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Abstract—To obtain precise solutions in optimization 
problems and decrease the risk of being trapped in local 
optima, researchers have studied on various improved particle 
swarm optimizations (PSO) and made a series of achievements. 
However, these methods focus on artificially altering the 
physical rules of motion, rather than strengthening the 
individual self-learning and adjustment during the 
optimization process, which is the original motive of the 
swarm-based evolutionary algorithms. In this paper, we 
propose a fresh self-adaptive variant, MMARO-PSO, which 
employs motivation mechanism to simulate the behavior of 
intelligent organisms more vividly. We manage to simplify the 
update formulas and give each term a definite bio-psychic 
sense. Furthermore, we introduce a vectorized operator to 
restrain particle’s acceleration, instead of the inertia weight 
parameter in conventional methods. Large number of 
experiments were conducted and the results illustrate that 
these innovations make the technique perform more 
consistently to find a better balance between global exploration 
and local exploitation, compared with the existing versions, e.g. 
SPSO, e1-PSO, ARFPSO, and (k,l)PSO. 

Keywords—acceleration restraint operator; adaptive; 
motivation mechanism; optimization problems; particle swarm 
optimization 

I. INTRODUCTION 
Particle swarm optimization (PSO) introduced by 

Kennedy and Eberhart in 1995 [6], [11] provides a meta-
heuristic search technique to solve binary-parameter and 
real-parameter optimization problems. It was inspired by the 
social behavior in natural world, for instance, bird flocking 
and fish schooling. The abstract particle in this method 
contains two main properties, position and velocity, to 
simulate the inhabiting or foraging processes. During the run, 
the best or near-optimal solutions of a problem will be 
spontaneously exhumed. On account of the superior rapidity 
and validity relative to other deterministic or stochastic 
methods, PSO and its variants have been applied in masses 
of engineering fields. 

Due to the inherent characteristics, PSO is likely to fall 
into local optima during the diversity-losing procedure, 
especially in high-dimensional or constrained conditions, 
which limits its application prospects. In the previous studies, 
researchers usually concentrated on discovering more high-

effective update formulas for time-varying parameters, from 
where a lot of complicated non-linear equations were 
developed [1], [8], [13]. In another line of research, local 
versions of PSO that construct some topological structures to 
define the neighborhood of a single particle, showed 
outstanding performance in many scenarios because it 
slowed down the flow of global-best information [9], [12]. It 
is worth noting that these modifications focus on artificially 
altering the physical rules of neighborhood searching, which 
emblems that we attempt to adjust the law of nature to our 
wishes, rather than promote the level of individual 
intelligence. We have reasonable grounding to believe that 
several finite improvements in this way lead to prominent 
performance promotion according to Darwin’s theory of 
evolution, thus the related work of in-depth study has a 
promising future. 

The purpose of the paper is to introduce an improved 
adaptive PSO based on motivation mechanism and 
acceleration restraint operator (MMARO-PSO) that alters the 
standard version of PSO in consideration of the reasons 
above. Firstly, we propose a new model substituting 
motivation factors which can be tuned referring to previous 
experience for the coefficients in traditional update formulas. 
Using heuristic methods to calculate the factors’ update 
volume and the amount of attenuation, a preliminary version 
called MM-PSO takes shape. Secondly, we explain the 
reason why inertia weight decreasing method provides better 
dynamic balance, and then we provide a more physically 
meaningful technique, a location-based acceleration restraint 
operator, leading to the final version MMARO-PSO. 
Compared with existing variants using diverse methods such 
as SPSO, e1-PSO, ARFPSO, and (k,l)PSO, experimental 
results demonstrate MMARO-PSO has more consistent and 
remarkable optimization capacity. 

The remainder of the paper is organized as follows: 
Section II briefly looks back at historical developments and 
representative variants of PSO. Section III describes the 
considerations and implementations of algorithms we 
propose in detail. The experiment setup, parameter selection 
and comparison with other competitors will be displayed in 
Section IV. And Section V concluding the contributions of 
this paper meanwhile outlining the future work follows. 
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II. BACKGROUND 
In this section, we first formulate the standard version of 

PSO (SPSO) and then introduce some of its variants. 

