitness and the evaluated time of the solutions in a 
dynamic fitness tree. In the experiment section, DyHdEA is 
examined on a 10-dimensional DOP that is composed of five 
basis problems ranging from uni-modal to multi-modal, and 
from separable to non- separable. Meanwhile, the performance 
of DyHdEA is compared with five benchmark DOEAs including 
artificial immune algorithm, differential evolution, evolutionary 
programming, and particle swarm optimization. Seen from the 
result, DyHdEA effectively traces the dynamic global optimum 
with jumping transitions. 

I. INTRODUCTION 
HE WORLD is full of uncertainty. When we take into 
account a real world optimization problem subjected to 

dynamic environments, it is called dynamic optimization 
problem (DOP). An ideal dynamic objective evolutionary 
algorithm (DOEA) should be able to continuously guess the 
accurate optimal solution at any time instance. Since the 
global optimal solution of a DOP probably jumps from one 
position to another, the search by DOEA should be 
explorative enough to trace this kind of suddenly appearing 
optimum. 

In this paper, we propose a novel evolutionary algorithm, 
namely dynamic history-driven evolutionary algorithm 
(DyHdEA), which optimizes DOP with the guidance 
retrieved from search history. Note that as the objective 
landscape as well as the global optimum is dynamic, the 
search history contains time information. The more recent is 
the search history, the more reliable information it can 
provide for interrupting the environment at the current 
instance. Thus, in DyHdEA, search history is defined as the 
position, the fitness value, and the evaluated time of the 
evaluated solutions. In  [1]-[4], this set of history is organized 
by a binary space partitioning (BSP) tree. In this paper, a 
novel BSP tree called dynamic fitness tree that includes time 
information is reported. The term dynamic emphasizes that all 
information in the tree has timelines. For example, while 
following the idea of estimating objective landscape from 
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search history in [4] and considering also the evaluation time, 
dynamic fitness tree acts as a dynamic objective landscape 
estimator. The current fitness value of past evaluated 
individuals could be estimated by the tree. It solves the 
problem of time bias in fitness comparison without increasing 
the computation load on fitness re-evaluation. The most 
related work of landscape estimation is coupled map lattices 
(CML) [5], which normally works on low-dimensional DOP 
as the number of cells in CML exponentially increases along 
with the problem dimensions. 

Originated from the linkage between mutation step size 
and solution density in [2], we extend it to DOP by 
simultaneously considering solution density and its 
reliability. The corresponding history-driven mutation 
operator adaptively switches the search strategy between 
exploration and exploitation. Given an individual to be 
mutated, the proposed mutation operator would intensively 
search its neighborhood region if it is surrounded by many 
recently evaluated solutions. On the other hand, if its 
neighborhood region only has anciently evaluated solutions, 
no matter how numerous these evaluated solutions are, the 
operator would perform an explorative search on it. 

DyHdEA has been compared with five benchmark 
DOEAs. Superior performance is observed in both leadership 
and accuracy. 

The rest of this paper is organized as follows: Section II 
presents the details of dynamic fitness tree. Section III 
describes an adaptive and parameter-less mutation operator. 
Section IV reports the details of DyHdEA. Section V reports 
the experimental results and Section VI gives the conclusion. 

II.   DYNAMIC FITNESS TREE 
Dynamic fitness tree is a BSP tree structure memory 

archive. It structurally memorizes the positions, the fitness 
and the evaluated time of the solutions. Cooperating with 
specific procedures described in details below, it would serve 
as 1) a dynamic objective landscape prediction model, and 2) 
a solution density estimator. 

BSP tree represents a space partitioning scheme organizing 
a set of data points in a space. When the data points are the 
evaluated solutions of an evolutionary algorithm, the 
corresponding partitioning scheme represents the distribution 
of the solutions. [1], [2] use it to control the mutation step size 
in an adaptive and parameter-less manner. In [4], as the BSP 
tree stores also the fitness values of the evaluated solutions, it 
serves as a static fitness landscape estimator. Likewise, [3] 
uses BSP tree as a solution density estimator to adaptively 
diversify the population. For full details and an illustrative 
example of how the BSP tree is constructed and operates, 
please refer to [1]. 
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In this paper, we generalize BSP tree to dynamic fitness 
tree that includes temporal information. In dynamic fitness 
tree, a node represents a partitioned rectangular sub-region of 
the solution space. Suppose a parent node has two child nodes 
l and r, a decision boundary L binary partitions the parent 
sub-region into two sub-regions represented by l and r. The 
partitioned sub-regions are disjoint and their union is the 
sub-region of the parent, i.e., L(x) ≤ 0 iff x belongs to the 
sub-region represented by l, and L(x) > 0 iff x belongs to the 
sub-region represented by r. Moreover, if the partitioned 
sub-region is represented by leaf node, it contains only one 
evaluated solution. 

Definition 1. The sub-region of x 
Suppose solution space X is partitioned into the sub-region 

set H = ׫௜ ݄௜  by BSP Tree. Let  x=[x1, x2, …, xD] be a point in 
X, where D is the dimension of the problem.  We define the 
sub-region h ⊆ H as the ‘sub-region of x’ if xא ݄ and h is 
represented by a leaf node of the Tree.                                  

