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Abstract— The definition of computational methodologies
for the inference of molecular structural information plays a
relevant role in disciplines as drug discovery and metabolic
engineering, since the functionality of a biochemical molecule
is determined by its three-dimensional structure. In this work,
we present an automatic methodology to solve the Molecular
Distance Geometry Problem, that is, to determine the best three-
dimensional shape that satisfies a given set of target inter-atomic
distances. In particular, our method is designed to cope with
incomplete distance information derived from Nuclear Magnetic
Resonance measurements. To tackle this problem, that is known
to be NP-hard, we present a memetic method that combines
two soft-computing algorithms – Particle Swarm Optimization
and Genetic Algorithms – with a local search approach, to
improve the effectiveness of the crossover mechanism. We show
the validity of our method on a set of reference molecules with
a length ranging from 402 to 1003 atoms.

I. INTRODUCTION

THE determination of molecular structures is of great
interest both in Chemistry and Biology, since the three-

dimensional (3D) shape of a molecule is the main determinant
of its function. In many contexts, such as drug discovery,
metabolic engineering and catalysis, structural information is
essential to understand and control the behavior of a molecular
system. The great majority of structural data available today
arise from two experimental techniques: X-ray crystallography
and Nuclear Magnetic Resonance (NMR) [1]. NMR exploits
the magnetic properties of the nucleus of isotopes (as 1H,
13C and 31P) to identify spatial neighborhood relationships
between chemical groups, which are generally given in
the form of a matrix of inter-atomic distances. When this
technique is applied to molecules of significant size and with
a complex 3D shape, the resulting distance matrix is both
sparse and noisy due to technical limitations of NMR. This is
exactly the case of proteins, an ubiquitous class of biological
molecules characterized by a great variability in shape and
size. The Molecular Distance Geometry Problem (MDGP)
consists in reconstructing the 3D structure of a molecule
starting from its (sparse) distance matrix; the MDGP problem
is a special case of the Distance Geometry Problem (DGP) [2]
in which the distance matrix is obtained from NMR analysis.
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The peculiarity of the MDGP relies on the availability of
additional constraints on the inter-atomic distances in the 3D
structure, which can be defined according to the chemical
and physical properties of the class of molecules under
investigation.

In the case of incomplete information in the distance matrix,
the MDGP was shown to be NP-hard [3] by reducing a 1-
dimensional MDGP to the SUBSETSUM problem [4]. Several
different approaches to the MDGP have been proposed in
recent years, but they all suffer from limitations. For instance,
the geometric buildup [5] is unable to find a solution to the
problem for some cases of sparse distance matrices; the branch
and prune algorithm [6], [7] has an exponential computational
time; ABBIE [8], EMBED [9] and DGSOL [10] algorithms
allow to obtain only approximate solutions to the MDGP.

In order to overcome some limitations of the existing
methodologies for the MDGP, and considering that some
problems of the NP class can be efficiently tackled by
means of soft-computing and population-based algorithms,
in this work we propose a memetic algorithm (MA) [11]
that combines swarm intelligence [12] and evolutionary
computation [13], together with a local search algorithm.
In particular, we combine the swarm-based optimization
of Particle Swarm Optimization (PSO) with the crossover
capabilities of Genetic Algorithms (GAs).

In our methodology, a swarm intelligence is used to
move atoms belonging to a candidate solution (i.e., a 3D
molecular structure) within the search space. Each solution is
characterized by a different position of atoms, whereby even
solutions with the same fitness value can have atoms with a
completely different position due to roto-translations of the
whole structure. A crossover operator, typically employed in
GAs, is used to exchange substructures between candidate
solutions; in this context, a local optimization method is
exploited to find the optimal roto-translation of the exchanged
substructure within the offspring solution. Besides the inter-
atomic distance matrix, our memetic algorithm makes use
of additional constraints: (i) the size of the search space
where particles move is bounded according to the number of
amino-acids of the target protein; (ii) we consider molecular
chirality, a property of asymmetry that is imposed to protein
structures during the optimization process.