A. Standard Particle Swarm Optimization 
PSO is a meta-heuristic swarm-based search algorithm 

where a group of N particles standing for candidate solutions 
fly through a D-dimensional search space according to 
several update formulas in order to find the optimal solution. 
Every particle has a position given by a vector 

),...,,()( ,2,1, Diiii XXXtX =  and a velocity given by 

),...,,()( ,2,1, Diiii VVVtV = , where i means the i-th particle. 
According to a position vector we can calculate the value of 
objective function ))(( tXf i , which is also regarded as the 
fitness value of the particle at current time. The particle has a 
tendency to keep track of the fittest position it has gone 
through, usually called personal best ( )(tpbesti ) , and the 
best solution the swarm have visited so far, usually called 
global best ( )(tgbest ) (The corresponding term in local 
version is called local best, )(tlbest .), which is formulated in 
(1). 

 ]},1[)),((maximize|)({)( Nitpbestftpbesttgbest ii ∈=  (1) 

In each time step t, every particle adjusts its position and 
velocity according to 
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where )(tVij
 stands for i-th particle’s velocity in 

dimension j at time step t, correspondingly )(tX ij  stands for 
i-th particle’s position in dimension j at time step t. 
Parameters 1c  and 2c  are acceleration coefficients to scale 
the influence of historical memory, which are originally 
defined as constants. Random real-number parameters )(1 tr j  
and )(2 tr j

 are distributed uniformly in the range [0, 1.0], i.e. 

)1,0(~)(),( 21 Utrtr jj , in order to introduce stochastic factors. 
In general, we comprehend the first term as the cognitive 
part in that it represents the personal experience, while the 
second term as the social part in that it represents the 
collective memory. ω  is the inertia weight invented by Shi 
and Eberhart [15] to keep a balance between local and global 
search characters, usually range [0,1.0], and was expanded to 
a time-varying parameter in the following researches. It is 
empirically confirmed that an inertia weight ω  declining 
from 0.9 to 0.4 regularly provides satisfying performance. 

In practice, we usually define the domain of the function 
optimized in case of losing actual meaning, naturally leading 
to limit the particle’s location. For similar consideration, 
velocity is constrained in each iteration to prevent it from 
uncontrolled explosion, namely 
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where min
jX , max

jX , min
jV , max

jV  are normally defined as 
constants at the same order of magnitude empirically. )(' tX ij

 
and )(' tVij

 are results calculated with (2) and (3), 
respectively. 

There are two simplified PSO models which remove one 
of acceleration coefficients created by Kennedy [10]. In the 
case 01 ≡c , PSO becomes the social-only model (sPSO). 
Relatively in the case 02 ≡c , PSO becomes the cognition-
only model (cPSO) shown in 

 
sPSOfor

tXtgbesttrctVtV ijjjijij

,

))1()1()(()1()( 22 −−−+−= ω  (6) 

 
cPSOfor

tXtpbesttrctVtV ijijjijij

,

))1()1()(()1()( 11 −−−+−= ω  (7) 

Although in some specific circumstances the simplified 
versions outperform SPSO, they can’t work consistently in 
the majority time. They play as choices of behaviors for 
heterogeneous PSO (HPSO) in recent studies [7], [14]. 

B. Particle Swarm Optimization Variants 
There have been plenty of retrofitting versions proposed 

in last two decades since PSO algorithm was introduced. 
Here we choose some representative ones as opponents to 
evaluate the improvements of our methods. 

Chen et al. [3] created 2 sets of nonlinearity time-varying 
formulas putting natural exponential function into use. In 
many experimental environments the one called e1-PSO 
performed better than the other one, and it performed 
competitively compared with a series of similar formulas 
according to [2]. It is on behalf of a classic idea to lessen 
inertia weight with the iterative process. 

Chen and Liu [4] developed an improved particle swarm 
optimization based on adaptive rejection factor (ARFPSO), 
which provides an adaptive control factor computed by 
average distance and maximal distance amongst swarm to 
increase the ability to escape from local optima. With the 
stochastic mechanism, ARFPSO can avoid premature 
phenomenon validly on account of controlling the 
distribution of personal best positions )(tpbesti  on the basis 
of global best position )(tgbest . Test results find evidences 
of its superiority especially on complex multimodal 
problems. 