In static objective function, every evaluated solution 
describes the same objective landscape. BSP tree records it by 
inserting a tree node. However, as dynamic fitness tree deals 
with dynamic objective problem, it records not only the 
position but also the fitness value and the evaluation time of 
the solution. We use the recorded temporal information to 
identify the outdated solutions and discard them from the tree. 
Given that a D-dimensional sub-region h contains two 
solutions: a recorded solution a = [a1, a2, …, aD] and a newly 
evaluated solution b = [b1, b2, …, bD]. We denote by ta and tb 
as the evaluation time of a and b respectively, with tb > ta. We 
define that, as long as the temporal difference between a and 
b is not larger than their difference along any positional 
dimension, i.e., ݐ௕ െ ௔ݐ ൏ max௞אሾଵ,஽ሿ|ܾ௞ െ ܽ௞|,  F(a,ta) 
agrees with the current objective landscape, i.e., F(a, ta) ≈ 
F(a, tb). Thus, we preserve a and insert b to the tree. This is 
equivalent to partitioning h into two non-overlapping and 
adjacent sub-regions. The decision boundary between them is 
expressed in the same manner as in [1]: 

L(x) = xj - p, where ݆ ൌ arg max௞אሾଵ,஽ሿ|ܾ௞ െ ܽ௞| and ݌ ൌ ൫ ௝ܽ ൅ ௝ܾ൯ 2⁄  
where x=[x1, x2, …, xD] is a solution.   
On the other hand, if their temporal difference is larger than 
that along any positional dimension, solution a is outdated 
and should be discarded from the memory. Thus, the node 
that originally records a should now record b. 

While partitioning a sub-region, we compare the difference 
of two solutions at different dimensions. It is common that 
they have different physical meanings and different ranges. 
These differences may introduce a source of sub-region 
selection bias. For example, suppose a solution space is 
defined as [0, 4] × [0, 100] and we are going to partition it by 
two solutions [a1, a2] and [b1, b2] that are randomly generated 
in the space. Because the range of the second dimension is 
larger, |b2 – a2| is usually larger than |b1 – a1|. Thus the 
partition strategy in [1] is intrinsically biased to cut at the 
second dimension. Generally speaking, the larger range is the 
dimension, the higher chance the dimension is selected for 
partitioning. Meanwhile, while identifying outdated 

solutions, we also compare the temporal information as if it is 
one of the spatial dimensions, which is clearly inadequate 
because space and time are different entities. 

In this paper, we remove the comparison bias stated above 
by normalizing the temporal dimension as well as all 
dimensions of solution space to [0, 1]. Normalization is 
straightforward if the upper bound and the lower bound of the 
corresponding range are fixed (i.e., the dimensions of solution 
space). However, as the dynamic fitness tree constantly 
records solutions, the maximum evaluation time amongst the 
recorded solutions monotonically increases. Meanwhile, 
during the optimization process, some solutions are identified 
as outdated and are discarded from the tree. The minimum 
evaluation time amongst the stored solutions (the lower 
bound of the temporal dimension) expectedly increases too 
but not at the same speed as the maximum evaluation time. 
Thus, the range of temporal dimension naturally varies from 
time to time in the whole optimization process, and the 
corresponding normalization is not an easy task. 

To normalize the temporal dimension, we have to keep 
track of the range of temporal dimension. The upper bound is 
obviously equivalent to the current time instance. On the 
other hand, the lower bound can be computed through 
manipulating the tree data structure: Suppose a tree node a 
has two sub-trees Ω1 and Ω2. The sub-tree Ω1 records the 
solution set H1 and the minimum time stamp (i.e., time stamp 
refers to the evaluation time instance of an individual) of the 
set is t1. The sub-tree Ω2 records the solution set H2 and the 
minimum time stamp of the set is t2. Since the tree rooted at a 
records the union of H1 and H2, the minimum time stamp of a 
is simply the minimum of t1 and t2. 

Definition 2. Minimum time stamp of tree node 
Suppose a is a node of dynamic fitness tree Ω and Ωa is a 

sub-tree of Ω rooted at a, we define the minimum time stamp 
t-(a) of a as the evaluation time of the earliest solution in Ωa. 
Given that Z = {zj} is the set of solutions in Ωa and tj is the 
evaluation time of zj, i.e., t-(a) = min{tj}.                                
 
