

Abstract—Dynamic objective problem (DOP) raises two
challenging issues to evolutionary algorithm: comparing two
individuals evaluated at different time instances and tracing the
jumping global optimum. This paper presents a dynamic
objective evolutionary algorithm (DOEA) that handles these
issues through search history. The presented algorithm, namely
dynamic objective history driven evolutionary algorithm
(DyHdEA), stores the entire search history including the
position, the fitness and the evaluated time of the solutions in a
dynamic fitness tree. In the experiment section, DyHdEA is
examined on a 10-dimensional DOP that is composed of five
basis problems ranging from uni-modal to multi-modal, and
from separable to non- separable. Meanwhile, the performance
of DyHdEA is compared with five benchmark DOEAs including
artificial immune algorithm, differential evolution, evolutionary
programming, and particle swarm optimization. Seen from the
result, DyHdEA effectively traces the dynamic global optimum
with jumping transitions.

I. INTRODUCTION
HE WORLD is full of uncertainty. When we take into
account a real world optimization problem subjected to

dynamic environments, it is called dynamic optimization
problem (DOP). An ideal dynamic objective evolutionary
algorithm (DOEA) should be able to continuously guess the
accurate optimal solution at any time instance. Since the
global optimal solution of a DOP probably jumps from one
position to another, the search by DOEA should be
explorative enough to trace this kind of suddenly appearing
optimum.

In this paper, we propose a novel evolutionary algorithm,
namely dynamic history-driven evolutionary algorithm
(DyHdEA), which optimizes DOP with the guidance
retrieved from search history. Note that as the objective
landscape as well as the global optimum is dynamic, the
search history contains time information. The more recent is
the search history, the more reliable information it can
provide for interrupting the environment at the current
instance. Thus, in DyHdEA, search history is defined as the
position, the fitness value, and the evaluated time of the
evaluated solutions. In [1]-[4], this set of history is organized
by a binary space partitioning (BSP) tree. In this paper, a
novel BSP tree called dynamic fitness tree that includes time
information is reported. The term dynamic emphasizes that all
information in the tree has timelines. For example, while
following the idea of estimating objective landscape from

The authors are with the Department of Electronic Engineering, City

University of Hong Kong, Hong Kong, China; e-mail:
chowchi821@yahoo.com.hk, kelviny.ee@cityu.edu.hk.

The work described in this paper was supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region,
China [Project No. CityU 125313].

search history in [4] and considering also the evaluation time,
dynamic fitness tree acts as a dynamic objective landscape
estimator. The current fitness value of past evaluated
individuals could be estimated by the tree. It solves the
problem of time bias in fitness comparison without increasing
the computation load on fitness re-evaluation. The most
related work of landscape estimation is coupled map lattices
(CML) [5], which normally works on low-dimensional DOP
as the number of cells in CML exponentially increases along
with the problem dimensions.

Originated from the linkage between mutation step size
and solution density in [2], we extend it to DOP by
simultaneously considering solution density and its
reliability. The corresponding history-driven mutation
operator adaptively switches the search strategy between
exploration and exploitation. Given an individual to be
mutated, the proposed mutation operator would intensively
search its neighborhood region if it is surrounded by many
recently evaluated solutions. On the other hand, if its
neighborhood region only has anciently evaluated solutions,
no matter how numerous these evaluated solutions are, the
operator would perform an explorative search on it.

DyHdEA has been compared with five benchmark
DOEAs. Superior performance is observed in both leadership
and accuracy.

The rest of this paper is organized as follows: Section II
presents the details of dynamic fitness tree. Section III
describes an adaptive and parameter-less mutation operator.
Section IV reports the details of DyHdEA. Section V reports
the experimental results and Section VI gives the conclusion.

II. DYNAMIC FITNESS TREE
Dynamic fitness tree is a BSP tree structure memory

archive. It structurally memorizes the positions, the fitness
and the evaluated time of the solutions. Cooperating with
specific procedures described in details below, it would serve
as 1) a dynamic objective landscape prediction model, and 2)
a solution density estimator.

BSP tree represents a space partitioning scheme organizing
a set of data points in a space. When the data points are the
evaluated solutions of an evolutionary algorithm, the
corresponding partitioning scheme represents the distribution
of the solutions. [1], [2] use it to control the mutation step size
in an adaptive and parameter-less manner. In [4], as the BSP
tree stores also the fitness values of the evaluated solutions, it
serves as a static fitness landscape estimator. Likewise, [3]
uses BSP tree as a solution density estimator to adaptively
diversify the population. For full details and an illustrative
example of how the BSP tree is constructed and operates,
please refer to [1].

A Dynamic History-driven Evolutionary Algorithm
Chi Kin Chow and Shiu Yin Yuen

T

1558

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

In this paper, we generalize BSP tree to dynamic fitness
tree that includes temporal information. In dynamic fitness
tree, a node represents a partitioned rectangular sub-region of
the solution space. Suppose a parent node has two child nodes
l and r, a decision boundary L binary partitions the parent
sub-region into two sub-regions represented by l and r. The
partitioned sub-regions are disjoint and their union is the
sub-region of the parent, i.e., L(x) ≤ 0 iff x belongs to the
sub-region represented by l, and L(x) > 0 iff x belongs to the
sub-region represented by r. Moreover, if the partitioned
sub-region is represented by leaf node, it contains only one
evaluated solution.