Zhou [17] invented a novel method called (k,l)PSO to 
make inertia weight varies from an individual to another. In 
classic algorithm framework, the inertia weight is a constant 
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for different particles, which does not meet the need of 
behavior diversity for the particles at different positions. In 
this method, the best k particles are selected and the global 
best is generated by roulette method based on their fitness 
value. The inertia weight of each particle adjusts to the 
distance between itself and the global best particle. The 
effectiveness of (k,l)PSO is confirmed by some experiments. 

In order to observe the effect of our innovations 
specifically, we implement the algorithms we propose based 
on the global version of PSO, and these variants are also 
formed on the basis of global version. Their different starting 
points make them suitable as the performance references for 
MMARO-PSO. Note that the heuristic ideas in our method 
have good portability and we can guarantee that they will 
bring significant performance gains in local versions as well. 

III. PROPOSED PSO VARIANT 
Different from the existing variants, there are two 

obvious features in MMARO-PSO. Firstly, motivation 
mechanism is introduced to reflect the individual 
psychological situation on selecting the most beneficial 
action trend. Additionally, we provide a vectorized operator 
to give more intuitive and precise control on the rate of 
particle’s travel direction change. 

A. Motivation Mechanism 
In SPSO, )(tpbesti  and )(tgbest  are involved in velocity 

update formula as optimization guidance, whose influence is 
decided by acceleration coefficients 1c  and 2c . Obviously 
this model is not comprehensive adequately to imitate the 
organisms’ behavior, so there is considerable scope for 
enhancements. As to intelligent lives, more frequent and 
more remarkable fitness updates will arouse greater 
enthusiasm to explore the corresponding region in the short-
term, and the attraction will subside gradually in the long-
term when the area has been fully developed. If the attraction 
is low enough, individual will even fly away from the area to 
look for potential better solutions. This mechanism can not 
only accelerate the partial convergences, but also enhance 
the diversity of global search. We manage to improve the 
technique without the cost of complexity. 

Enthusiasm losing is analogous to forgetting process 
wherefore we can consult the researches conducted by 
Ebbinghaus [5] on forgetting curve to design our model. The 
following formula can roughly describe it. 

 S
t

etR
−

=)(  (8) 

where R is memory retention, S is the relative strength of 
memory, and t is time. Discretize it as 
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where we can conclude that the memory attenuates 
proportionally with time. Thereby we propose a new model 
introducing motivation factors which is updated with the 
ratio of recent optimization amount to reference quantity, to 
depict the psychological state of the particles and measure 
the effect of different heuristic information, given by 
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where ]',,[ VVkδ  is an operator acting on the velocity 
vector aimed at controlling accelerated degree which will be 
described in detail in the next part. The inertia weight ω  is 
relaxed whereas new coefficients )(0, tci

, )(1, tci
, and )(2, tci

 
determinate the propensity of different behaviors to be 
adopted, which change linearly with motivation factors 

)(, tMF ji
 in the predefined ranges. )(, tMF ji

 are reference 
quantities in the range [0, 1.0], which attenuate by the scale 
factor att  and increase by quantities of stimulus )(, tdelta ji

 in 
each time step. )(, tdelta ji

 are calculated according to the idea 
to take the ratio of real-time update amount to corresponding 
historical reference. More specifically, )(max_ tupdatei  
equals the maximum one-time update quantity of the i-th 
particle from beginning to time step t. )(_ tupdatesum i  
means the cumulative optimization amount of the i-th 
particle, and )(_max_ tupdatesum  is the global maximum of 

)(_ tupdatesum i . 

Particle tends to keep current gliding state in a downhill 
section, which is considered in (13). Continuous updates will 
increase )(0, tMFi

 dramatically enhancing the opportunity to 
slide into the lowest point rapidly, which is usually ignored 
in the existing studies. Formula (14) and (15) express that the 
update of )(tpbest i

 and )(tgbest  will draw particle’s 
attention to exploit the local and global best regions, 
respectively. Formula (14) seems to be more easy-to-
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comprehend if the denominator is simplified to 
)(_ tupdatesum i . However, we take notice that the 

proportional definition is likely to neglect the profit of some 
absolute updates which appear insignificant in comparison 
with )(_ tupdatesum i , so that we choose the geometric mean 
value of it and single update reference )(max_ tupdatei . 
Formula (15) can be understood in the same way noting that 
the involvement of individual-related terms strengthen the 
diversity and robustness of the iteration strategy. 

