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Abstract—The fractality property are discovered on complex
networks through renormalizaiton procedure, which is imple-
mented by box-covering method. The unsolved problem of box-
covering method is finding the minimum number of boxes to cover
the whole network. Here, we introduce a differential evolution
box-covering algorithm based on greedy graph coloring approach.
We apply our algorithm on some benchmark networks with
different structures, such as a E.coli metabolic network, which
has low clustering coefficient and high modularity; a Clustered
scale-free network, which has high clustering coefficient and low
modularity; and some community networks (the Politics books
network, the Dolphins network, and the American football games
network), which have high clustering coefficient. Experimental
results show that our algorithm can get better results than
state of art algorithms in most cases, especially has significant
improvement in clustered community networks.

Keywords—fractal network, fractal dimension, differential evo-
lution algorithm, box-covering algorithm

I. INTRODUCTION

Nowadays, more and more researchers pay attentions on
the study of complex networks, especially on the statistical
mechanism and topological structure[1][2][3]. In order to
reveal the underlying topological features, many researchers
have studied the fractality property of complex networks.
In 2005, Song et al proposed a renormalization procedure
to tile networks into boxes with a given box size[4]. The
renormalization procedure is implemented by box-covering
method, which is inspired by ‘box counting’ method in Euclid
space[5]. Through the procedure, they found that many real
world networks have fractality property, such as the World
Wide Web, the Protein-Protein Interaction networks and the
Cellular networks. The fractality property is defined as[4]:

𝑁𝐵(ℓ𝐵) ≈ ℓ𝐵−𝑑𝐵 , (1)

where 𝑁𝐵(ℓ𝐵) means the minimum number of boxes to cover
the whole network with the box size ℓ𝐵 , and 𝑑𝐵 is defined as
the fractal dimension. The physical importances of fractality
have been extensive studied in last decades[6], [7], [8].

However, there is an unsolved problem in box-covering
method: given a box size ℓ𝐵 , how to cover a network with
the minimum number of boxes. Finding the best solution
of this problem is known as NP-hard[9]. Many algorithms
have been applied to the box-covering problem, such as:
greedy graph coloring algorithm[10], which transfer the box-
covering problem to graph coloring problem; the maximum-
excluded-mass-burning algorithm[10], which ensures the nodes

are connected inside a box; the random burning method[11], in
which random node is selected as the seed of a box and burning
neighbouring nodes into this box step by step; edge covering
method was applied based on simulated annealing [12]; and
also merging algorithm [13]. These algorithms obtain similar
results, and the graph coloring algorithm is widely used due
to its low time complexity and simplicity on implementation.
Later on, Schneider et al proposed an optimization algorithm
[14]. It apply burning approach to create all possible boxes,
then reduce the unnecessary boxes step by step. After the
reduction, it split the network to subnetworks and applied
sub-algorithms to each subnetwork. This algorithm can get
significant improvement on many real networks. However,
this algorithm is not well suitable for clustered community
networks.

In this paper, we propose a differential evolution box-
covering (DEBC) algorithm, which is based on the greedy
graph coloring approach. The DEBC algorithm is independent
of the network structure, it can get steady improvement in
clustered community networks. We compare DEBC algorithm
with standard greedy coloring algorithm and the Schneider’s
algorithm on 5 benchmarks networks. The results show that
DEBC algorithm has significant improvement compared with
greedy algorithm, and gets similar results with Schneider
algorithm in most cases. Especially in clustered community
networks, DEBC algorithm has obvious improvement com-
pared with the Schneider algorithm.

This paper is organized as follows. In Section.II, we give
the details of how to transfer box-covering problem to graph
coloring problem. In Section.III, we introduce the structure
of traditional differential evolution algorithm. In Section.IV,
we show the application of differential evolution algorithm
on box-covering problem. In Section.V, box-covering results
comparison of 3 algorithms on 5 networks are presented. At
last, we conclude our works in Section.VI.