To the best of our knowledge this work represents the
first attempt to solve the MDGP by exploiting evolutionary
computation techniques only. We show that our method is
able to find good solutions to the MDGP in case of sparse
matrices with exact distance constraints, even by considering
only inter-atomic distance values smaller than 6Å.
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The paper is organized as follows. In Section II we give
the formal definition of the MDGP with exact distances.
In Section III our method for the solution of MDGP with
incomplete information is explained in detail. In Section IV
results are shown for a set of ten protein structures of different
size. In Section V we discuss the significance of our method
and describe some directions for future research.

II. THE MOLECULAR DISTANCE GEOMETRY PROBLEM

The MDGP can be formulated as follows. Let N be the
number of atoms in a protein π, and let dij ∈ R+ be the
given distance between atoms i and j, with i, j = 1, . . . , N
and i 6= j, measured according to some computational or
experimental methodology (e.g., NMR). These distances can
be arranged into a real-valued N × N matrix d, such that
dij is the value in the i-th row and j-th column in d.

If we denote by ai the 3D coordinate vector of atom i
in the Euclidean space, i.e., ai = (xi, yi, zi) ∈ R3 for each
i = 1, . . . , N , then the value dij will formally correspond
to the Euclidean norm between the two atoms, i.e., dij =
‖ai − aj‖ =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2; note

that, anyway, these coordinate vectors are unknown.
The MDGP consists in finding the set of coordinate vectors

a1, . . . ,aN of all atoms in π, such that the Euclidean norm
Dij = ‖ai−aj‖ between any pair of atoms i and j – evaluated
according to these coordinates – is equal to the measured
distance dij . Formally, the MDGP is solved if Dij = dij for
all i, j = 1, . . . , N , i 6= j.

Several approaches to MDGP have been proposed in recent
years. Dong and Wu introduced a linear time algorithm,
called “geometric buildup”, to solve the 3D-DGP when
the exact value of distances between all pairs of atoms
are given [5]; recently, this approach has been extended in
order to obtain an approximate solution for the MDGP with
noisy distance values and sparse matrices [14], [15]. The
main limitation of the geometric buildup strategy is that in
the case of sparse matrices and, in particular, when some
atoms are characterized by less than four distance constraints,
this method is unable to find any solution. However, to
overcome this limitation, it is possible to consider additional
distance constraints arising from structural features of proteins,
or using optimization algorithms [16], to reconstruct the
complete molecular structure from a partial substructure
obtained with the geometric buildup algorithm.

A branch and prune algorithm was proposed in [6], [7]: by
exploiting additional constraints about the protein structures,
this method considers a discrete search space in which the
amino-acids can be placed only in two different positions
with respect to their precursor in the protein structure. This
algorithm has an exponential time complexity, however it
is able to efficiently find solutions for some instances that
satisfy particular structural properties.

There exist two approaches based on graph embedding [17]
in 3D Euclidean space, able to deal with both noisy data and
sparse matrices. The first one, called ABBIE algorithm [8],
exploits a divide and conquer strategy and structural rigidity
[18]; this method first identifies subproblems (i.e., subsets of

nodes) that can be solved with an exact algorithm, then it
applies a global optimization algorithm to combine partial
solutions. The second one, called EMBED algorithm [9], uses
the measured distances to derive a set of lower and upper
bounds for all other distances; this requires the identification
of the shortest path between each couple of nodes in a
particular bigraph in order to derive triangle inequality limits
[19]. A local optimization strategy is then applied to refine
the solution obtained from the complete bounds set.

Finally, the DGSOL algorithm [10] combines a methodol-
ogy to select good starting points for the optimization process
with the Gaussian smoothing and continuation strategy [20], a
technique used to reshape the objective function. So doing, a
gradient minimization can be applied to the obtained smooth
function in order to optimize the protein structure. The main
limitation of DGSOL is that it provides only approximate
solutions in presence of noisy information and sparse matrices.