Algorithm A1. MinimumTimeStampUpdate(z, t, Ω) 
Input: 1) an individual z, 2) its evaluation time t, and 3) dynamic fitness tree 
Ω 
1. p:= the leaf node of Ω that represents the sub-region of z 
2. t-(p):= t 
3. While p is not a root node 
4. p:= the parent node of p 
5. a:= left child node of p 
6. b:= right child node of p 
7. t-(p):= min{ t-(a), t-(b)} 
8. Loop 
Output: the dynamic fitness tree Ω with updated minimum time stamp 
 

The minimum time stamps can be obtained bottom-up 
from the leaf nodes. By definition, the minimum time stamp 
of the root node represents the minimum time stamp amongst 
all solutions. Note that when the sub-regions of some 
formerly evaluated solutions would be replaced by those of 
more recently evaluated ones, the minimum time stamp of 
some tree nodes should be re-computed. Suppose p is a newly 
inserted tree node (or a replaced node), the minimum time 
stamp re-computation is only involved at the ancestor nodes 
of p. Algorithm A1 summarizes the procedure of minimum 
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time stamp re-computation. 
Algorithm A2 summarizes the procedure of dynamic 

fitness tree node insertion. Suppose z is the individual to be 
inserted and it is normalized to the space [0, 1]D; t is the 
evaluation time of z and Ω is the dynamic fitness tree. The 
tree insertion starts by searching the leaf node c in Ω that 
represents the sub-region of z. Let t-(r) be the minimum time 
stamp of Ω, we update the evaluation time of c, t-(c), as t-(c) = 
(t(c) -   t-(r)) / (t - t-(r)). Since z is the latest evaluated solution, 
its normalized evaluation time is one. If the normalized 
temporal difference of z and c, i.e., (1- t-(c)), is larger than the 
distance between z and c at any positional dimension, i.e., 1- 
t-(c) > max௞אሾଵ,஽ሿ|ݖ௞ െ ܿ௞|  we overwrite the information 
stored in c to z. Otherwise, we insert child node under c to 
record z. 
 
Algorithm A2. DynamicFitnessTreeNodeInsertion(z, f, t, Ω) 
Input: 1) a normalized individual z, 2) it fitness value f, 3) its evaluation time 
t, and 4) dynamic fitness tree Ω 
1. c:= root node of Ω //Line 1–9 is the same as in [1] 
2. While(c has two child nodes: a and b) 
3. L(·):= the decision boundary of c 
4. If(L(z) ≤ 0) 
5. c:= child node a 
6. Else 
7. c:= child node b  
8. EndIf 
9. Loop 
10. Compute the updated time stamp t-(c) of c  
11. If 1 - t-(c) > max௞אሾଵ,஽ሿ|ݖ௞ െ ܿ௞| then 
12. Overwrite the stored information in c (its position, 

fitness and evaluation time) to z, f and t 
13. MinimumTimeStampUpdate(z, t, Ω)  
14. Else 
15. Insert a child node under c to record z, f and t  
16. Endif 
Output: the updated dynamic fitness tree 
 

One purpose of dynamic fitness tree is to estimate the 
fitness value of any point in solution space at the current time 
instance. Let t be the current time instance; Z = {zi | i = 1, 2, 
…, t-1} be the entire solution set; ti be the evaluation time of 
zi; Z = ∏ ሾܮ௞, ܷ௞ሿ஽௞ୀଵ  be the solution space and Ω be the 
dynamic fitness tree that memories Z, the fitness value of a 
solution s at current instance t is estimated as F(zk,tk): ܨሺܛҧ, ሻݐ ൎ Ωሻ|ܛ෨ሺܨ ൌ ,ത௞ܢ ሺܨ  ௞ሻ                    (1)ݐ
where ܛҧ (the normalized s by X) is in the sub-region of ܢത௞ (the 
normalized ܢ௞ by X). 

III. ADAPTIVE MUTATION FOR DYNAMIC ENVIRONMENT 
In [2], the evaluated solution density provides a good 

guidance on setting the mutation step size; the corresponding 
mutation operators are adaptive and applied to handle static 
optimization problems. While optimizing DOP, the guidance 
on mutation step size by solution density involves temporal 
information as well. Intuitively, the reliability of the guidance 
is higher if the corresponding solution density is computed 
from a set of more recent solutions, and vice versa. We 
formally define the reliability of a tree node below: 

Definition 3. Reliability of tree node 
Suppose a is a node of dynamic fitness tree Ω and Ωa is the 

sub-tree of Ω rooted at a. Given that Za = {zi} is the solution 

set in Ωa and ti is the evaluation time of zi, we define the 
reliability r(a) of a as the evaluation time of the latest solution 
in the sub-region represented by a, i.e., r(a) = max{ti}.        

Expectedly, after recording a solution or overwriting node 
information, the reliabilities of some nodes in the dynamic 
fitness tree should be re-computed. This re-computation is 
only applied to the newly inserted tree node (or the replaced 
node) and all its ancestor nodes. Given that a is the newly 
inserted tree node and t is the time stamp of a, the reliabilities 
of a and all its ancestor nodes are re-assigned as t. Algorithm 
A3 summarizes the procedure of reliability update. 
 