II. BOX-COVERING TO GRAPH COLORING

The box-covering method is defined as to tile a network
with minimum number of non-overlapping boxes. All the
boxes have the same box size ℓ𝐵 . The ℓ𝐵 is the upper bound
of shortest paths between all pair of nodes in each box. As
we only consider unweighed and undirected networks, each
pair of connected nodes have chemical distance equals to 1.
And the Dijkstra’s and Floyd-Warshall algorithm [15], [16] are
employed to find the all-pair shortest paths.
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Fig. 1. Transforming box-covering problem to the graph coloring problem.
We choose initial graph Φ in (a) to construct the dual network Φ

′
in (b) for

a given box size ℓ𝐵 = 3, where two nodes will be connected if their distance
not less than ℓ𝐵 . The box-covering problem of graph Φ are transfer to graph
coloring problem in Φ

′
, in which two connected nodes must have different

colors as shown in (c). Thus, the chromatic number of Φ
′

is the least number
of boxes needed to covering graph Φ as shown on sub-figure (d) and (e).

The box-covering problem could be transferred into a graph
coloring algorithm of its dual network Φ

′
[10]. Graph coloring

is defined as finding the chromatic number (the minimum
number of colors needed to color the whole network) of the
network, according to rule that two connected nodes must
have different colors. The dual network Φ

′
is constructed by:

two nodes will be connected if the shortest distance between
them not less than box size ℓ𝐵 . As shown in Fig.1, given
a graph Φ with 7 nodes, we can get its dual networks Φ

′

with box size ℓ𝐵 = 3. Then, the greedy algorithm is applied
to coloring the dual networks Φ

′
. The chromatic number is

𝑁𝐵(3) = 3. Therefore, the fractal dimension of network is
calculated by iteratively finding the chromatic number of dual
network 𝐺

′
(ℓ𝐵) from ℓ𝐵=1 to ℓ𝐵 = ℓ𝑚𝑎𝑥.

III. DIFFERENTIAL EVOLUTION ALGORITHM

The Differential Evolution (DE) algorithm is a new evolu-
tionary technique introduced by Storn R and Price K [17], [18].
Due to its effectiveness and simple mathematical structure, DE
has been widely used in complex function optimization, neural
networks training and data mining.

The DE algorithm has three main steps in the whole
generation: mutation, crossover and selection [17]. There are
several kinds of DEs vary according to different mutation
strategies. In this paper, we use 𝐷𝐸/𝑟𝑎𝑛𝑑/1 strategy. In
particular, for a search problem in a D-dimensional space,
a population consists of NP number of parameter vectors
𝑋𝑖,𝐺, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑃 , where 𝐺 denotes one generation, and
NP is the number of members in a population. The fitness
of the problem is represented by 𝐹 (𝑋𝑖,𝐺). The new vectors
𝑋 ′𝑖,𝐺 is generated by the processes of mutation and crossover.
Thereafter, the better one between new and original vector will
be chosen by the process of selection.

A. Mutation

The main difference between DE algorithm and other
evolution algorithms is the process of mutation. The new
vectors 𝑉𝑖,𝐺+1 is generated according to [17]:

𝑉𝑖,𝐺+1 = 𝑋𝑟1,𝐺 + 𝐹 ∗ (𝑋𝑟2,𝐺 −𝑋𝑟3,𝐺) ,

𝑟1 ∕= 𝑟2 ∕= 𝑟3 ∕= 𝑖,
(2)

where 𝑟1, 𝑟2, 𝑟3 are randomly chosen within the interval
[1, 𝑁𝑃 ], 𝐹 is a constant control parameter controlling the am-
plification of the difference between vectors (𝑋𝑟2,𝐺 −𝑋𝑟3,𝐺).

B. Crossover

In order to increase the diversity of the population, the
crossover process generates the new vectors according to the
crossover probability CR. The new vectors are generated as
follows [17].