We use formulas (10)-(18) to substitute for original 
update rules, leading to a promoted elementary version 
called MM-PSO. The purpose is to provide more practice 
options and meanwhile direct the parameter tuning more 
specifically. 

B. Acceleration Restraint Operator 
Previous researches show that an inertia weight ω  

decreasing with the evolution process gives properer balance 
during the run than the constant version. It’s widely believed 
that larger ω  result in stronger ability of exploration in large 
range while smaller ω  is more suitable for exploitation near 
the global minimum. Now we provide some suggestive 
explanations. 

In Fig. 1 and 2, the hollow circles stand for local optima 
while the global minima are expressed as the stars. The 
dotted lines show the flight paths of the swarm. As Fig. 1 
shows, the velocity isn’t changed obviously in each time step 
with a large ω , so that a particle’s flying track is similar to a 
straight line. Even though the whole swarm gather in the 
vicinity of local optimum, particles tend to be uniformly 
distributed in a wide search space after some generations 
because of the randomness of speed direction. Oppositely in 
Fig. 2, particle’s forward orientation will turning sensitively 
with the attractiveness of )(tpbest i

 or )(tgbest , making the 
swarm converge to global optimum speedily with a greater 
curvature. 

Based on the above we can find that a crucial effect of ω  
is to control the rate of heading direction change, thereby 
adjusts the exploration/exploitation balance. However the 
update regulations have at least two inappropriate points: 

• There is no restriction on the norm of acceleration, 
meaning that the particles can obtain infinite 
momentum, which does not meet the real dynamical 
system that particles are in. 

• There is no coupling between the residual amount of 
velocity and the cognition-learning part or the social-
learning part by tuning inertia weight ω  to control 
the balance. This weakens the unity of program, and 
perturbs the probabilistic expectation of velocity even 
worse. 

Based on the discussions above, we propose an 
acceleration restraint operator given by 
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where )(tki  is the acceleration restraint factor in (10), 
which changes linearly with the distance between single 
particle and the mean-optimal position )(tcentre , in current 

time step. ),...,,( maxmax
2

max
1

max
DXXXX =  and 

),...,,( minmin
2

min
1

min
DXXXX =  specify the domain of feasible 

solutions, and Dmax  pre-calculated gives the maximum 
distance amongst particles. The intuitive sense of these 
formulas is to limit the change in velocity within )(tki  times 

of V , to control the curvature adaptively at different stages 
of the search. 

Rather than the time-varying strategy, we adopt the 
location-based strategy referring to quantum-behaved 
particle swarm optimization (QPSO) [16], another PSO’s 
variant. In QPSO, researchers adjust a particle’s wave 
function according to the distance between it and the average 
centre of )(tpbest i

, which leading to waiting effect which 
enhances the cooperation between particles. In our 
framework of classical physics, acceleration restraint factor 

)(tki  changes linearly with distance similarly defined. The 
waiting effect can be shown in 

where the dotted circles indicate the particles’ search 
ranges roughly. It is easy to find that as a result of the 

 
Fig. 1.  Evolution process with a larger inertia weight. 
 

 
Fig. 2.  Evolution process with a smaller inertia weight. 

 
Fig. 3.  Illustration of waiting effect in MMARO-PSO. 
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withdrawn particles, the centre is dragged away from the 
population around the optimum, making those particles 
search in a larger range, which seems that they are waiting 
for the distant brothers. With the acceleration restraint 
operator, we propose the final version of our algorithm 
which is shown in TABLE I. 

 

IV. EXPERIMENTS AND RESULTS 
In this section, we first make a brief description of 

benchmark functions, then introduce the methodology and 
parameter settings of MMARO-PSO, and finally make an 
intensive comparison with some other competitors. Each 
algorithm was executed on functions in 5, 10, 20 dimensions 
for 100×D  iterations and repeated 10 times independently, 
with fixed population size 30. The remaining parameters of 
the competitors were set to the recommended values in [3], 
[4], [17]. 