Definition 1. The sub-region of x
Suppose solution space X is partitioned into the sub-region

set H = ׫௜ ݄௜ by BSP Tree. Let x=[x1, x2, …, xD] be a point in
X, where D is the dimension of the problem. We define the
sub-region h ⊆ H as the ‘sub-region of x’ if xא ݄ and h is
represented by a leaf node of the Tree.

In static objective function, every evaluated solution
describes the same objective landscape. BSP tree records it by
inserting a tree node. However, as dynamic fitness tree deals
with dynamic objective problem, it records not only the
position but also the fitness value and the evaluation time of
the solution. We use the recorded temporal information to
identify the outdated solutions and discard them from the tree.
Given that a D-dimensional sub-region h contains two
solutions: a recorded solution a = [a1, a2, …, aD] and a newly
evaluated solution b = [b1, b2, …, bD]. We denote by ta and tb
as the evaluation time of a and b respectively, with tb > ta. We
define that, as long as the temporal difference between a and
b is not larger than their difference along any positional
dimension, i.e., ݐ௕ െ ௔ݐ ൏ max௞אሾଵ,஽ሿ|ܾ௞ െ ܽ௞|, F(a,ta)
agrees with the current objective landscape, i.e., F(a, ta) ≈
F(a, tb). Thus, we preserve a and insert b to the tree. This is
equivalent to partitioning h into two non-overlapping and
adjacent sub-regions. The decision boundary between them is
expressed in the same manner as in [1]:

L(x) = xj - p, where ݆ ൌ arg max௞אሾଵ,஽ሿ|ܾ௞ െ ܽ௞| and ݌ ൌ ൫ ௝ܽ ൅ ௝ܾ൯ 2⁄
where x=[x1, x2, …, xD] is a solution.
On the other hand, if their temporal difference is larger than
that along any positional dimension, solution a is outdated
and should be discarded from the memory. Thus, the node
that originally records a should now record b.

While partitioning a sub-region, we compare the difference
of two solutions at different dimensions. It is common that
they have different physical meanings and different ranges.
These differences may introduce a source of sub-region
selection bias. For example, suppose a solution space is
defined as [0, 4] × [0, 100] and we are going to partition it by
two solutions [a1, a2] and [b1, b2] that are randomly generated
in the space. Because the range of the second dimension is
larger, |b2 – a2| is usually larger than |b1 – a1|. Thus the
partition strategy in [1] is intrinsically biased to cut at the
second dimension. Generally speaking, the larger range is the
dimension, the higher chance the dimension is selected for
partitioning. Meanwhile, while identifying outdated

solutions, we also compare the temporal information as if it is
one of the spatial dimensions, which is clearly inadequate
because space and time are different entities.

In this paper, we remove the comparison bias stated above
by normalizing the temporal dimension as well as all
dimensions of solution space to [0, 1]. Normalization is
straightforward if the upper bound and the lower bound of the
corresponding range are fixed (i.e., the dimensions of solution
space). However, as the dynamic fitness tree constantly
records solutions, the maximum evaluation time amongst the
recorded solutions monotonically increases. Meanwhile,
during the optimization process, some solutions are identified
as outdated and are discarded from the tree. The minimum
evaluation time amongst the stored solutions (the lower
bound of the temporal dimension) expectedly increases too
but not at the same speed as the maximum evaluation time.
Thus, the range of temporal dimension naturally varies from
time to time in the whole optimization process, and the
corresponding normalization is not an easy task.

To normalize the temporal dimension, we have to keep
track of the range of temporal dimension. The upper bound is
obviously equivalent to the current time instance. On the
other hand, the lower bound can be computed through
manipulating the tree data structure: Suppose a tree node a
has two sub-trees Ω1 and Ω2. The sub-tree Ω1 records the
solution set H1 and the minimum time stamp (i.e., time stamp
refers to the evaluation time instance of an individual) of the
set is t1. The sub-tree Ω2 records the solution set H2 and the
minimum time stamp of the set is t2. Since the tree rooted at a
records the union of H1 and H2, the minimum time stamp of a
is simply the minimum of t1 and t2.

Definition 2. Minimum time stamp of tree node
Suppose a is a node of dynamic fitness tree Ω and Ωa is a

sub-tree of Ω rooted at a, we define the minimum time stamp
t-(a) of a as the evaluation time of the earliest solution in Ωa.
Given that Z = {zj} is the set of solutions in Ωa and tj is the
evaluation time of zj, i.e., t-(a) = min{tj}.

Algorithm A1. MinimumTimeStampUpdate(z, t, Ω)
Input: 1) an individual z, 2) its evaluation time t, and 3) dynamic fitness tree
Ω
1. p:= the leaf node of Ω that represents the sub-region of z
2. t-(p):= t
3. While p is not a root node
4. p:= the parent node of p
5. a:= left child node of p
6. b:= right child node of p
7. t-(p):= min{ t-(a), t-(b)}
8. Loop
Output: the dynamic fitness tree Ω with updated minimum time stamp

The minimum time stamps can be obtained bottom-up
from the leaf nodes. By definition, the minimum time stamp
of the root node represents the minimum time stamp amongst
all solutions. Note that when the sub-regions of some
formerly evaluated solutions would be replaced by those of
more recently evaluated ones, the minimum time stamp of
some tree nodes should be re-computed. Suppose p is a newly
inserted tree node (or a replaced node), the minimum time
stamp re-computation is only involved at the ancestor nodes
of p. Algorithm A1 summarizes the procedure of minimum