III. METHODS

A candidate solution of the MDGP can be encoded as a
vector Π = (a1, . . . ,aN ) of 3D coordinates, representing
the positions of all atoms of protein π in the Euclidean
space. This representation can be exploited by a traditional
evolutionary methodology as GAs, with genetic operators
specifically designed to work on candidate solutions encoding
real values [21]. Even though GAs might be a feasible
methodology for MDGP, swarm intelligence techniques like
PSO are generally more suitable than GAs, since they
natively optimize real-valued problems [22]. Nevertheless,
the crossover operator of GAs – which exchanges the genetic
material of two promising individuals to create an improved
offspring generation – is an elegant and powerful means to
obtain a recombination of individuals and a better exploration
of the search space. Thus, in this work we propose a hybrid
methodology which combines the swarm-based optimization
of PSO with the crossover capabilities of GAs. Crossover, in
this case, implements the exchange of a subset of atoms
between individuals, i.e., substructures of the candidate
solutions. We define a substructure σ = (i1, . . . , iK), K ≤ N ,
as the vector of indexes corresponding to a subset of atoms
positions (ai1 , . . . ,aiK ) of solution Π.

During the PSO optimization phase, the atoms belonging to
each candidate solution move inside the search space and can
be placed in completely different positions, so that even if two
individuals are characterized by the same fitness value they
might be rotated or translated with respect to each other in
the 3D space. As a consequence, the crossover operator might
move a substructure from an individual into another in such a
position that the new (offspring) molecule will have a worse
fitness value, because of an uncontrolled scattering of atoms.
To reduce this potentially deleterious impact of crossover,
we also perform a local optimization by means of a steepest
descent algorithm aimed at optimizing the roto-translation
that must be applied to the substructure. Global optimization
methods coupled to local search are called memetic algorithms
[11], thus we define our methodology as a Memetic Hybrid
PSO plus GAs (MemHPG).
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In what follows we provide a brief description of PSO and
GAs, in order to clarify which mechanisms of both techniques
are involved in our novel hybrid methodology. Finally, we
provide a global definition of MemHPG.

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a heuristic inspired
by the collective movement of birds and fish [22]. PSO
exploits a set (the swarm) of N candidate solutions (the
particles), which move inside a M -dimensional bounded
search space in a collective effort to find the global optimal
solution to a specified problem. At each iteration step t
of the PSO, each particle is characterized by two vectors:
the position xi(t) ∈ RM and the velocity vi(t) ∈ RM . In
the most common formulation, the movement of the i-th
particle is a consequence of two attractors: the best position
found by the swarm (g) and the best position found by the
particle itself (bi). Both attractions are perturbed by means of
vectors of random numbers (r1 and r2) sampled with uniform
distribution in [0,1], in order to avoid the entrapment in local
minima; in addition, they are multiplied by two constants
called social (csoc) and cognitive (ccog) factors. Hence, the
velocity update formula for PSO is

vi(t+ 1) = w · vi(t) + csoc · r1 ◦ (g − xi(t)) + (1)
+ ccog · r2 ◦ (bi − xi(t)) ,

where w ∈ R+ is an inertia weight factor, used to damp the
velocity. Moreover, the intensity of the velocity is generally
clamped to a maximum value vMAX ∈ R+, before the particles
positions are updated according to

xi(t+ 1) = xi(t) + vi(t+ 1). (2)

Note that, as a consequence of their position update, particles
might move outside the search space; to avoid this problem,
in this work we consider the “absorbing” boundary conditions
strategy described in [23].

Thanks to the collective movement of particles, PSO
eventually converges to an optimal solution. The algorithm
is stopped when a halting criterion is met, e.g., after a fixed
number of iterations.

B. Genetic Algorithms

GAs were introduced by Holland in 1975 [24] as a global
search methodology inspired by the mechanisms of natural
selection. GAs exploit a population P 0 composed of Q
randomly created individuals that are usually defined as
fixed-length strings (over a finite alphabet) that represent
solutions of the problem under investigation. The individuals
of the population undergo an iterative process whereby three
genetic operators (selection, crossover, mutation) are applied,
according to a given fitness function, to simulate the evolution
process which results in a new population P 1 of possibly
improved solutions.