The experimental environment was a laptop computer 
with a 2.4GHz Intel Pentium dual-core processor, 2.0GB of 
RAM, running Microsoft Windows XP Professional. The 
simulation programs were developed using Dev-C++ 4.9.9.2. 

A. Benchmark Functions 
The experiment setup was constructed with six unimodal 

or multimodal benchmark functions widely adopted to 
investigate the performance of PSO for years. The functional 
properties of them can be easily found in relevant literatures 
so we omit this part. We shifted the search ranges to avoid 
the optimum positions concentrate in the middle. The 
detailed expressions are listed as follows. 
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B. Parameter Tuning 
Progressively, we first tuned the parameters of MM-PSO 

to ensure that motivation factor working in the best state, and 
second adjusted the acceleration restraint based on the 
settings in the prior step. 

In MM-PSO, the major parameters include min
jc  and max

jc  
(j=0,1,2), as well as the attenuation coefficient att . The 
motivation coefficients are confined to the interval [ min

jc , 
max
jc ], while att  determines the attraction fading rate which 

react individual psychological state. min
21, −ic  and max

21, −ic  can refer 
to the tuning experience of acceleration coefficients in 
SPSO, generally believed that 2.0 may result in nice 
performance. We recommend min

0,ic  and max
0,ic  set around 1.0 so 

that particles can realize acceleration and deceleration 
according to the changeable situations. Some typical settings 
of parameters and the corresponding results are listed in 
TABLE II. 

We can sum that min
0,ic =0.8, max

0,ic =1.2, min
21, −ic =1.6, max

21, −ic =2.4, 
and att =0.9 provide satisfactory performance in most testing 
functions, so we use these settings as default. 

TABLE I 
PSEUDOCODE FOR THE ALGORITHM PROPOSED 

MMARO-PSO Algorithm 
1. For each particle (i=1, 2, . . ., N): 

1.1. Initialize position )0(iX  and velocity )0(iV  

1.2. Evaluate fitness value ))0(( iXf  

1.3. Set )0()0( ii Xpbest =  and update )0(gbest  with (1) 

1.4. Set 0.1)0(, =jiMF  

2. For each particle (i=1, 2, . . ., N): 

2.1. Calculate )(tVi  with motivation factors and acceleration 

restraint operator using (10)-(11) and (19)-(22) 
2.2. Get new )(tX i  and evaluate fitness ))(( tXf i  

2.3. Update )(tpbesti  and )(tgbest  if ))(( tXf i  is better than 

before 
2.4. Update )(, tMF ji

 using (12)-(18) 

3. Go to 2 until the iteration limit or tolerance error is met 
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On the other hand, the acceleration restraint factor )(tki  
is an important variable which directly controls the balance 
of search strategy. mink  should be greater than 0 so that 
particles always have the ability to change flying direction. 

maxk  reflects the restrictive relation between the convergence 
rate and search diversity. We enumerate some simulation 
results in TABLE III from which we believe that mink =0.1 
and maxk =10.0 may provide preferable performance most 
often. 

However, it needs to be emphasized that the parameters 
we adopted perform well in most instances empirically, 
whereas the niche-targeting fine tuning should not be 
neglected. We have found that some calibrations for specific 
examples enhance the results by several orders of magnitude. 

C. Performance Comparison 
To compare the capabilities of MM-PSO and MMARO-

PSO with other competitors, we ran each program on 
benchmark functions in different dimensions. The detailed 
performance indexes are enumerated in Table IV, V, and VI. 

We can easily find that MM-PSO and MMARO-PSO 
didn’t significantly improve the running time compared to 

SPSO in the same scale, which is a huge advantage over 
ARFPSO and (k,l)PSO. Our algorithms outperformed other 
variants in most of the time, especially on f2, f4, and f6, where 
our methods achieved or come extremely close to the 
optimum. It can also be seen that e1-PSO and (k,l)PSO 
performed not ideally in the search ranges we designed with 
an off-center optimal value. Note that on f5-5D, MM-PSO 
was trapped into local optimization whereas MMARO-PSO 
avoided the situation, which shows the effect of acceleration 
restraint operator to enhance the program’s stability and 
robustness. In addition, the consistent results confirm the 
extensibility for MM-PSO and MMARO-PSO in high-
dimensional occasions to some extent. 