Algorithm A3. ReliabilityUpdate(z, t, Ω) 
Input: 1) an individual z, 2) its evaluation time t and 3) dynamic fitness tree Ω 
1. a:= the leaf node of Ω that contains z 
2. While a is not a root node 
3. r(a):= t 
4. a:= the parent node of a 
5. Loop 
Output: the dynamic fitness tree Ω with updated reliability 
 

Note that the mutation operator commonly performs a local 
search. The locally optimal strategy to balance between the 
exploration (expanding mutation region) and the exploitation 
(increasing the reliability of the region) of mutation operator 
is to expand the region until the corresponding reliability is 
locally (not necessary globally) maximal. We formally define 
the locally optimal mutation region below: 

Definition 4. Locally optimal mutation region of solution s 
Suppose s belongs to leaf node a; the node a together with 

all its n ancestor nodes form a node sequence {P0, P1, P2, …, 
Pn} where P0 = a and Pi is the parent node of Pi-1 for all i = 1, 
2, …, n. Meanwhile, we denote by ri the reliability of Pi. The 
locally optimal mutation region of s is defined as the 
sub-region represented by Pk where k = min௝ୀ଴,ଵ,…௡ିଵ ݆ such 
that rj = rj+1 or if it is not satisfied, then k = n.                       

Algorithm A4 summarizes the procedure of computing the 
locally optimal mutation region. 
 
Algorithm A4. LocallyOptimalMutationRegion(s, Ω) 
Input: 1) solution s and 2) dynamic fitness tree Ω 
1. a:= the leaf node of Ω that contains s 
2. If a is the root node of Ω 
3. M:= the sub-region of a 
4. Else 
5. While(a is not a root node of Ω) ^ (r(b) > r(a)) where b is the 

sibling node of a 
6. a:= the parent node of a 
7. Loop 
8. M:= the sub-region of a 
9. EndIf 
Output: the active mutation region M of s 
 

After computing the locally optimal mutation region M = ∏ ሾ݈௞, ௞ሿ஽௞ୀଵݑ  of individual s to be mutated, we randomly 
select a dimension j of the solution space. The jth element of s, 
sj, is replaced by a uniformly distributed random number in 
the range [lj, uj]. The individual after element replacement is 
regarded as the mutant of s. This procedure implements a 
One-Gene-Flip (OGF) mutation, which is proposed in [2]. 
Comparing to the adaptive mutation in [1] that randomly 
selects a point in M, OGF mutation is less disruptive to the 
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schemata structure. 

IV. DYNAMIC OBJECTIVE HISTORY-DRIVEN EVOLUTIONARY 
ALGORITHM 

In this section, a new dynamic objective evolutionary 
algorithm, DyHdEA, is presented. Given a D-dimensional 
DOP F(·), the corresponding optimization by DyHdEA starts 
from a sequence of initializations: 1) presetting the evaluation 
time stamp t to zero, and 2) presetting dynamic fitness tree Ω 
to contain the root node only. Moreover, a population of μ 
individuals {z1, z2, …, zμ} is generated randomly inside the 
solution space X. After the initialization, the μ individuals are 
evaluated one by one. At each solution evaluation, the 
position, as well as its fitness value and evaluation time, is 
inserted in Ω. Meanwhile, the minimum time stamp and the 
reliabilities of tree nodes are updated. 

During the evolution, the offspring of each individual zi in 
the current population is generated by randomly selecting an 
individual y distinct from zi. A uniform crossover operator is 
applied on zi and y to generate a new individual s. Afterwards, 
we compute the locally optimal mutation region M of s, and 
perform OGF mutation to generate an offspring mi of zi. Note 
that as M relates to the normalized search space, we should 
scale it while performing the OGF mutation. After evaluating 
mi and inserting it into Ω, the minimum time stamps and the 
reliabilities of tree nodes are updated. 

When all offspring has been evaluated, we select μ 
individuals from the pool of the current and the offspring 
populations. Instead of elitism selection of which each 
individual in the combined population pool would be 
compared with all remaining ones, individual in the current 
population is compared only with its offspring, and the fitter 
one of them would survive. This selection scheme is the same 
as that used in differential evolution [6]. As the comparison 
involves only two individuals, the diversity of the survived 
population is higher than that through elitism selection. 
During the parent-offspring selection, it may happen that the 
parent is anciently evaluated but the offspring is recently 
evaluated. Directly comparing their fitness is not a proper 
way to choose a fitter individual. Rather, it is better to 
compare the fitness values of parent and offspring at the 
current time instance. Since re-evaluation of parent individual 
is costly, estimating the current fitness value of parent 
individual from search history by (1) is a more practical 
approach. This is because falling short of evaluating the 
parent individual once again, the most up to date estimate is 
the current fitness tree after the time stamp updates. Note in 
particular that this update has included the information 
provided by all the newly generated offspring. Suppose ሚ݂௜ is 
the estimated fitness value of parent individual zi at current 
time instance (i.e., ሚ݂௜ ൌ  Ωሻ in (1)), and qi is the fitness|ܑܢ෨ሺܨ
value of offspring individual mi, zi would be replaced by mi if 
qi is better than ሚ݂௜ . The evolution by DyHdEA is repeated 
until a given stopping criterion is satisfied. At the end of each 
generation, the optimal individual amongst the selected 
population is recorded. Algorithm A5 summarizes the 
procedure of DyHdEA. Without loss of generality, the 
presented procedure is for a minimization problem.  