During the selection process, individuals from P 0 are
chosen and inserted into P 1 using some fitness-dependent
sampling procedure [25]. Among the existing strategies, in

this work we exploit the “tournament selection”, in which
a subset of 2 ≤ q ≤ Q individuals of population P 0 is
randomly chosen and the individual having the best fitness
is copied into the new population P 1. Once Q individuals
have been selected, the crossover operator is used to combine
promising parent individuals into new and improved offspring,
which are collected into a third population P 2. Finally, in
GAs, the mutation operator is used to perturb the encoding
of individuals in P 2, allowing a further exploration of the
search space.

After the application of genetic operators, individuals of
P 0 are substituted by those in P 2 and the process iterates
until a halting criterion is met, e.g., after a fixed number of
generations.

C. A Memetic Hybrid Methodology for MDGP (MemHPG)

The hybrid algorithm we propose for the MDGP combines
the emergent, self-organizing behavior of swarms with the
strength of crossover-based recombination. In MemHPG, the
self-organization is performed by a modified version of PSO
which is used to arrange the atoms in the search space of
a candidate structure; the crossover, on the other side, is
applied to a population of independent candidate structures,
to exchange their optimal substructures. As a matter of fact,
our hybrid algorithm works on two layers: the inner layer of
atoms (hereby called the PSO-layer) and the outer layer of
molecule structures (the GA-layer) (Figure 1).

Outer layer: genetic algorithm population

Inner layers: atoms self-organization by means of PSO

Fig. 1. Schematization of the two-layer hybrid methodology. In the outer
layer, a population of candidate solutions exchange promising substructures
exploiting GAs crossover, while each candidate solution evolves in the inner
layer by means of PSO.

PSO-layer. In our modified version of PSO, we use a single
particle for each atom, so that the position xi of the i-th
particle here corresponds to the 3D Euclidean coordinate
vector ai of the i-th atom of protein π (thus, M = 3).
Therefore, in this particular formulation, particles do not
represent a solution to the MDGP problem; instead, they
represent a solution for the sub-problem of identifying the
optimal spatial positioning of atoms. The size of the search
space for particle positioning was defined according to the
number A of amino-acids in protein π (which is known
a priori), considering the notion of radius of gyration of
proteins [26] (whose upper bound was identified as A3/5).
In MemHPG, the best setting for the search space was
empirically found to be 4 · A3/5Å for each dimension in
the 3D Euclidean space.

The initial position of particles is randomly generated
within the search space, except for the particle corresponding
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to the first atom in π which is placed in position (0, 0, 0) and
kept fixed during the optimization. The rationale behind this
choice is that, by keeping one particle fixed, the rest of the
swarm is constrained to self-organize around it, thus reducing
the chaoticity of the overall movements.

Once particles are distributed in the search space, we
calculate an error ε to estimate the precision of the cor-
responding candidate solution, considering only the given
distance constraints dij , without any additional knowledge
about the original structure:

ε =

∑N
i=1

∑N
j=1 gij∑N

i=1 ki
, (3)

where

gij =

{
0 if dij is not given
|Dij − dij | otherwise, (4)

and the value ki denotes the number of atoms j 6= i in π for
which a distance value dij is given. Since Equation 3 allows
to discriminate the quality of solutions, we exploit it as the
fitness function.

At each step of the PSO procedure in MemHPG, each
particle considers a novel kind of attractor, named the
aggregate attractor and denoted by hi(t) ∈ R3, which is
calculated by comparing the distance between the coordinate
vectors of all other atoms in the candidate solution (Dij)
against the distance measured with NMR experiments (dij):

hi(t) =
∑
j 6=i

δij
Dij

(aj(t)− ai(t)), (5)

where δij = Dij−dij is used to weight the attraction between
the atoms, so that the contribution to the aggregate attractor of
atoms whose distance Dij is close to the measured distance
dij will be reduced. It is worth noting that the aggregate
attractor hi can be seen as a linear combination of N − 1
“global” attractors of particle ai, each one with a different
social factor equal to δij .