𝑈𝑖,𝐺+1 = (𝑢𝑖,1,𝐺+1, 𝑢𝑖,2,𝐺+1, ⋅ ⋅ ⋅ , 𝑢𝑖,𝐷,𝐺+1) , (3)

where 𝑢𝑖,𝑗,𝐺+1 is generated according to:

𝑢𝑖,𝑗,𝐺+1 =

{
𝑣𝑖,𝑗,𝐺+1, 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗 [0, 1] ≤ 𝐶𝑅) 𝑜𝑟 (𝑗 = 𝑗𝑟𝑎𝑛𝑑)
𝑥𝑖,𝑗,𝐺, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

(4)
where 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐷, and 𝑟𝑎𝑛𝑑𝑗 is a random number within
the interval [0, 1].

C. Selection

In the selection process, the program chooses the better
vector between the original vector 𝑋𝑖,𝐺 and the crossover
vector 𝑈𝑖,𝐺+1 by applying the greedy strategy, and puts it
into the population of next generation. The select operation is
defined as follows [17].

𝑋𝑖,𝐺+1 =

{
𝑈𝑖,𝐺+1, 𝑖𝑓 (𝑓 (𝑈𝑖,𝐺+1) ≤ 𝑓 (𝑋𝑖,𝐺))
𝑋𝑖,𝐺, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (5)

where 𝑓 (𝑈𝑖,𝐺+1) is the fitness of the 𝑈𝑖,𝐺+1, and 𝑓 (𝑋𝑖,𝐺) is
the fitness of the 𝑋𝑖,𝐺.

IV. DIFFERENTIAL EVOLUTION BOX-COVERING (DEBC)
ALGORITHM

There are several kinds of algorithms which have been
applied to solve the box-covering problem. As we introduced
in Section.II, the box-covering problem can be transferred into
a graph coloring problem of its dual network. The deterministic
greedy graph coloring algorithm is widely used [10]. It is an
effective method, but it usually get results far from the global
optimum solution and easy to stuck in local optimum solution.
By evolutionary strategy which mentioned in Section.III, the
DE algorithm can avoid this drawback, and find the solution
close to global optimum. In this section, we present our DEBC
algorithm, which based on deterministic greedy graph coloring
algorithm.
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Fig. 2. Greedy graph coloring to ordered network. (a), We give each node in initial graph Φ a random number between [0, 1]. (b), We sort the nodes by the
numbers they have by ascending order and assign each node an Order-ID. (c). Construct the dual network Φ

′
with given box size ℓ𝐵 = 3. (d), We apply greedy

algorithm to the dual network Φ
′

following the order of nodes. That means each node only compare with nodes with smaller node Order-ID. (e) and (f), we
get 𝑁𝐵(3) = 4 differs from the result shown in Fig.1. It shows different node orders lead to different 𝑁𝐵 .

A. Individual Encoding on greedy algorithm

As shown in Fig.2, the order of the nodes in the graph
determines the minimum number of colors used to color a
graph [19]. Each individual represents a node order sample of
a graph. The individual of the population in DE algorithm
can be represented as 𝑋𝑖,𝐺 = {𝑥𝑖,1, 𝑥𝑖,2, ⋅ ⋅ ⋅𝑥𝑖,𝐷} , 𝑖 =
1, 2, ⋅ ⋅ ⋅ , 𝑁𝑃 , where 𝐺 denotes one generation, 𝐷 stands for
the number of the nodes in the graph, and 𝑥𝑖,𝐷 is a random
number within the interval [0, 1], which represents the order
of the D-th node. The pseudocode of the greedy coloring
algorithm is shown as Algorithm.1 [10].

B. Fitness definition and Main DEBC algorithm

The fitness of individual in DEBC is defined as equation(6):

𝐹𝑑𝑒𝑏𝑐(𝑋𝑖,𝐺) = 𝑁𝐵(𝑋𝑖,𝐺), (6)

where 𝑁𝐵(𝑋𝑖,𝐺) is the number of the colors needed to
color the individual𝑋𝑖,𝐺 by greedy coloring algorithm. In each
generation, we firstly use the crossover and mutation operators
to change the sequence of the vertices, then measure the fitness
of all individuals by greedy coloring algorithm, at last we select
the best sequence up to now by greedy selection strategy. The
pseudocode of DEBC algorithm is shown as Algortihm.2.