 
Algorithm A5. DyHdEA 
Input: 1) a D-dimensional DOP F(·), 2) population size μ, 3) crossover rate Rx 
and 4) solution space X =  ∏ ሾܮ௞, ܷ௞ሿ஽௞ୀଵ  

/* Initialization */ 
1. Time stamp t:= 0 
2. Initialize Ω to contain a root node only 
3. For i = 1 to μ 
4. Randomly generates μ individuals {z1, z2, …, zμ}  
5. t:= t + 1 
6. fi:= F(zi,t) 
7. Normalize zi as v = [v1, v2, …, vD] where vk= ൫ݖ௜,௞ െ ௞൯ܮ ሺܷ௞ െ ⁄௞ሻܮ  
8. Ω:= DynamicFitnessTreeNodeInsertion(v, fi, t, Ω) 
9. Ω:= MinimumTimeStampUpdate(v, t, Ω) 
10. Ω:= ReliabilityUpdate(v, t, Ω) 
11. Next i 

/* Evolution by DyHdEA */ 
12. While stopping criterion is not satisfied  

/* Offspring generation */ 
13. For i = 1 to μ 
14. y:= zk where k = Rand({1, 2, …, μ } / i) 
15. For j = 1 to D 
16. If Rand([0,1]) < Rx 
17. sj:= zj 
18. Else 
19. sj:= yj 
20. EndIf 
21. Next j 
22. M = ∏ ሾ݈௞, ௞ሿ஽௞ୀଵݑ := LocallyOptimalMutationRegion(s, Ω) 
23. d = Rand({1, 2, …, D}) 

24. ݉௜,௝ ൌ ൝ ௗݑ௝Randሺሾ0,1ሿሻሺݏ െ ݈ௗሻሺܷௗ െ ௗሻܮ ൅݈ௗሺܷௗ െ ௗሻܮ ൅ ௗܮ   ݂݅ ݆ ് ݂݀݅ ݆ ൌ ݀ 

25. Next i 
26. For i = 1 to μ 
27. t:= t + 1 
28. qi:= F(mi, t) 
29. Normalize mi as v=[v1, v2, …, vD] 
30. Ω:= DynamicFitnessTreeNodeInsertion(v, qi, t, Ω) 
31. Ω:= MinimumTimeStampUpdate(v, t, Ω) 
32. Ω:= ReliabilityUpdate(v, t, Ω) 
33. Next i 

/* Selection */ 
34. For i = 1 to μ 
35. Update the fitness value of zi by (1) 
36. If ሚ݂௜ ≥ qi then 
37. zi:= mi 
38. ሚ݂௜:= qi 
39. EndIf 
40. Next i 
41. Loop 
Output: the optimal solution xbest א X 

V.   EXPERIMENTAL RESULTS 

A. Test Problem 
In this experiment, the test DOP, F(·), is a weighted sum of 

basis functions {bi(·)}. Its general form is shown in (2) (see 
below). D is the problem dimension; n is the number of basis 
functions and N is the maximum number of fitness 
evaluations. This equation contains common types of 
dynamics of a DOP: 1) the optimal point moves along a 
non-linearly locus and 2) it would suddenly jump from one 
point to another. ܨሺܠ, ,଴ߙ|ݐ ሼܑ܀ሽ, ሼܾ௜ሺܠሻሽሻ ൌ ∑ ሻܾ௜ݐ௜ሺܪ ቀ൫ܠ െ ቁ௡௜ୀଵܑ܀ሻ൯ݐሺܑܗ  (2) 
where 

1561



 
 

 

ሻݐሺܑܗ ൌ ,ሻݐ௜,ଵሺ݋ൣ ,ሻݐ௜,ଶሺ݋ … ሻݐ௜,௝ሺ݋ ሻ൧ݐ௜,஽ሺ݋ ൌ ൜cos௝ିଵ ሻݐ௜ሺߙ sin ሻcos஽ݐ௜ሺߙ ሻݐ௜ሺߙ ݂݅ ݆ ൏ ሻݐ௜ሺߙ ݁ݏ݅ݓݎ݄݁ݐ݋ܦ ൌ ߨ2 ൬ ݅݊ ൅ ݐܰ ൅  ଴,௜൰ߙ
N is the total number of fitness evaluations. 

ሻݐ௜ሺܪ ൌ ൞ே௧௡ ିሺ௜ିଶሻ݅ െ ே௧௡0   ݂݅ ሺ௜ିଶሻே௡ ஸ௧ஸሺ೔షభሻಿ೙݂݅ ሺ௜ିଵሻே௡ ஸ௧ஸ೔೙ಿ݁ݏ݅ݓݎ݄݁ݐ݋  

Problem F consists of four parts: 1) basis function set 
{bi(.)}, 2) weight functions {Hi(t)}, 3) translation function set 
{oi(t)}, and 4) rotation matrix set {Ri}. The dynamics of F 
arises from two sources: the time-varying weight functions 
{Hi(t)} and the time-varying translation functions {oi(t)}. The 
objective landscape changes continuously from one bias 
function to another, and the global optimum of each bias 
function keeps moving in a circular path. 