Fig. 4 and 5 give the convergence plots for the 
convenience of observing the optimization processes. Note 
that since the error values reached zero quickly in some 
instances, a small amount 10-15 was added to each item so as 
to take the logarithms. As can be seen, MM-PSO and 
MMARO-PSO were not the fastest way to convergence in 
the early times. However, when other approaches stagnated 
gradually, the methods we propose not just had the ability to 
continue to optimize, more surprisingly, they usually reached 
the exact optimal value expeditiously in several iterations, 
which is believed due to the motivation mechanism. We can 
also find that the use of acceleration restraint operator 
reduces the rate of convergence, which embodies the 
contradiction of speed and low risk. 

In addition, we draw the motivation curves to display the 
mental process of a single particle in Fig. 6 and 7. In the 
early stage, motivation factors evolved at a high level to 
guide the movement of the particles, then reduced gradually 
making the swarm to stabilize. The rises of curves meant that 
the particle approached an under-explored space with a 
potential better optimum position, and induced the particle to 
exploit the region in turn which met our expectations. 

V. CONCLUSION AND FUTURE WORK 
This paper describes an improved adaptive PSO based on 

motivation mechanism and acceleration restraint operator 
(MMARO-PSO), which introduces motivation factors to 
simulate psychological behavior of social organisms and 

TABLE II 
BEST PERFORMANCE OF SEVERAL PARAMETER SETTINGS 

min
0,ic  max

0,ic  min
21, −ic  max

21, −ic  att  
Benchmark Functions (10D) 

f2 f3 f4 f5 

0.4 0.8 0.8 1.6 0.8 2.78E-01 6.27E+00 2.10E+01 9.58E+02 

0.4 0.8 0.8 1.6 0.9 1.18E-01 1.00E+01 1.72E+02 8.32E+02 

0.4 0.8 0.8 1.6 1 0.00E+00 6.96E+00 6.20E+00 5.92E+02 

0.8 1.2 1.6 2.4 0.8 0.00E+00 1.86E+01 4.31E+00 5.22E+02 

0.8 1.2 1.6 2.4 0.9 0.00E+00 0.00E+00 6.70E-10 7.99E+02 

0.8 1.2 1.6 2.4 1 0.00E+00 0.00E+00 8.89E-07 9.73E+02 

1.2 1.6 2.4 3.2 0.8 0.00E+00 1.36E+01 1.15E-03 1.65E+03 

1.2 1.6 2.4 3.2 0.9 0.00E+00 0.00E+00 1.55E-03 1.46E+03 

1.2 1.6 2.4 3.2 1 0.00E+00 0.00E+00 4.46E-03 1.91E+03 

 

TABLE III 
BEST PERFORMANCE OF SEVERAL PARAMETER SETTINGS 

mink  maxk  
Benchmark Functions (10D) 

f2 f3 f4 f5 

0.1 1 6.29E-01 9.00E+00 1.45E+02 5.04E+02 

0.1 10 0.00E+00 0.00E+00 1.34E-01 2.80E+02 

0.1 100 0.00E+00 1.01E+01 1.21E-07 5.80E+02 

1 1 1.77E-01 8.66E+00 5.82E+01 7.66E+02 

1 10 0.00E+00 2.10E+01 8.33E-05 8.85E+02 

1 100 0.00E+00 2.18E+00 2.49E-07 6.58E+02 

10 1 0.00E+00 1.69E+01 1.82E-08 5.35E+02 

10 10 0.00E+00 1.35E+01 4.38E-06 9.01E+02 

10 100 0.00E+00 3.72E+00 4.14E-06 6.04E+02 
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constrain the acceleration of particles adaptively using a 
vectorized operator. The experimental results on several 
typical benchmark functions show that the proposed 
algorithms give better performance on altering the 
exploration/exploitation balance compared with existing 
variants of PSO. 