C. Complexity of DEBC algorithm

Among the three algorithm we applied, the fastest is the
greedy coloring algorithm, which has time complexity of
𝑂(𝑁2) on a network with 𝑁 nodes. And the required time
complexity of Schneider algorithm depends on the network
structure [14]. For tree networks it could be performed in
𝑂(𝑁3), while for regular networks it requires 𝑂(2𝑁 ).

Algorithm 1 Greedy Coloring Algorithm
Require: 𝑋𝑖,𝐺 is an vector that encodes a node order of a

network. 𝑁 is the number of nodes in the network. 𝑛 and
𝑗 are variables represent Order-ID of a node.

Ensure: minimum 𝑁𝐵(𝑋𝑖,𝐺)
1: Sort the value of 𝑋𝑖,𝐺 by ascending order, and assign a

unique Order-ID from 1 to 𝑁 to all nodes according to
the order of the nodes.

2: Assign a color 𝑐 = 0 to node with Order-ID 𝑛 = 1, create
a color set 𝑆𝑒𝑡𝑐, add 𝑐 = 0 to 𝑆𝑒𝑡𝑐.

3: for 𝑛 = 2 to 𝑁 do
4: Create a local color set 𝑆𝑒𝑡𝑛
5: for 𝑗 = 1 to 𝑛− 1 do
6: If node 𝑗 is connected with node 𝑛 in dual network

Φ
′
, add the colors of node 𝑗 to 𝑆𝑒𝑡𝑛.

7: end for
8: If set (𝑆𝑒𝑡𝑐−𝑆𝑒𝑡𝑛) contains colors, random select one

color from (𝑆𝑒𝑡𝑐 − 𝑆𝑒𝑡𝑛) to assign to node 𝑛; else if
(𝑆𝑒𝑡𝑐 − 𝑆𝑒𝑡𝑛) is empty, create a new color 𝑐, assign 𝑐
to node 𝑛 and add 𝑐 to 𝑆𝑒𝑡𝑐

9: end for
10: Count the colors in 𝑆𝑒𝑡𝑐, the number of colors is same as

box number 𝑁𝐵(𝑋𝑖,𝐺).

As for DEBC algorithm, the most time consuming step
is the fitness calculation. The time of fitness calculation is
divided to two parts: (1) sorting the individual 𝑋𝑖,𝐺, which
takes 𝑂(𝑁 log𝑁), (2) applying the greedy coloring algorithm,
which requires 𝑂(𝑁2). Thus, the time complexity of fitness
calculation is 𝑂(𝑁2). Therefore, the total computational time
of DEBC algorithm is

𝐺𝑚𝑎𝑥 ∗𝑁𝑃 ∗𝑂(𝑁2), (7)
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Algorithm 2 DEBC algorithm
Require: 𝐺 denotes the generation number, 𝑁𝑃 denotes the

number of population, 𝐹 denotes the control parameter in
the mutation step, 𝐶𝑅 denotes the control parameter in
the crossover step, and 𝐺𝑚𝑎𝑥 is the maximum generation.

Ensure: optimal 𝐹𝑑𝑒𝑏𝑐

1: Set 𝐺 = 0, 𝑁𝑃 , 𝐹 , 𝐶𝑅, ℓ𝐵 , and random initialize 𝑋𝑖,𝐺.
2: Find the dual network Φ

′
for given ℓ𝐵 by calculating the

all-pair shortest paths.
3: Calculate the fitness of each individual 𝐹𝑑𝑒𝑏𝑐(𝑋𝑖,0) by

greedy coloring algorithm
4: repeat
5: The Mutation phase:
6: for 𝑖 = 1 to 𝑁𝑃 do
7: 𝑉𝑖,𝐺+1 = 𝑋𝑟1,𝐺 + 𝐹 ∗ (𝑋𝑟2,𝐺 −𝑋𝑟3,𝐺) , 𝑟1 ∕= 𝑟2 ∕=