The behavior of the test DOP is described as follows: 
Initially, the objective landscape of each basis functions bi is 
rotated at the origin of the solution space with a distinct and 
arbitrary rotation matrix Ri. Once the test problem starts to be 
evaluated, the landscape of each basis function keeps 
translating such that the global optima of the functions 
sparsely shift in X. The translation paths are high dimensional 
and circular. It returns to its original position at the end of the 
evolution. Meanwhile, to implement the dramatic jump of 
global optimum, each basis function is weighted by a 
time-varying function Hi(t) activated at particular time 
intervals. In summary, the test DOP is multi-modal, 
non-separable and continuously changing. Meanwhile, its 
global optimum is also continuously shifting and occasionally 
jumping. 

In this experiment, DyHdEA is examined on three DOPs: 
F1, F2 and F3. Each of them consists of five distinct basis 
functions and totally fifteen basis functions f1-f15 are used. 
These basis functions cover a wide range of problem classes: 
from uni-modal to multi-modal and from separable to 
non-separable. 

f1: Schwefel’s problem 2.22 [7] 
f2: Generalized Griewank function [7] 
f3: Inverted cosine mixture problem [8] 
f4: Levy and Montalvo 2 problem [8] 
f5. Sinusoidal problem [8] 
f6. Schwefel’s problem 2.21 [7] 
f7. Ackley function [7] 
f8. Epistatic Michalewicz problem [8] 
f9. Neumaier 3 problem [8] 
f10. Shubert problem [8] 
f11. Generalized Rosenbrock function [7] 
f12. Weierstrass’s function [9] 
f13. Zakharov function [10] 
f14. Pathological function [10] 
f15. Odd Square problem [8] 

The three tested DOPs are as follows: ܨଵሺܠ, ሻݐ ൌ ܨ ቀܠ, ,હ૙ሺ૚ሻ|ݐ ቄ܀ሺܑ૚ሻቅ, ቄܾ௜ሺଵሻ ൌ ௜݂ሺܠሻቅቁ ܨଶሺܠ, ሻݐ ൌ ܨ ቀܠ, ,હ૙ሺ૛ሻ|ݐ ቄ܀ሺܑ૛ሻቅ, ቄܾ௜ሺଶሻ ൌ ௜݂ାହሺܠሻቅቁ 

,ܠଷሺܨ ሻݐ ൌ ܨ ቀܠ, ,હ૙ሺ૜ሻ|ݐ ቄ܀ሺܑ૜ሻቅ, ቄܾ௜ሺଷሻ ൌ ௜݂ାଵ଴ሺܠሻቅቁ 

where i = 1,2,…,5; all હ૙ሺ࢐ሻ and ܀ሺܑ࢐ሻ are distinct. 
The employed basis functions are with different sizes of 

search space. To combine them as the DOPs, in this 
experiment, each dimension of every search space is 
normalized to [0, 1]. 

B. Algorithms for Comparison 
To evaluate the impact of the proposed algorithm, we 

compare the performance of DyHdEA with five benchmark 
DOEAs. 

Test algorithm 1 – Dynamic History-driven Evolutionary 
Algorithm (DyHdEA)  

Test algorithm 2 – Artificial Immune Algorithm (AIA) 
[11] 

Test algorithm 3 – Self-Adaptive Differential Evolution 
(jDE) [12] 

Test algorithm 4 – Evolutionary Programming (UEP) [13] 
Test algorithm 5 – Clustering Particle Swarm Optimizer 

for Dynamic Optimization (CPSO) [14] 
Test algorithm 6 – Particle Swarm Optimization with 

Composite Particles in Dynamic Environment (PSO-CP) [15] 
 

TABLE I 
THE PARAMETER SETTINGS OF THE TEST ALGORITHMS 

Algorithm Parameter setting 

DyHdEA Population size: 10 
Crossover rate: 0.5 

AIA 
Initial population size: 10 
Maximum population size: 50 
Cell suppression threshold: 5 

jDE 

Initial F: 0.5 
Initial CR: 0.9 
Population size: 50 
Number of sub-population: 10 

UEP 

Population size: 100 
Percentage of fitness evaluation assigned to local search: 20% 
Number of possible directions in local search: 5 
Number of individuals in local search: 4 
Tournament size: 10 
Interval of archive updating: 10 generations 
Initial temperature: 6 
Clearing radii: 5 
Threshold with regard to premature convergence: fini / 100 
where fini is the initial fitness deviation 
Threshold with regard to complete loss of diversity: fini / 1000 

CPSO Population size: 20D 
num_rgh: 5 
num_ref: 3 
η1 = η2 = 1.7 
Inertia weight: linearly decrease from 0.6 to 0.3 

PSO-CP Population size: 100 
c1 = c2 = 2.05 
Inertia weight: 0.729844 
Initial reflection step size: 6 
Initial diversity threshold: 3 