When two atoms are farther than expected, they act as
mutual attractors; on the contrary, when the atoms are closer
than expected, they behave as repulsers. Figure 2 provides two
examples of this mechanism, represented in the x-y projection
plane for the sake of simplicity. According to Equation 5,
the aggregate attractor for atom i is calculated as the sum
of all attractive/repulsive contributions of all other atoms
j 6= i; in Figure 3 we show an example which considers the
aggregation of the contributes due to two atoms.

In order to consider only this new attractor in our modified
version of PSO, Equation 1 is modified as follows:

vi(t+ 1) = w · vi(t) + r ◦ hi(t), (6)

where r is a vector of random numbers uniformly sampled
in [0,1].

Once the putative velocity vi(t + 1) is calculated, its
velocity is clamped, i.e., if ||vi(t+ 1)|| > vMAX then

vi(t+ 1) =
vi(t+ 1)

||vi(t+ 1)||
· vMAX

a1

a2

NMR distance d12

Attraction strength

a1

a2

NMR distance d12

Repulsion strength

X X

(a) (b)

YY

D12

D12

Fig. 2. Example of the attraction/repulsion mechanism of our modified
PSO. For the sake of clarity, only the vectors for particle a1 are shown. (a)
When the distance between two atoms (the red arrow between a1 and a2) is
larger than the one measured by NMR (pink arrow), the atoms attract each
other (dashed yellow arrow). (b) When the distance between the two atoms
is smaller than the distance measured by NMR, the atoms act as repulsers.
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1
0
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Z
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2

1

0

1

2

3

a1

a2a3

Candidate solution distance D12

Candidate solution distance D13

NMR distance d12

NMR distance d13

Aggregate vector

Fig. 3. Example of calculation of the aggregate attractor for particle a1,
in a 3-atoms system. The length of the red arrows represents the distance
between particles a1 and a2 according to the candidate solution (dark red)
and to NMR data (light red): since the latter is shorter than the former, a2

acts as an attractor for a1. The length of the green arrows represents the
distance between particles a1 and a3 according to the candidate solution
(dark green) and to NMR data (light green): since the latter is longer than
the former, a3 acts as a repulser for a1. The resulting aggregate attractor h1

is represented by the blue vector. The same process is applied to particles
a2 and a3 (not shown here).

and the position ai(t+ 1) is updated according to Equation 2.
During the last generations of MemHPG, the finer positioning
of atoms in the candidate structures requires smaller and more
controlled movements with respect to the initial phases. For
this reason, our methodology self-adapts the vMAX(t) value as
follows:

vMAX(t) =

{
α · vMAX(t− 1) if ε∗(t) > ε∗(t− 1)
vMAX(t− 1) otherwise,

where ε∗(t) ∈ R+ represents the smallest error value among
all particles at generation t and α ∈ (0, 1) is the velocity
adaptation factor. The iterative update of velocity vectors,
calculated according to the aggregate attractor, allows the set
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of atoms to self-organize in a single optimal position. The
inertia weight and the randomness due to r allow particles
to avoid a chaotic behavior and local optima.

GA-layer. To help the convergence to an optimal solution,
we introduce a second layer by instantiating Q multiple inde-
pendent candidate solutions, which constitute the population
of a GA. In this work, we do not exploit the mutation operator,
which is conceptually realized by PSO: our GA performs
tournament selection and crossover only. These operators are
applied every Iχ iterations, and work together to generate the
offspring population.

The functioning of the GA-layer is summarized in the
following steps:

• a subset P 0
TOUR ⊂ P 0 of q individuals, 1 < q < Q, is

sampled using a uniform distribution;
• the best individual PBEST ∈ P 0

TOUR is deterministically
identified (according to the fitness values) and copied
into the new population P 1;

• for each atom i, such that ai ∈ PBEST, a substructure σi
is identified as explained below and inserted in a set Σ;

• one element σ ∈ Σ – that is, a protein substructure – is
chosen with a probability proportional to its length (i.e.,
the number of atoms in σ);

• one individual PRND is randomly chosen from P 0
TOUR \

PBEST with a uniform probability;
• the atoms in the substructure σ are positioned into

individual PRND according to the best roto-translation
(as explained below), thus replacing the corresponding
atoms and generating a new individual PσRND;

• finally, PσRND is inserted into population P 1 and the
velocities of its particles are set to zero.