𝑟3 ∕= 𝑖.
8: end for
9: The Crossover phase:

10: for 𝑖 = 1 to 𝑁𝑃 do
11: 𝑈𝑖,𝐺+1 = (𝑢𝑖,1,𝐺+1, 𝑢𝑖,2,𝐺+1, ⋅ ⋅ ⋅ , 𝑢𝑖,𝐷,𝐺+1).
12: end for
13: Calculate the fitness of each individual 𝐹𝑑𝑒𝑏𝑐(𝑋𝑖,𝐺) by

greedy coloring algorithm
14: The Selection phase:

15: 𝑋𝑖,𝐺+1 =

{
𝑈𝑖,𝐺+1, 𝑖𝑓(𝐹𝑑𝑒𝑏𝑐 (𝑈𝑖,𝐺+1) ≤

𝐹𝑑𝑒𝑏𝑐 (𝑋𝑖,𝐺))
𝑋𝑖,𝐺, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

16: until (𝐺 > 𝐺𝑚𝑎𝑥)

where 𝐺𝑚𝑎𝑥 is the maximum number of generation and 𝑁𝑃
is the number of generation. In evolutionary algorithms, each
individual can be calculated independently. Thus, the parallel
processes can be applied to reduce the computational time to
𝐺𝑚𝑎𝑥 ∗𝑂(𝑁2).

V. EXPERIMENTS AND RESULTS

In order to show the effeteness of our DEBC algorithm, in
this section, we show the 𝑁𝐵(ℓ𝐵) results of DEBC algorithm
on 5 benchmark networks and compared the results with the
greedy graph coloring algorithm(greedy) [10] and Schneider’s
box-covering algorithm(Sch) [14]. Although we only apply
undirected, unweighted networks, this DEBC algorithm can be
easily extended to the directed and weighted networks [20].

A. Benchmark Networks

Here, we apply five benchmark networks with different
structures to show the structure independence of our DEBC
algorithm. The properties of benchmark networks are shown
in Table.I. Firstly, we apply the widely used biological network
E.coli, which has low clustering coefficient and high modular-
ity.

(1) The Escherichia coli network (E.coli): Protein-protein
Interaction network with 2859 proteins and 6890 interactions
between them [21].

In order to show the improvements of DEBC algorithm on
highly clustered coefficient networks, we apply the the Clus-
tered scale-free network, which has high clustering coefficient
and low modularity.

(2) The Clustered scale-free network (CSF): The mod-
ified Barabási-Albert model with high clustering coefficient
[22]. Here, the applied CSF network has 2003 nodes and 8000
edges.

Since the CSF network has low modularity. We also applied
three clustered community networks (the polbooks, dolphin,
and football networks) as follows. These community networks
have both high modularity and clustering coefficient.

(3) The Politics books network (polbooks): A network of
books about US politics with 105 books and 441 edges. Edges
between books represent frequent copurchasing of books by
the same buyers [23].

(4) The Dolphins network (dolphin): An social network
of 62 dolphins in a community. Edges represent frequent
associations between dolphins [24].

(5) The American football games network (football):
Football games between 115 colleges during season 2000 [25].
Each node represents a college football team and each edge
represents a match between two attached teams.

Table.I also illustrates the average improvement of Schnei-
der algorithm and DEBC algorithm compared with the
greedy box-covering algorithm. The 𝐴𝑣𝑔(Δ𝑁𝑆𝑐ℎ/𝑁𝑔𝑟𝑒𝑒𝑑𝑦)
and 𝐴𝑣𝑔(Δ𝑁𝐷𝐸𝐵𝐶/𝑁𝑔𝑟𝑒𝑒𝑑𝑦) are defined as the average of
relative improvements to the greedy box-covering algorithm at
all length scales of ℓ𝐵 . It shows DEBC algorithm gets better
average results than Schneider algorithm in all benchmark
networks, especially in clustered community networks.