1559

time stamp re-computation.
Algorithm A2 summarizes the procedure of dynamic

fitness tree node insertion. Suppose z is the individual to be
inserted and it is normalized to the space [0, 1]D; t is the
evaluation time of z and Ω is the dynamic fitness tree. The
tree insertion starts by searching the leaf node c in Ω that
represents the sub-region of z. Let t-(r) be the minimum time
stamp of Ω, we update the evaluation time of c, t-(c), as t-(c) =
(t(c) - t-(r)) / (t - t-(r)). Since z is the latest evaluated solution,
its normalized evaluation time is one. If the normalized
temporal difference of z and c, i.e., (1- t-(c)), is larger than the
distance between z and c at any positional dimension, i.e., 1-
t-(c) > max௞אሾଵ,஽ሿ|ݖ௞ െ ܿ௞| we overwrite the information
stored in c to z. Otherwise, we insert child node under c to
record z.

Algorithm A2. DynamicFitnessTreeNodeInsertion(z, f, t, Ω)
Input: 1) a normalized individual z, 2) it fitness value f, 3) its evaluation time
t, and 4) dynamic fitness tree Ω
1. c:= root node of Ω //Line 1–9 is the same as in [1]
2. While(c has two child nodes: a and b)
3. L(·):= the decision boundary of c
4. If(L(z) ≤ 0)
5. c:= child node a
6. Else
7. c:= child node b
8. EndIf
9. Loop
10. Compute the updated time stamp t-(c) of c
11. If 1 - t-(c) > max௞אሾଵ,஽ሿ|ݖ௞ െ ܿ௞| then
12. Overwrite the stored information in c (its position,

fitness and evaluation time) to z, f and t
13. MinimumTimeStampUpdate(z, t, Ω)
14. Else
15. Insert a child node under c to record z, f and t
16. Endif
Output: the updated dynamic fitness tree

One purpose of dynamic fitness tree is to estimate the
fitness value of any point in solution space at the current time
instance. Let t be the current time instance; Z = {zi | i = 1, 2,
…, t-1} be the entire solution set; ti be the evaluation time of
zi; Z = ∏ ሾܮ௞, ܷ௞ሿ஽௞ୀଵ be the solution space and Ω be the
dynamic fitness tree that memories Z, the fitness value of a
solution s at current instance t is estimated as F(zk,tk): ܨሺܛҧ, ሻݐ ൎ Ωሻ|ܛ෨ሺܨ ൌ ,ത௞ܢ ሺܨ ௞ሻ (1)ݐ
where ܛҧ (the normalized s by X) is in the sub-region of ܢത௞ (the
normalized ܢ௞ by X).

III. ADAPTIVE MUTATION FOR DYNAMIC ENVIRONMENT
In [2], the evaluated solution density provides a good

guidance on setting the mutation step size; the corresponding
mutation operators are adaptive and applied to handle static
optimization problems. While optimizing DOP, the guidance
on mutation step size by solution density involves temporal
information as well. Intuitively, the reliability of the guidance
is higher if the corresponding solution density is computed
from a set of more recent solutions, and vice versa. We
formally define the reliability of a tree node below:

Definition 3. Reliability of tree node
Suppose a is a node of dynamic fitness tree Ω and Ωa is the

sub-tree of Ω rooted at a. Given that Za = {zi} is the solution

set in Ωa and ti is the evaluation time of zi, we define the
reliability r(a) of a as the evaluation time of the latest solution
in the sub-region represented by a, i.e., r(a) = max{ti}.

Expectedly, after recording a solution or overwriting node
information, the reliabilities of some nodes in the dynamic
fitness tree should be re-computed. This re-computation is
only applied to the newly inserted tree node (or the replaced
node) and all its ancestor nodes. Given that a is the newly
inserted tree node and t is the time stamp of a, the reliabilities
of a and all its ancestor nodes are re-assigned as t. Algorithm
A3 summarizes the procedure of reliability update.

Algorithm A3. ReliabilityUpdate(z, t, Ω)
Input: 1) an individual z, 2) its evaluation time t and 3) dynamic fitness tree Ω
1. a:= the leaf node of Ω that contains z
2. While a is not a root node
3. r(a):= t
4. a:= the parent node of a
5. Loop
Output: the dynamic fitness tree Ω with updated reliability

Note that the mutation operator commonly performs a local
search. The locally optimal strategy to balance between the
exploration (expanding mutation region) and the exploitation
(increasing the reliability of the region) of mutation operator
is to expand the region until the corresponding reliability is
locally (not necessary globally) maximal. We formally define
the locally optimal mutation region below:

Definition 4. Locally optimal mutation region of solution s
Suppose s belongs to leaf node a; the node a together with

all its n ancestor nodes form a node sequence {P0, P1, P2, …,
Pn} where P0 = a and Pi is the parent node of Pi-1 for all i = 1,
2, …, n. Meanwhile, we denote by ri the reliability of Pi. The
locally optimal mutation region of s is defined as the
sub-region represented by Pk where k = min௝ୀ଴,ଵ,…௡ିଵ ݆ such
that rj = rj+1 or if it is not satisfied, then k = n.

Algorithm A4 summarizes the procedure of computing the
locally optimal mutation region.