This procedure is repeated until |P 1| = Q; then, P 1

replaces P 0.
The substructures in Σ are chosen as follows. For each

atom i in PBEST, a substructure σi is determined according
to the following greedy algorithm:

• atom i is inserted in σi;
• find atom j, j 6= i, such that |δij | = min{|δik| | k =

1, . . . , N, k 6= i}. If |δlj | < ϕmin, for each l ∈ σi and
l 6= j, then add atom j to σi; otherwise stop, as the
substructure cannot be extended.

The value ϕmin is defined as ϕmin = min{ϕi | i = 1, . . . , N},
where ϕi = 1

N

∑
j 6=i |δij |. The procedure is iterated until no

more atoms can be inserted in σi or its length reaches a given
value sizeMAX, that corresponds to a fixed percentage of the
total number of atoms in π.

Since the chosen substructure σ can be oriented and
translated in space in any possible way, we optimize its
positioning in PRND: the crossover embeds a local search
optimization to identify the best roto-translation of σ with
respect to its surrounding atoms in PRND. More precisely,
this is done by first calculating the centroid of σ and of the
corresponding subset of atoms that will be replaced in PRND,
and then exploiting a gradient descent method to identify
an optimal translation vector t = (tx, ty, tz) and an optimal

rotation vector θ = (θx, θy, θz) with respect to these centroids
which minimize the impact to the aggregate attractor.

After the crossover process, the PSO starts again. In
addition, every 50 iterations of MemHPG the chirality1 of can-
didate solutions is verified, since the information contained in
the distance matrix is not sufficient to discriminate between a
correct reconstructed molecule and molecules with a different
chirality. For space limits, we do not provide a detailed
description of this procedure; briefly, for each candidate
solution we identify the substructures whose chirality is not
correct, and we modify them by means of matrix operations
implementing rotations and reflections in the Euclidean space,
according to the tetrahedral geometry of the chemical bonds
of the chiral carbons. This procedure is performed after
each crossover process. When the chirality verification is
completed, the PSO starts again.

MemHPG stops when a user-defined termination criterion
is met, i.e., after a fixed number of iterations IMAX.

IV. RESULTS

In this section we present the results obtained by MemHPG
for the reconstruction of the 3D structure of different proteins.
At first, we performed several tests to determine the influence
of the values of PSO and GA parameters on the reconstruction
process, in order to find the best settings of MemHPG that
were then exploited in all experiments.

These tests consisted in the variation of a single parameter
at a time in the optimization process of an in silico generated
3-peptide molecule with a length of N = 56 atoms. For
each parameter, each test was repeated 30 times, and the
average smallest error achieved with the different MemHPG
parameterizations was used to evaluate the influence of that
parameter. All preliminary tests, were performed with IMAX =
2000, unless otherwise specified.

In the first test we analyzed the impact of the population
size Q, by considering the following values: 32, 64, 128, 256
individuals. As expected, the average smallest error achieved
decreases as the population size increases (data not shown);
however, for Q > 32, the improvement of the solutions
quality is so slight that it does not justify the larger use of
computational resources that it would require. Therefore, the
value used in all consecutive tests was set to Q = 32.

In the second test we analyzed the impact of different
values for the coefficient γ used to clamp the particles initial
maximum velocity, i.e., vMAX = DMAX/γ, where DMAX is equal
to the diagonal length of the search space. As shown in Figure
4, the best results were achieved when γ = 10, while smaller

1Chirality is a property related to a lack of symmetry that regards organic
molecules such as amino-acids; we observe chirality when a carbon atom
is bound to four different chemical groups (these carbon atoms are called
chiral carbons) [27]. For each protein substructure composed of one chiral
carbon and the atoms bound to it, two different but isometric conformations
are possible; therefore, we must apply a geometric transformation to adjust
the right positioning of atoms in order to impose the specific conformation
of these groups, that is typical of protein molecules [28]. The subset of
atoms that can lead to a wrong reconstruction can be identified a priori by
analyzing carbon atoms and their bound chemical groups.
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values (e.g., γ = 1) and higher values (e.g., γ > 500) lead
to worse results.
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Fig. 4. Average smallest error computed over 30 runs of MemHPG varying
the coefficient γ in vMAX = DMAX/γ. The best results were achieved with
γ = 10; note that both high and small values for the maximum velocity of
particles lead to higher values of the average smallest error.