These three algorithms have different box definitions: the
Schneider algorithm uses the radius (𝑟𝐵) to draw a box,
while the greedy algorithm and our DEBC algorithm use the
maximum shortest path (ℓ𝐵). The radius holds more strict
definition than box size ℓ𝐵 , which 𝑟𝐵 can be transferred to
ℓ𝐵 as ℓ𝐵 = 2𝑟𝐵 + 1. Due to the deference, the Schneider
algorithm is easy to fall into local optimum solution for
networks with both high clustering coefficients and modularity,
such as the political books network, the dolphin network, and
the football network. Therefore, the steady improvements of
DEBC algorithm in different kinds of networks shows that it
is independent of network structures.

B. Result Analysis

Here, we illustrate the results of minimum number of
boxes 𝑁𝐵(ℓ𝐵) to cover a network in different length scales
of ℓ𝐵 as equation (1). We compare 𝑁𝐵(ℓ𝐵) vs ℓ𝐵 results
of DEBC algorithm with greedy and Schneider algorithms.
The improvements of DEBC algorithm compared with greedy
algorithm (Δ𝑁𝐷𝐸𝐵𝐶) and Schneider algorithm compared with
greedy algorithm (Δ𝑁𝑆𝑐ℎ) are concerned.

1) Results on the E.coli network and CSF network: As
shown in Fig.3(a), for the E.coli network, both Schneider
algorithm and DEBC algorithm have significant improvement
than greedy algorithm for ℓ𝐵 < 9, except at ℓ𝐵 = 11
the Schneider algorithm is even worse than greedy algorith-
m. DEBC algorithm has slight improvement compared with
Schneider algorithm for ℓ𝐵 = 2, 6, 11.

The second network is Clustered Scale-free network. As
shown in Fig.3(b), both Schneider algorithm and DEBC algo-
rithm have significant improvement up to 17% than greedy
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TABLE I. PROPERTIES OF BENCHMARK NETWORKS AND AVERAGE IMPROVEMENTS OF DEBC AND SCH ALGORITHMS COMPARED WITH GREEDY

ALGORITHM

Networks 𝑁 Clustering Coefficient Modularity 𝐴𝑣𝑔(Δ𝑁𝑆𝑐ℎ/𝑁𝑔𝑟𝑒𝑒𝑑𝑦) 𝐴𝑣𝑔(Δ𝑁𝐷𝐸𝐵𝐶/𝑁𝑔𝑟𝑒𝑒𝑑𝑦)
E.coli 2859 0 0.604 0.34% 1.15%
CSF 2003 0.839 0.117 5.78% 6.09%
polbooks 105 0.488 0.527 -3.57% 7.48%
dolphins 62 0.522 0.303 -5.96% 11.61%
football 115 0.403 0.601 -60.71% 16.9%
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Fig. 3. (a),The E.coli Network and (b), the Clustered Scale-free Network: Comparison of the minimal number of boxes 𝑁𝐵(ℓ𝐵) for a given box size ℓ𝐵 using the
greedy coloring algorithm, Schneider algorithm and DEBC algorithm. The two parameters Δ𝑁𝑆𝑐ℎ = 𝑁𝑔𝑟𝑒𝑒𝑑𝑦−𝑁𝑆𝑐ℎ and Δ𝑁𝐷𝐸𝐵𝐶 = 𝑁𝑔𝑟𝑒𝑒𝑑𝑦−𝑁𝐷𝐸𝐵𝐶

show the improvement of Schneider algorithm and DEBC algorithm compared with greedy algorithm, respectively. The straight line in (a) shows the power law
fit of fractal dimension. The insets show the relative improvements Δ𝑁/𝑁𝑔𝑟𝑒𝑒𝑑𝑦 , which gives a more clear view of the improvements.

algorithm for ℓ𝐵 < 9. The DEBC algorithm has slight
improvement compared with Schneider algorithm for ℓ𝐵 = 2,
and has 3% improvement for ℓ𝐵 = 4.

2) Results on clustered community networks: Due to the
different box definitions, we find the Schneider algorithm
can not get optimal results in clustered community networks.
In this kind of situation, DEBC algorithm shows significant
improvement compared with both greedy algorithm and the
Schneider algorithm. Here, we apply the three algorithms on 3
community networks: the political books network, the dolphin
network, and the football network.