Algorithm A4. LocallyOptimalMutationRegion(s, Ω)
Input: 1) solution s and 2) dynamic fitness tree Ω
1. a:= the leaf node of Ω that contains s
2. If a is the root node of Ω
3. M:= the sub-region of a
4. Else
5. While(a is not a root node of Ω) ^ (r(b) > r(a)) where b is the

sibling node of a
6. a:= the parent node of a
7. Loop
8. M:= the sub-region of a
9. EndIf
Output: the active mutation region M of s

After computing the locally optimal mutation region M = ∏ ሾ݈௞, ௞ሿ஽௞ୀଵݑ of individual s to be mutated, we randomly
select a dimension j of the solution space. The jth element of s,
sj, is replaced by a uniformly distributed random number in
the range [lj, uj]. The individual after element replacement is
regarded as the mutant of s. This procedure implements a
One-Gene-Flip (OGF) mutation, which is proposed in [2].
Comparing to the adaptive mutation in [1] that randomly
selects a point in M, OGF mutation is less disruptive to the

1560

schemata structure.

IV. DYNAMIC OBJECTIVE HISTORY-DRIVEN EVOLUTIONARY
ALGORITHM

In this section, a new dynamic objective evolutionary
algorithm, DyHdEA, is presented. Given a D-dimensional
DOP F(·), the corresponding optimization by DyHdEA starts
from a sequence of initializations: 1) presetting the evaluation
time stamp t to zero, and 2) presetting dynamic fitness tree Ω
to contain the root node only. Moreover, a population of μ
individuals {z1, z2, …, zμ} is generated randomly inside the
solution space X. After the initialization, the μ individuals are
evaluated one by one. At each solution evaluation, the
position, as well as its fitness value and evaluation time, is
inserted in Ω. Meanwhile, the minimum time stamp and the
reliabilities of tree nodes are updated.

During the evolution, the offspring of each individual zi in
the current population is generated by randomly selecting an
individual y distinct from zi. A uniform crossover operator is
applied on zi and y to generate a new individual s. Afterwards,
we compute the locally optimal mutation region M of s, and
perform OGF mutation to generate an offspring mi of zi. Note
that as M relates to the normalized search space, we should
scale it while performing the OGF mutation. After evaluating
mi and inserting it into Ω, the minimum time stamps and the
reliabilities of tree nodes are updated.

When all offspring has been evaluated, we select μ
individuals from the pool of the current and the offspring
populations. Instead of elitism selection of which each
individual in the combined population pool would be
compared with all remaining ones, individual in the current
population is compared only with its offspring, and the fitter
one of them would survive. This selection scheme is the same
as that used in differential evolution [6]. As the comparison
involves only two individuals, the diversity of the survived
population is higher than that through elitism selection.
During the parent-offspring selection, it may happen that the
parent is anciently evaluated but the offspring is recently
evaluated. Directly comparing their fitness is not a proper
way to choose a fitter individual. Rather, it is better to
compare the fitness values of parent and offspring at the
current time instance. Since re-evaluation of parent individual
is costly, estimating the current fitness value of parent
individual from search history by (1) is a more practical
approach. This is because falling short of evaluating the
parent individual once again, the most up to date estimate is
the current fitness tree after the time stamp updates. Note in
particular that this update has included the information
provided by all the newly generated offspring. Suppose ሚ݂௜ is
the estimated fitness value of parent individual zi at current
time instance (i.e., ሚ݂௜ ൌ Ωሻ in (1)), and qi is the fitness|ܑܢ෨ሺܨ
value of offspring individual mi, zi would be replaced by mi if
qi is better than ሚ݂௜ . The evolution by DyHdEA is repeated
until a given stopping criterion is satisfied. At the end of each
generation, the optimal individual amongst the selected
population is recorded. Algorithm A5 summarizes the
procedure of DyHdEA. Without loss of generality, the
presented procedure is for a minimization problem.

Algorithm A5. DyHdEA
Input: 1) a D-dimensional DOP F(·), 2) population size μ, 3) crossover rate Rx
and 4) solution space X = ∏ ሾܮ௞, ܷ௞ሿ஽௞ୀଵ

/* Initialization */
1. Time stamp t:= 0
2. Initialize Ω to contain a root node only
3. For i = 1 to μ
4. Randomly generates μ individuals {z1, z2, …, zμ}
5. t:= t + 1
6. fi:= F(zi,t)
7. Normalize zi as v = [v1, v2, …, vD] where vk= ൫ݖ௜,௞ െ ௞൯ܮ ሺܷ௞ െ ⁄௞ሻܮ
8. Ω:= DynamicFitnessTreeNodeInsertion(v, fi, t, Ω)
9. Ω:= MinimumTimeStampUpdate(v, t, Ω)
10. Ω:= ReliabilityUpdate(v, t, Ω)
11. Next i

/* Evolution by DyHdEA */
12. While stopping criterion is not satisfied

/* Offspring generation */
13. For i = 1 to μ
14. y:= zk where k = Rand({1, 2, …, μ } / i)
15. For j = 1 to D
16. If Rand([0,1]) < Rx
17. sj:= zj
18. Else
19. sj:= yj
20. EndIf
21. Next j
22. M = ∏ ሾ݈௞, ௞ሿ஽௞ୀଵݑ := LocallyOptimalMutationRegion(s, Ω)
23. d = Rand({1, 2, …, D})