The third test consisted in varying the adaptive velocity
factor α. In Figure 5 we show the average smallest error
obtained with 30 runs of MemHPG with several values of
factor α. In this test, where IMAX = 4000, the best results
were obtained with α = 0.999, even if smaller values of this
factor allowed a faster convergence.
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Fig. 5. Average smallest error computed over 30 runs of MemHPG varying
the adaptive velocity factor α. Even though for α equal to 0.9 or 0.99 we
obtained a faster convergence, the value α = 0.999 allowed to achieve the
best results.

A further test concerned the influence of the inertia weight
on the particles velocity; in particular, we varied the w value
in the range [0, 1] and the best result was achieved with
w = 0.4. Similarly to the case of vMAX, both higher and
smaller values of the inertia weight lead to higher values of
the average smallest error (data not shown).

The last three tests aimed at finding the best setting for the
tournament size, the crossover frequency and the maximum
length allowed for a substructure involved in the crossover
operation. The best tournament size value was identified
around 10% of the population size Q, in order to have
a high selection pressure able to maintain the population
diversity throughout the generations. The crossover frequency
was set to Iχ = 50, meaning that every 50 generations the
individuals undergo this operator. We observed that, despite
the crossover improves the average quality of the candidate
solutions, increasing its application frequency worsen the
fitness of individuals (data not shown). Finally, the maximum
length allowed for a substructure involved in the crossover
operation was set to sizeMAX = 15% of the total number of
atoms in π (for higher values better results can be achieved,
but the improvement of the fitness is not enough to justify the
larger use of computational resources that it would require).

The results of these preliminary tests led to the following
best parameter settings for MemHPG:
• population size Q = 32 individuals;
• initial vMAX = DMAX/10;
• adaptive velocity factor α = 0.999;
• inertia weight w = 0.4;
• tournament size q = 4 individuals;
• crossover interval Iχ = 50 generations;
• sizeMAX = 15%.
To test the validity of this setting of MemHPG we first

reconstructed the 3-peptide molecule by using incomplete
information. This was realized by removing from matrix
d the distance values dij that are above a given cutoff. As
shown in Figure 6, the average smallest error of the structures
reconstructed by MemHPG is below 10−4Å also in the case
of a matrix d where dij < 6Å for all i, j = 1, . . . , N .

0 250 500 750 1000 1250 1500 1750 2000
Generation

10-5

10-4

10-3

A
v
e
ra

g
e
 S

m
a
lle

st
 E

rr
o
r 

[
]

<11

<10

<9

<8

<7

<6

Fig. 6. Average smallest error of solutions to the 3-peptide molecule
obtained in different optimization processes with incomplete information of
inter-atomic distances. Note that, by exploiting only distances dij < 6Å,
we still achieved an error lower than 10−4Å with respect to the original
structure.

To show the effectiveness of our methodology, in Table I
we present the results obtained from the reconstruction of the
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TABLE I
RESULTS OF THE RECONSTRUCTION OF PROTEIN STRUCTURES WITH

MEMHPG USING ONLY DISTANCES dij < 6Å OR dij < 7Å

dij < 6Å dij < 7Å
PDB ID N ε [Å] RMSD [Å] ε [Å] RMSD [Å]
1PTQ 402 0.152 1.23 0.019 0.08
1CTF 487 0.180 1.46 0.037 0.18
1RGD 548 0.149 1.24 0.014 0.04
1HOE 558 0.172 1.63 0.130 1.7
1LFB 641 0.206 2.21 0.254 2.08
1F39 767 0.278 3.25 0.090 0.93
1PHT 814 0.291 2.02 0.123 1.86
1POA 914 0.056 0.99 0.074 1.26
1AX8 1003 0.092 2.27 0.075 1.59

structure of 9 proteins of increasing length – taken from the
PDB database [16], [29] – using only inter-atomic distances
dij < 6Å or dij < 7Å. In particular, for each protein, we
indicate the error ε (defined in Section III) and the Root Mean
Square Deviation (RMSD) [30] of the best structures found
by MemHPG after IMAX = 20000 iterations. These results
highlight the robustness of our method since the ε value is
low in all cases and, in addition, the RMSD is always lower
than 3.5Å, a value that is considered to be indicative of a
good reconstruction of protein structures [31].