Future work focuses on modifying the update formulas of 
motivation factors to perfect the heuristic mechanism, 
making targeted extensions so as to deal with the constrained 
and multi-objective conditions, and applying the technique to 
various practical fields. 
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TABLE IV 
THE PERFORMANCE COMPARISON IN 5 DIMENSIONS 

Algorithm Comparison 
Index 

Benchmark Functions (5D) Total 
Time (secs) f1 f2 f3 f4 f5 f6 

SPSO 

Best 5.96E-05 0.00E+00 9.95E-01 1.30E-04 1.18E+02 0.00E+00 

3.265 Mean 6.00E+00 1.16E-01 2.83E+00 8.81E+02 4.02E+02 1.17E-07 

Std 9.12E+00 9.26E-02 2.11E+00 1.59E+03 1.78E+02 1.69E-07 

e1-PSO 

Best 4.00E-15 3.94E-02 1.99E+00 0.00E+00 6.36E-05 2.28E-68 

3.296 Mean 4.32E+00 1.49E-01 3.88E+00 9.62E+01 4.02E+02 2.05E-62 

Std 7.83E+00 6.93E-02 2.24E+00 2.00E+02 2.05E+02 6.14E-62 

ARFPSO 

Best 4.44E-16 0.00E+00 0.00E+00 9.81E-07 6.36E-05 0.00E+00 

7.187 Mean 9.35E-05 1.47E-01 2.19E+00 5.67E+00 4.04E+02 1.95E-08 

Std 1.37E-04 1.28E-01 2.17E+00 9.43E+00 1.62E+02 2.14E-08 

(k,l)PSO 

Best 4.44E-16 0.00E+00 2.84E-07 3.26E-02 6.36E-05 0.00E+00 

10.406 Mean 3.95E+00 9.07E-02 2.29E+00 6.72E+03 3.09E+02 7.92E-04 

Std 7.90E+00 1.09E-01 1.61E+00 1.86E+04 1.70E+02 2.33E-03 

MM-PSO 

Best 4.44E-16 0.00E+00 0.00E+00 3.64E-10 2.95E+01 0.00E+00 

3.656 Mean 3.96E+00 0.00E+00 2.72E+00 1.26E+02 4.09E+02 0.00E+00 

Std 7.92E+00 0.00E+00 2.99E+00 3.76E+02 1.79E+02 0.00E+00 

MMARO-
PSO 

Best 4.44E-16 0.00E+00 0.00E+00 3.76E-06 2.28E-03 0.00E+00 

4.218 Mean 7.15E+00 0.00E+00 3.51E+00 4.91E+02 3.03E+02 0.00E+00 

Std 8.45E+00 0.00E+00 4.10E+00 1.20E+03 2.32E+02 0.00E+00 

1334



 