24. ݉௜,௝ ൌ ൝ ௗݑ௝Randሺሾ0,1ሿሻሺݏ െ ݈ௗሻሺܷௗ െ ௗሻܮ ൅݈ௗሺܷௗ െ ௗሻܮ ൅ ௗܮ ݂݅ ݆ ് ݂݀݅ ݆ ൌ ݀

25. Next i
26. For i = 1 to μ
27. t:= t + 1
28. qi:= F(mi, t)
29. Normalize mi as v=[v1, v2, …, vD]
30. Ω:= DynamicFitnessTreeNodeInsertion(v, qi, t, Ω)
31. Ω:= MinimumTimeStampUpdate(v, t, Ω)
32. Ω:= ReliabilityUpdate(v, t, Ω)
33. Next i

/* Selection */
34. For i = 1 to μ
35. Update the fitness value of zi by (1)
36. If ሚ݂௜ ≥ qi then
37. zi:= mi
38. ሚ݂௜:= qi
39. EndIf
40. Next i
41. Loop
Output: the optimal solution xbest א X

V. EXPERIMENTAL RESULTS

A. Test Problem
In this experiment, the test DOP, F(·), is a weighted sum of

basis functions {bi(·)}. Its general form is shown in (2) (see
below). D is the problem dimension; n is the number of basis
functions and N is the maximum number of fitness
evaluations. This equation contains common types of
dynamics of a DOP: 1) the optimal point moves along a
non-linearly locus and 2) it would suddenly jump from one
point to another. ܨሺܠ, ,଴ߙ|ݐ ሼܑ܀ሽ, ሼܾ௜ሺܠሻሽሻ ൌ ∑ ሻܾ௜ݐ௜ሺܪ ቀ൫ܠ െ ቁ௡௜ୀଵܑ܀ሻ൯ݐሺܑܗ (2)
where

1561

ሻݐሺܑܗ ൌ ,ሻݐ௜,ଵሺ݋ൣ ,ሻݐ௜,ଶሺ݋ … ሻݐ௜,௝ሺ݋ ሻ൧ݐ௜,஽ሺ݋ ൌ ൜cos௝ିଵ ሻݐ௜ሺߙ sin ሻcos஽ݐ௜ሺߙ ሻݐ௜ሺߙ ݂݅ ݆ ൏ ሻݐ௜ሺߙ ݁ݏ݅ݓݎ݄݁ݐ݋ܦ ൌ ߨ2 ൬ ݅݊ ൅ ݐܰ ൅ ଴,௜൰ߙ
N is the total number of fitness evaluations.

ሻݐ௜ሺܪ ൌ ൞ே௧௡ ିሺ௜ିଶሻ݅ െ ே௧௡0 ݂݅ ሺ௜ିଶሻே௡ ஸ௧ஸሺ೔షభሻಿ೙݂݅ ሺ௜ିଵሻே௡ ஸ௧ஸ೔೙ಿ݁ݏ݅ݓݎ݄݁ݐ݋

Problem F consists of four parts: 1) basis function set
{bi(.)}, 2) weight functions {Hi(t)}, 3) translation function set
{oi(t)}, and 4) rotation matrix set {Ri}. The dynamics of F
arises from two sources: the time-varying weight functions
{Hi(t)} and the time-varying translation functions {oi(t)}. The
objective landscape changes continuously from one bias
function to another, and the global optimum of each bias
function keeps moving in a circular path.

The behavior of the test DOP is described as follows:
Initially, the objective landscape of each basis functions bi is
rotated at the origin of the solution space with a distinct and
arbitrary rotation matrix Ri. Once the test problem starts to be
evaluated, the landscape of each basis function keeps
translating such that the global optima of the functions
sparsely shift in X. The translation paths are high dimensional
and circular. It returns to its original position at the end of the
evolution. Meanwhile, to implement the dramatic jump of
global optimum, each basis function is weighted by a
time-varying function Hi(t) activated at particular time
intervals. In summary, the test DOP is multi-modal,
non-separable and continuously changing. Meanwhile, its
global optimum is also continuously shifting and occasionally
jumping.

In this experiment, DyHdEA is examined on three DOPs:
F1, F2 and F3. Each of them consists of five distinct basis
functions and totally fifteen basis functions f1-f15 are used.
These basis functions cover a wide range of problem classes:
from uni-modal to multi-modal and from separable to
non-separable.

f1: Schwefel’s problem 2.22 [7]
f2: Generalized Griewank function [7]
f3: Inverted cosine mixture problem [8]
f4: Levy and Montalvo 2 problem [8]
f5. Sinusoidal problem [8]
f6. Schwefel’s problem 2.21 [7]
f7. Ackley function [7]
f8. Epistatic Michalewicz problem [8]
f9. Neumaier 3 problem [8]
f10. Shubert problem [8]
f11. Generalized Rosenbrock function [7]
f12. Weierstrass’s function [9]
f13. Zakharov function [10]
f14. Pathological function [10]
f15. Odd Square problem [8]

The three tested DOPs are as follows: ܨଵሺܠ, ሻݐ ൌ ܨ ቀܠ, ,હ૙ሺ૚ሻ|ݐ ቄ܀ሺܑ૚ሻቅ, ቄܾ௜ሺଵሻ ൌ ௜݂ሺܠሻቅቁ ܨଶሺܠ, ሻݐ ൌ ܨ ቀܠ, ,હ૙ሺ૛ሻ|ݐ ቄ܀ሺܑ૛ሻቅ, ቄܾ௜ሺଶሻ ൌ ௜݂ାହሺܠሻቅቁ

,ܠଷሺܨ ሻݐ ൌ ܨ ቀܠ, ,હ૙ሺ૜ሻ|ݐ ቄ܀ሺܑ૜ሻቅ, ቄܾ௜ሺଷሻ ൌ ௜݂ାଵ଴ሺܠሻቅቁ

where i = 1,2,…,5; all હ૙ሺ࢐ሻ and ܀ሺܑ࢐ሻ are distinct.
The employed basis functions are with different sizes of

search space. To combine them as the DOPs, in this
experiment, each dimension of every search space is
normalized to [0, 1].