In Figure 7, we show the structural alignment, realized
with PyMOL [32], of the protein structures obtained with
MemHPG (using inter-atomic distances below the 6Å cutoff)
with the structures available in the PDB database. In the case
of proteins 1AX8, 1HOE and 1CTF we obtained a perfect
alignment between the protein structure; however, concerning
protein 1F39, there is a slight discrepancy between the correct
structure and the one obtained with MemHPG, probably due
to an error in the reconstruction of a small portion of the
protein (as better explained in the caption of Figure 7), while
the overall structure is preserved also in the unaligned region.

V. CONCLUSIONS

In this paper we proposed an efficient method to solve the
Molecular Distance Geometry Problem when only incomplete
information about inter-atomic distances is available. Our
methodology, called MemHPG, is a memetic algorithm that
combines swarm intelligence and evolutionary computation
along with a local search aimed at improving the effectiveness
of the crossover operator. MemHPG works at two different
levels: the PSO-layer is used to move particles in the 3D space,
where each particle encodes the coordinates of an atom of the
protein structure to be reconstructed; the GA-layer is exploited
to select individuals, and to recombine them by means of
a crossover operator that exchanges substructures between
individuals. The crossover – aided by a local search method
used to identify the best roto-translation of the exchanged
substructure – is followed by a chirality correction, in which
the correct orientation of amino-acids is verified and adjusted.

MemHPG was tested on a set of proteins having a number
of atoms ranging from 402 to 1003; in all cases we obtained
a correct 3D structure, as confirmed by the values of RMSD
(see Table I). Indeed, our results indicate that the accuracy

achieved by MemHPG is comparable, and in some cases even
better, to the accuracy achieved by state-of-the-art methods
[15], [33]. This is a remarkable result since MemHPG relies
on (incomplete) distance matrices and general features of
protein structures, while the other methods require additional
a priori assumptions about proteins to achieve good results.
Moreover, two additional advantages of our method reside in
its intrinsic stochasticity and extensibility: on the one hand,
the various reconstructed structures (with low error values)
that can be obtained in each run of MemHPG are useful
to represent the structural variability observed in biological
molecules, which is a source of noise in NMR data; on the
other hand, MemHPG can be easily improved by including a
molecular force field in the scoring function during the final
stages of the optimization process, in order to select structural
models that are more realistic from a physical point of view.

MemHPG evaluates the fitness of each candidate solu-
tions by calculating the mutual distances between its atoms
positions; therefore, the computational complexity of this
method is O(N2). Moreover, since we exploit a population
of candidate proteins, the complexity linearly scales to
O(Q·N2). Nevertheless, all calculations of our method can be
straightforwardly accelerated using a parallel architecture. We
are considering a new implementation of MemHPG according
to the general-purpose GPU computing paradigm, so that by
launching Q ·N threads we can assign a specific thread to
each atom of each candidate solution, strongly reducing the
complexity down to O(N) on GPU-equipped machines. Even
though a parallel architecture may accelerate the execution
of MemHPG, an efficient non-sequential implementation of
our crossover mechanism is far from trivial and currently
under investigation. Since we rely on incomplete distance
information, multiple runs of our methodology may yield a
set of different optimal conformations: GPU acceleration will
allow us to collect statistical information about the potential
structures of the analyzed protein. Finally, we described in
Section IV how the average error decreases as we increase
the population size Q: once again, the GPU acceleration
would allow us to improve the quality of the results without
a relevant impact on the running time of MemHPG.

REFERENCES
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