 
The detailed parameter settings of the test algorithms for all 

conducted experiments can be found in Table I. The 
parameters of all test algorithms follow their recommended 
settings in the literature [11]-[15]. All simulations are 
performed on a PC with 3.2GHz CPU and 1GB memory. The 
test algorithms are implemented in MATLAB language 
version 6.0. 
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C. Performance Measure 
In this experiment, for each of the test DOEAs, we record 

the best individual xbest(i) as well as its time stamp tbest(i) at 
each generation i. The list P = {[tbest(i), xbest(i)]} represents 
the discrete locus of the global optimal solutions computed by 
the DOEAs. Since an ideal DOEA should be able to compute 
an accurate optimal solution at any time instance, a discrete 
locus is not sufficient to judge the performance of the DOEA. 
Moreover, because DOEA is commonly population-based, it 
can only identify the best individual at every generation but 
not at every time stamp. Thus, we denote by ܠ෤ܜܛ܍܊ሺݐሻ as the 
continuous version of P, which is estimated as follows: ܠ෤ܜܛ܍܊ሺݐሻ  ≈ xbest(j) where ݆ ൌ arg min௞ୀଵ,…,|ݐ||۾௕௘௦௧ሺ݇ሻ െ |ݐ  ሻ is estimated to be the best solution. For example, ifݐሺܜܛ܍܊෤ܠ .
the P of a DOEA is {[100, xbest(1)], [200, xbest(2)], [300, 
xbest(3)]}, ܠ෤ܜܛ܍܊ሺݐሻ is as follows: ܠ෤ܜܛ܍܊ሺݐሻ ൌ ቐܜܛ܍܊ܠሺ૚ሻܜܛ܍܊ܠሺ૛ሻܜܛ܍܊ܠሺ૜ሻ   ݂݅ 0 ൏ ݐ ൏ 150݂݅ 149 ൏ ݐ ൏ ݐ 250݂݅ ൐ 249  

Under the definition of ܠ෤ܜܛ܍܊ሺݐሻ , we define the 
convergence curve G of a DOEA as the locus of the fitness 
values of  ܠ෤ܜܛ܍܊ሺݐሻ: G(t) =  ܨሺܠ෤ܜܛ܍܊ሺݐሻ,  .ሻݐ

In a group of test algorithms, ideally the best one is 
superior to others at all considered time instances. Meanwhile 
the obtained best fitness should be significantly smaller (as 
we are dealing with minimization) than those of others. In this 
paper, we compare the test algorithms on two measures: 1) 
the number of time instances that one is superior to others, C1 
and 2) relative fitness C2 (see (3) below) The first measure 
reflects the frequency of superiority of one algorithm and the 
second measure indicates the significance of the superiority. 
Given a pool of investigated DOEAs {Ai} and convergence 
curves of {Ai} {G(t|Ai)}, the first measure C1 can be obtained 
by simply counting the number of time instances that the 
algorithm ranks first. It may happen that the actual optimal 
fitness of a DOP varies widely as time goes on. If we directly 
represent the accuracy of a DOEA as the averaged fitness 
values of all instances, it will be dominated by large fitness. 
Thus, the second measure C2 is represented as the average of 
normalized best fitness: ܨ∑ሺܣ௜ሻ ൌ ଵே ∑ ீశሺ௧ሻିீሺ௧|஺೔ሻீశሺ௧ሻିீషሺ௧ሻே௧ୀଵ                  (3) 

where ܩାሺݐሻ ൌ max௝ ௝൯ܣ|ݐ൫ܩ  and ିܩሺݐሻ ൌ min௝ ௝൯ܣ|ݐ൫ܩ . 
An algorithm performs better if it is closer to zero. 

D. Simulation Results 
In this experiment, the test DOPs are 10 dimensional (i.e., 

D = 10). The number of fitness evaluations is fixed at 80,000 
for each test DOP. Since the test algorithms are stochastic, 
their performances are evaluated based on statistics obtained 
from 100 independent runs. The parameters {Rj

(i)} and {α0
(i)} 

for i = 1, 2, 3 and j = 1, 2, …, 5 in the DOPs are fixed for all 
EA in all 100 independent runs. 

To illustrate the significance of DyHdEA, the leadership of 
the test algorithms is presented in Tables 2-4. Seen from the 
tables, DyHdEA is superior to the other five test algorithms in 
more than 87%, 69% and 63% time instances on F1, F2 and F3 
respectively. Compared to the second longest leading 

algorithm which is superior to the others on F1 in around 
9.71% time instances; on F2 in around 9.51% and on F3 in 
around 17.34%, the leading time of DyHdEA is sufficiently 
large to demonstrate the superior leadership of DyHdEA. 
Apart from demonstrating how frequently DyHdEA performs 
better than the other test algorithms, it is also important to 
show how frequently DyHdEA performs worse than the other 
algorithms. According to Tables II-IV, DyHdEA ranks 4th or 
lower in only 4.2% of the total time instances for F1, which is 
the smallest portion amongst the test algorithms (i.e., 11.9% 
for AIA, 9.8 for jDE, 81% for UEP, 94.8% for CPSO, and 
98.3% for PSO-CP). It ranks 4th or lower in around 3% and 
8% of total time instances for F2 and F3, which are also the 
smallest portions amongst the test algorithms. 