B. Algorithms for Comparison
To evaluate the impact of the proposed algorithm, we

compare the performance of DyHdEA with five benchmark
DOEAs.

Test algorithm 1 – Dynamic History-driven Evolutionary
Algorithm (DyHdEA)

Test algorithm 2 – Artificial Immune Algorithm (AIA)
[11]

Test algorithm 3 – Self-Adaptive Differential Evolution
(jDE) [12]

Test algorithm 4 – Evolutionary Programming (UEP) [13]
Test algorithm 5 – Clustering Particle Swarm Optimizer

for Dynamic Optimization (CPSO) [14]
Test algorithm 6 – Particle Swarm Optimization with

Composite Particles in Dynamic Environment (PSO-CP) [15]

TABLE I
THE PARAMETER SETTINGS OF THE TEST ALGORITHMS

Algorithm Parameter setting

DyHdEA Population size: 10
Crossover rate: 0.5

AIA
Initial population size: 10
Maximum population size: 50
Cell suppression threshold: 5

jDE

Initial F: 0.5
Initial CR: 0.9
Population size: 50
Number of sub-population: 10

UEP

Population size: 100
Percentage of fitness evaluation assigned to local search: 20%
Number of possible directions in local search: 5
Number of individuals in local search: 4
Tournament size: 10
Interval of archive updating: 10 generations
Initial temperature: 6
Clearing radii: 5
Threshold with regard to premature convergence: fini / 100
where fini is the initial fitness deviation
Threshold with regard to complete loss of diversity: fini / 1000

CPSO Population size: 20D
num_rgh: 5
num_ref: 3
η1 = η2 = 1.7
Inertia weight: linearly decrease from 0.6 to 0.3

PSO-CP Population size: 100
c1 = c2 = 2.05
Inertia weight: 0.729844
Initial reflection step size: 6
Initial diversity threshold: 3

The detailed parameter settings of the test algorithms for all

conducted experiments can be found in Table I. The
parameters of all test algorithms follow their recommended
settings in the literature [11]-[15]. All simulations are
performed on a PC with 3.2GHz CPU and 1GB memory. The
test algorithms are implemented in MATLAB language
version 6.0.

1562

C. Performance Measure
In this experiment, for each of the test DOEAs, we record

the best individual xbest(i) as well as its time stamp tbest(i) at
each generation i. The list P = {[tbest(i), xbest(i)]} represents
the discrete locus of the global optimal solutions computed by
the DOEAs. Since an ideal DOEA should be able to compute
an accurate optimal solution at any time instance, a discrete
locus is not sufficient to judge the performance of the DOEA.
Moreover, because DOEA is commonly population-based, it
can only identify the best individual at every generation but
not at every time stamp. Thus, we denote by ܠ෤ܜܛ܍܊ሺݐሻ as the
continuous version of P, which is estimated as follows: ܠ෤ܜܛ܍܊ሺݐሻ ≈ xbest(j) where ݆ ൌ arg min௞ୀଵ,…,|ݐ||۾௕௘௦௧ሺ݇ሻ െ |ݐ ሻ is estimated to be the best solution. For example, ifݐሺܜܛ܍܊෤ܠ .
the P of a DOEA is {[100, xbest(1)], [200, xbest(2)], [300,
xbest(3)]}, ܠ෤ܜܛ܍܊ሺݐሻ is as follows: ܠ෤ܜܛ܍܊ሺݐሻ ൌ ቐܜܛ܍܊ܠሺ૚ሻܜܛ܍܊ܠሺ૛ሻܜܛ܍܊ܠሺ૜ሻ ݂݅ 0 ൏ ݐ ൏ 150݂݅ 149 ൏ ݐ ൏ ݐ 250݂݅ ൐ 249

Under the definition of ܠ෤ܜܛ܍܊ሺݐሻ , we define the
convergence curve G of a DOEA as the locus of the fitness
values of ܠ෤ܜܛ܍܊ሺݐሻ: G(t) = ܨሺܠ෤ܜܛ܍܊ሺݐሻ, .ሻݐ

In a group of test algorithms, ideally the best one is
superior to others at all considered time instances. Meanwhile
the obtained best fitness should be significantly smaller (as
we are dealing with minimization) than those of others. In this
paper, we compare the test algorithms on two measures: 1)
the number of time instances that one is superior to others, C1
and 2) relative fitness C2 (see (3) below) The first measure
reflects the frequency of superiority of one algorithm and the
second measure indicates the significance of the superiority.
Given a pool of investigated DOEAs {Ai} and convergence
curves of {Ai} {G(t|Ai)}, the first measure C1 can be obtained
by simply counting the number of time instances that the
algorithm ranks first. It may happen that the actual optimal
fitness of a DOP varies widely as time goes on. If we directly
represent the accuracy of a DOEA as the averaged fitness
values of all instances, it will be dominated by large fitness.
Thus, the second measure C2 is represented as the average of
normalized best fitness: ܨ∑ሺܣ௜ሻ ൌ ଵே ∑ ீశሺ௧ሻିீሺ௧|஺೔ሻீశሺ௧ሻିீషሺ௧ሻே௧ୀଵ (3)

where ܩାሺݐሻ ൌ max௝ ௝൯ܣ|ݐ൫ܩ and ିܩሺݐሻ ൌ min௝ ௝൯ܣ|ݐ൫ܩ .
An algorithm performs better if it is closer to zero.