TABLE V 
THE PERFORMANCE COMPARISON IN 10 DIMENSIONS 

Algorithm Comparison 
Index 

Benchmark Functions (10D) Total 
Time (secs) f1 f2 f3 f4 f5 f6 

SPSO 

Best 2.00E+01 9.20E-02 9.95E-01 4.94E+00 2.37E+02 4.27E-06 

9.921 Mean 2.00E+01 2.93E-01 1.53E+01 9.12E+02 7.22E+02 1.68E-04 

Std 1.96E-03 2.14E-01 7.28E+00 1.57E+03 2.72E+02 1.64E-04 

e1-PSO 

Best 2.00E+01 9.56E-02 5.97E+00 7.36E+00 7.71E+02 2.01E-02 

10 Mean 2.00E+01 3.98E-01 1.17E+01 1.27E+04 1.05E+03 1.15E+00 

Std 1.37E-03 3.82E-01 3.63E+00 2.49E+04 2.03E+02 1.83E+00 

ARFPSO 

Best 1.21E-06 1.16E-01 2.98E+00 1.33E-01 2.38E+02 1.58E-13 

19.765 Mean 1.26E+01 1.95E-01 1.31E+01 2.89E+01 7.29E+02 2.82E-11 

Std 9.20E+00 5.55E-02 7.54E+00 7.93E+01 3.02E+02 4.17E-11 

(k,l)PSO 

Best 2.00E+01 3.42E-01 8.20E+00 3.81E-02 5.75E+02 0.00E+00 

35.046 Mean 2.00E+01 8.56E-01 1.78E+01 1.68E+03 8.88E+02 8.35E+01 

Std 3.36E-03 3.96E-01 7.20E+00 1.75E+03 2.88E+02 1.00E+02 

MM-PSO 

Best 2.00E+01 0.00E+00 0.00E+00 6.70E-10 7.99E+02 0.00E+00 

10.562 Mean 2.00E+01 0.00E+00 2.82E+01 6.28E+03 1.34E+03 0.00E+00 

Std 1.19E-02 0.00E+00 1.33E+01 1.87E+04 3.50E+02 0.00E+00 

MMARO-
PSO 

Best 2.00E+01 0.00E+00 0.00E+00 1.34E-01 2.80E+02 0.00E+00 

12.234 Mean 2.00E+01 0.00E+00 2.66E+01 1.34E+04 1.14E+03 0.00E+00 

Std 7.55E-04 0.00E+00 1.21E+01 2.46E+04 3.62E+02 0.00E+00 

TABLE VI 
THE PERFORMANCE COMPARISON IN 20 DIMENSIONS 

Algorithm Comparison 
Index 

Benchmark Functions (20D) Total 
Time (secs) f1 f2 f3 f4 f5 f6 

SPSO 

Best 2.00E+01 1.46E-01 1.10E+01 2.33E+01 1.44E+03 4.05E-01 

31.421 Mean 2.00E+01 4.35E+00 3.72E+01 1.02E+03 2.62E+03 1.35E+00 

Std 5.53E-08 1.20E+01 1.51E+01 1.58E+03 8.02E+02 9.54E-01 

e1-PSO 

Best 2.00E+01 1.23E+00 2.78E+01 2.56E+03 2.26E+03 1.81E+02 

31.656 Mean 2.00E+01 6.54E+00 4.25E+01 5.66E+04 2.75E+03 5.49E+02 

Std 6.76E-07 1.20E+01 8.50E+00 6.63E+04 4.23E+02 2.37E+02 

ARFPSO 

Best 2.00E+01 1.01E-02 1.89E+01 9.09E+00 1.05E+03 1.93E-05 

61.671 Mean 2.00E+01 4.29E-02 3.76E+01 8.49E+02 1.80E+03 5.29E-03 

Std 2.05E-04 2.81E-02 1.22E+01 1.33E+03 6.36E+02 7.22E-03 

(k,l)PSO 

Best 2.00E+01 0.00E+00 1.30E+01 1.81E+03 1.37E+03 4.72E+02 

151.312 Mean 2.00E+01 1.15E+00 5.02E+01 3.44E+04 2.38E+03 3.77E+03 

Std 3.52E-07 5.51E-01 2.73E+01 3.37E+04 7.12E+02 6.59E+03 

MM-PSO 

Best 2.00E+01 0.00E+00 7.92E+01 6.38E-09 2.95E+03 0.00E+00 

36.39 Mean 2.00E+01 2.02E+01 1.10E+02 1.15E+07 3.50E+03 8.16E+02 

Std 3.15E-06 2.71E+01 1.56E+01 1.76E+07 3.72E+02 1.28E+03 

MMARO-
PSO 

Best 2.00E+01 0.00E+00 5.27E+01 4.94E-02 2.67E+03 0.00E+00 

38.75 Mean 2.00E+01 1.21E+01 9.68E+01 3.85E+06 3.56E+03 4.25E+02 

Std 1.21E-04 1.85E+01 2.19E+01 1.15E+07 7.79E+02 8.52E+02 
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 (a) f2 (b) f4 (c) f6 
Fig. 4.  Convergence plots of all methods for the functions in 10D. Note that in our algorithms, the optimal values sometimes dropped suddenly reaching 
the exact optimal solutions, which indicates that our heuristic considerations worked. 

 
 (a) f2 (b) f4 (c) f6 
Fig. 5.  Convergence plots of all methods for the functions in 20D. 

 
 (a) f2 (b) f4 (c) f6 
Fig. 6.  Motivation curves of MMARO-PSO for the functions in 10D. The undulations symbolize the alternations in the particle’s mental status and 
decision-making perspective in the dynamic procedure. 

 
 (a) f2 (b) f4 (c) f6 
Fig. 7.  Motivation curves of MMARO-PSO for the functions in 20D. 
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