TABLE II 
THE AVERAGED RATES OF RANKING OF THE TEST ALGORITHMS: F1. 
 1 2 3 4 5 6 

DyHdEA 87.65% 5.76% 2.42% 1.77% 2.39% 0.00% 
AIA 9.71% 24.81% 53.56% 7.71% 3.02% 1.19% 
jDE 2.11% 61.82% 26.25% 8.64% 0.52% 0.66% 
UEP 0.05% 7.23% 11.72% 53.73% 7.88% 19.39% 

CPSO 0.00% 0.01% 5.21% 8.87% 82.07% 3.84% 
PSO-CP 0.48% 0.36% 0.83% 19.28% 4.13% 74.92% 
 

TABLE III 
THE AVERAGED RATES OF RANKING OF THE TEST ALGORITHMS: F2. 
 1 2 3 4 5 6 

DyHdEA 69.29% 19.37% 7.62% 2.28% 0.76% 0.68% 
AIA 9.51% 23.05% 45.99% 21.40% 0.06% 0.00% 
jDE 5.38% 53.89% 24.04% 6.78% 4.03% 5.88% 
UEP 0.34% 2.03% 1.97% 28.38% 28.16% 39.12% 

CPSO 0.02% 0.24% 0.54% 26.23% 53.18% 19.79% 
PSO-CP 15.47% 1.41% 19.85% 14.93% 13.81% 34.53% 
 

TABLE IV 
THE AVERAGED RATES OF RANKING OF THE TEST ALGORITHMS: F3. 
 1 2 3 4 5 6 

DyHdEA 63.59% 25.41% 2.79% 4.95% 3.03% 0.23% 
AIA 15.64% 36.92% 16.70% 26.64% 2.69% 1.41% 
jDE 17.34% 28.36% 48.15% 3.99% 1.47% 0.69% 
UEP 1.50% 2.73% 3.19% 50.75% 11.58% 30.24% 

CPSO 0.46% 3.88% 10.29% 11.43% 73.31% 0.63% 
PSO-CP 1.47% 2.70% 18.87% 2.24% 7.92% 66.80% 

 
TABLE V 

THE RELATIVE FITNESS OF THE TEST ALGORITHMS. 
 G1 G2 G3 

DyHdEA 0.0296 0.1371 0.0412 
AIA 0.1322 0.4709 0.1837 
jDE 0.0827 0.4191 0.0942 
UEP 0.3869 0.7715 0.4317 

CPSO 0.5048 0.7713 0.2533 
PSO-CP 0.8449 0.6466 0.7747 

 
Table V lists the relative fitness ܨ∑ of the test algorithms 

on F1, F2 and F3. The relative fitness of DyHdEA on F1, F2 
and F3 are 0.0296, 0.1371 and 0.0412 respectively. The 
relative fitness of the second ranked and the third ranked 
algorithms on F1 are 0.0827 and 0.1322; the relative fitness of 
the second ranked and the third ranked algorithms on F2 are 
0.4191 and 0.4709, and the relative fitness of the second 
ranked and the third ranked algorithms on F3 are 0.0942 and 
0.1837. Seen from the results shown in Tables II-V, DyHdEA 
is significantly superior to other test algorithms in terms of 
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leadership and accuracy. 

VI. CONCLUSION 
Dynamic objective problem (DOP) raises two challenges 

to evolutionary algorithm. These challenges are comparing 
the individuals at different environment, and designing a 
search strategy that traces suddenly appearing optimum. In 
this paper, we propose a dynamic objective evolutionary 
algorithm (DOEA) that tackles these challenges through 
search history. The proposed DOEA, namely dynamic 
objective history driven evolutionary algorithm (DyHdEA), 
has the following features: 
1) It does not assume the dynamics of DOP to be changing 

at discrete instances nor are periodic. 
2) It enhances the space partitioning strategy in the binary 

space partitioning (BSP) tree, which eliminates the 
sub-region selection bias induced from the solution space 
with different lengths. 

3) It estimates the objective value and solution density at 
any position of solution space from search history. 

4) The proposed mutation operator adaptively switches 
amongst exploitation for fine tuning the currently found 
optimum, exploration for bringing individuals out of a 
local optimum and exploration for tracking the dynamic 
global optimum. 

5) Both the estimation of objective landscape and solution 
density, as well as the adaptive mutation, are 
parameter-less. 

DyHdEA is examined on three 10-dimensional DOPs: F1, 
F2 and F3. Each of the DOPs is composed of five distinctive 
benchmarked basis functions. The DOP linearly transforms 
from one function to another as the number of fitness 
evaluations increases. Meanwhile, the objective landscape of 
each basis function keeps translating. The performance of 
DyHdEA is compared with five benchmark DOEAs 
including artificial immune algorithm, differential evolution, 
evolutionary programming, and particle swarm optimization. 
Seen from the experimental results, DyHdEA is superior to 
the other test algorithms in terms of both leadership and 
accuracy. The relative fitness of DyHdEA on F1, F2 and F3 
are 0.0296, 0.1371 and 0.0412 respectively. They are very 
close to zero (i.e., the optimal value) and are the highest 
values amongst the test algorithms. Meanwhile, they are 
significantly smaller than the second highest values: 2.8 times 
smaller on F1, 3.1 times on F2 and 2.3 times smaller on F3. 
Thus, the superiority of DyHdEA, in terms of both leadership 
and accuracy, emphatically underlies the contribution of 
search history to DOP optimization. 
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