D. Simulation Results
In this experiment, the test DOPs are 10 dimensional (i.e.,

D = 10). The number of fitness evaluations is fixed at 80,000
for each test DOP. Since the test algorithms are stochastic,
their performances are evaluated based on statistics obtained
from 100 independent runs. The parameters {Rj

(i)} and {α0
(i)}

for i = 1, 2, 3 and j = 1, 2, …, 5 in the DOPs are fixed for all
EA in all 100 independent runs.

To illustrate the significance of DyHdEA, the leadership of
the test algorithms is presented in Tables 2-4. Seen from the
tables, DyHdEA is superior to the other five test algorithms in
more than 87%, 69% and 63% time instances on F1, F2 and F3
respectively. Compared to the second longest leading

algorithm which is superior to the others on F1 in around
9.71% time instances; on F2 in around 9.51% and on F3 in
around 17.34%, the leading time of DyHdEA is sufficiently
large to demonstrate the superior leadership of DyHdEA.
Apart from demonstrating how frequently DyHdEA performs
better than the other test algorithms, it is also important to
show how frequently DyHdEA performs worse than the other
algorithms. According to Tables II-IV, DyHdEA ranks 4th or
lower in only 4.2% of the total time instances for F1, which is
the smallest portion amongst the test algorithms (i.e., 11.9%
for AIA, 9.8 for jDE, 81% for UEP, 94.8% for CPSO, and
98.3% for PSO-CP). It ranks 4th or lower in around 3% and
8% of total time instances for F2 and F3, which are also the
smallest portions amongst the test algorithms.

TABLE II
THE AVERAGED RATES OF RANKING OF THE TEST ALGORITHMS: F1.
 1 2 3 4 5 6

DyHdEA 87.65% 5.76% 2.42% 1.77% 2.39% 0.00%
AIA 9.71% 24.81% 53.56% 7.71% 3.02% 1.19%
jDE 2.11% 61.82% 26.25% 8.64% 0.52% 0.66%
UEP 0.05% 7.23% 11.72% 53.73% 7.88% 19.39%

CPSO 0.00% 0.01% 5.21% 8.87% 82.07% 3.84%
PSO-CP 0.48% 0.36% 0.83% 19.28% 4.13% 74.92%

TABLE III
THE AVERAGED RATES OF RANKING OF THE TEST ALGORITHMS: F2.
 1 2 3 4 5 6

DyHdEA 69.29% 19.37% 7.62% 2.28% 0.76% 0.68%
AIA 9.51% 23.05% 45.99% 21.40% 0.06% 0.00%
jDE 5.38% 53.89% 24.04% 6.78% 4.03% 5.88%
UEP 0.34% 2.03% 1.97% 28.38% 28.16% 39.12%

CPSO 0.02% 0.24% 0.54% 26.23% 53.18% 19.79%
PSO-CP 15.47% 1.41% 19.85% 14.93% 13.81% 34.53%

TABLE IV
THE AVERAGED RATES OF RANKING OF THE TEST ALGORITHMS: F3.
 1 2 3 4 5 6

DyHdEA 63.59% 25.41% 2.79% 4.95% 3.03% 0.23%
AIA 15.64% 36.92% 16.70% 26.64% 2.69% 1.41%
jDE 17.34% 28.36% 48.15% 3.99% 1.47% 0.69%
UEP 1.50% 2.73% 3.19% 50.75% 11.58% 30.24%

CPSO 0.46% 3.88% 10.29% 11.43% 73.31% 0.63%
PSO-CP 1.47% 2.70% 18.87% 2.24% 7.92% 66.80%

TABLE V

THE RELATIVE FITNESS OF THE TEST ALGORITHMS.
 G1 G2 G3

DyHdEA 0.0296 0.1371 0.0412
AIA 0.1322 0.4709 0.1837
jDE 0.0827 0.4191 0.0942
UEP 0.3869 0.7715 0.4317

CPSO 0.5048 0.7713 0.2533
PSO-CP 0.8449 0.6466 0.7747

Table V lists the relative fitness ܨ∑ of the test algorithms

on F1, F2 and F3. The relative fitness of DyHdEA on F1, F2
and F3 are 0.0296, 0.1371 and 0.0412 respectively. The
relative fitness of the second ranked and the third ranked
algorithms on F1 are 0.0827 and 0.1322; the relative fitness of
the second ranked and the third ranked algorithms on F2 are
0.4191 and 0.4709, and the relative fitness of the second
ranked and the third ranked algorithms on F3 are 0.0942 and
0.1837. Seen from the results shown in Tables II-V, DyHdEA
is significantly superior to other test algorithms in terms of

1563

leadership and accuracy.