As shown in Fig.4(a) inset, for political books network, the
Schneider algorithm is worse than greedy algorithm for ℓ𝐵 =
2, 4 as illustrated by Δ𝑁𝑆𝑐ℎ < 0. In contrast, DEBC algorithm
shows steady improvement up to 33% compared with greedy
algorithm for ℓ𝐵 < 6.

For the dolphin network, as shown in Fig.4(b), the Schnei-
der algorithm is worse than greedy algorithm for ℓ𝐵 = 4, 9
as illustrated by Δ𝑁𝑆𝑐ℎ < 0. Instead, DEBC algorithm
shows steady improvement up to 33.3% compared with greedy
algorithm for ℓ𝐵 < 8.

The last network is the football network. As shown in
Fig.4(c), the Schneider algorithm is worse than greedy algo-
rithm from ℓ𝐵 = 2 to ℓ𝐵 = 6 as illustrated by Δ𝑁𝑆𝑐ℎ < 0.
However, DEBC algorithm shows steady improvement up to
45% compared with greedy algorithm for ℓ𝐵 < 5.

C. Discussion

It is interesting that the improvement made by the Schnei-
der algorithm and DEBC algorithm does not affect the frac-
tality of networks. As the fractal dimension 𝑑𝐵 varies a little
within the tolerance. For the E.coli network, the best-fit of
fractal dimension changes from 𝑑𝐵 = 3.47±0.11 ( for greedy
algorithm) to 𝑑𝐵 = 3.45± 0.10 (for Schneider algorithm) and
𝑑𝐵 = 3.44± 0.09 (for DEBC algorithm).

Our experiments show that DEBC algorithm converges
within a small number of generations. As shown in Fig.4(d),
we pick one length scale ℓ𝐵 for four benchmark networks, the
results show that DEBC algorithm converges within the 70
generations. Due to the size of search space, the convergent
rate of DEBC algorithm is inverse proportion to ℓ𝐵 , which
means the DEBC algorithm coverage faster with bigger ℓ𝐵 .
Nevertheless, all our results in this paper are reached within
5000 generation with population 𝑁𝑃 = 40. In our experi-
ments, we define the mutation control parameter 𝐹 = 0.9 and
crossover probability 𝐶𝑅 = 0.85. And, we found that making
some adjustments of these two parameters have no obvious
influence on the final results.

Moreover, further research is needed to minimize the search
space of DEBC algorithm by reducing the unnecessary search
paths. From the evolution process of DEBC algorithm, we can
learn which kind of boxes are most likely to included in the
global best solution. The patterns of the most likely boxes
could help us redesign our algorithm, so that it can quickly
adjust to the environments.
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(a) The Politics books network
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(b) The Dolphin social network
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(c) The American football games network
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Fig. 4. (a),(b) and (c), Result comparisons of the minimal number of boxes 𝑁𝐵(ℓ𝐵). Applying the greedy coloring algorithm, Schneider algorithm and DEBC
algorithm to the Politics books network, the Dolphin social network and the Clustered Scale-free network, respectively. (d),The convergent rates of our DEBC
algorithm in one length scale ℓ𝐵 of four benchmark networks. The X axis is the number of generations, and Y axis is the logarithmic of fitness.

VI. CONCLUSIONS

In this paper, we proposed a differential evolution box-
covering algorithm (DEBC) to search for the minimum number
of boxes to cover a network. We compared DEBC algorithm
with the classical greedy graph coloring algorithm and a
state of art Schneider box-covering algorithm. Our DEBC
algorithm has a significant and steady improvement compared
with the greedy graph coloring algorithm. It also get similar
results with Schneider algorithm in most cases. Especially in
clustered community networks, DEBC algorithm has obvious
improvement compared with the Schneider algorithm. More-
over, due to the robustness of fractal networks, this work
has practical significance on communication and transport
networks construction, which have optimization objectives on
robustness of the networks.
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