VI. CONCLUSION
Dynamic objective problem (DOP) raises two challenges

to evolutionary algorithm. These challenges are comparing
the individuals at different environment, and designing a
search strategy that traces suddenly appearing optimum. In
this paper, we propose a dynamic objective evolutionary
algorithm (DOEA) that tackles these challenges through
search history. The proposed DOEA, namely dynamic
objective history driven evolutionary algorithm (DyHdEA),
has the following features:
1) It does not assume the dynamics of DOP to be changing

at discrete instances nor are periodic.
2) It enhances the space partitioning strategy in the binary

space partitioning (BSP) tree, which eliminates the
sub-region selection bias induced from the solution space
with different lengths.

3) It estimates the objective value and solution density at
any position of solution space from search history.

4) The proposed mutation operator adaptively switches
amongst exploitation for fine tuning the currently found
optimum, exploration for bringing individuals out of a
local optimum and exploration for tracking the dynamic
global optimum.

5) Both the estimation of objective landscape and solution
density, as well as the adaptive mutation, are
parameter-less.

DyHdEA is examined on three 10-dimensional DOPs: F1,
F2 and F3. Each of the DOPs is composed of five distinctive
benchmarked basis functions. The DOP linearly transforms
from one function to another as the number of fitness
evaluations increases. Meanwhile, the objective landscape of
each basis function keeps translating. The performance of
DyHdEA is compared with five benchmark DOEAs
including artificial immune algorithm, differential evolution,
evolutionary programming, and particle swarm optimization.
Seen from the experimental results, DyHdEA is superior to
the other test algorithms in terms of both leadership and
accuracy. The relative fitness of DyHdEA on F1, F2 and F3
are 0.0296, 0.1371 and 0.0412 respectively. They are very
close to zero (i.e., the optimal value) and are the highest
values amongst the test algorithms. Meanwhile, they are
significantly smaller than the second highest values: 2.8 times
smaller on F1, 3.1 times on F2 and 2.3 times smaller on F3.
Thus, the superiority of DyHdEA, in terms of both leadership
and accuracy, emphatically underlies the contribution of
search history to DOP optimization.

REFERENCES
[1] S. Y. Yuen and C. K. Chow, “A Genetic algorithm that adaptively

mutates and never revisits,” IEEE Trans. Evol. Comput., vol. 13, no. 2,
pp. 454-472, Apr. 2009.

[2] C. K. Chow and S. Y. Yuen, “Continuous non-revisiting genetic
algorithm with random search space re-partitioning and one-gene-flip
mutation,” in Proc. Congr. Evol. Comput., Jul. 2010, pp. 1 – 8.

[3] C. K. Chow and S. Y. Yuen, “A multi-objective evolutionary algorithm
that diversifies population by its density,” IEEE Trans. Evol. Comput.,
vol. 16, no. 2, pp. 149-172, 2012.

[4] C. K. Chow and S. Y. Yuen, “An evolutionary algorithm that makes
decision based on the entire previous search history,” IEEE Trans.
Evol. Comput., vol. 15, no. 6, pp. 741-769, 2011.

[5] H. Richter, “Evolutionary Optimization in Spatio-temporal Fitness
Landscapes” in Parallel Problem Solving from Nature, T. P. Runarsson
et al. (Eds). Heidelberg: Spring-Verlag, 2006, pp. 1-10.

[6] R. Storn and K. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optim., vol. 11, pp. 341–359, 1997.

[7] X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made
faster,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[8] M. M. Ali, C. Khompatraporn and Z. B. Zabinsky, “A Numerical
Evaluation of Several Stochastic Algorithms on Selected Continuous
Global Optimization Test Problems,” J. Global Optim., vol. 31, no. 4,
pp. 635-672, 2005.

[9] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger
and S. Tiwari, “Problem Definitions and Evaluation Criteria for the
CEC 2005 Special Session on Real-Parameter Optimization,”
Technical Report, Nanyang Technological University, Singapore,
KanGAL Report #2005005, IIT Kanpur, India, 2005.

[10] V. K. Koumousis and C. P. Katsaras, “A saw-tooth genetic algorithm
combining the effects of variable population size and reinitialization to
enhance performance,” IEEE Trans. Evol. Comput., vol. 10, no. 1, pp.
19-28, Feb. 2006.

[11] F. O. de Franca and F. J. Von Zuben, “A Dynamic Artificial Immune
Algorithm Applied to Challenging Benchmarking Problems,” in Proc.
Congr. Evol. Comput., Jul. 2009, pp. 423 – 430.

[12] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec and V. Zumer,
“Dynamic Optimization using Self-Adaptive Differential Evolution,”
in Proc. Congr. Evol. Comput., Jul. 2009, pp. 415 – 422.

[13] E. L. Yu and P. N. Suganthan, “Evolutionary Programming with
Ensemble of Explicit Memories for Dynamic Optimization,” in Proc.
Congr. Evol. Comput., Jul. 2009, pp. 431 – 438.

[14] C. Li and S. Yang, “A clustering particle swarm optimizer for dynamic
optimization,” in Proc. Congr. Evol. Comput., Jul. 2009, pp. 439-446.

[15] L. Liu, S. Yang, and D. Wang, “Particle swarm optimization with
composite particles in dynamic environments,” IEEE Trans. System,
Man and Cybernetics, Part B: Cybernetics, vol. 40, no. 6, pp.
1634-1648, Dec. 2010.

1564

