
GP-Based Kernel Evolution for L2-Regularization Networks

Simone Scardapane, Danilo Comminiello, Michele Scarpiniti and Aurelio Uncini

Abstract—In kernel-based learning methods, a crucial design
parameter is given by the choice of the kernel function to be
used. Although there is, in theory, an infinite range of potential
candidates, a handful of kernels covers the majority of actual
applications. Partly, this is due to the difficulty of choosing an
optimal kernel function in absence of a-priori information. In
this respect, Genetic Programming (GP) techniques have shown
interesting capabilities of learning non-trivial kernel functions
that outperform commonly used ones. However, experiments
have been restricted to the use of Support Vector Machines
(SVMs), and have not addressed some problems that are specific
to GP implementations, such as diversity maintenance. In these
respects, the aim of this paper is twofold. First, we present a
customized GP-based kernel search method that we apply using
an L2-Regularization Network as the base learning algorithm.
Second, we investigate the problem of diversity maintenance in
the context of kernel evolution, and test an adaptive criterion
for maintaining it in our algorithm. For the former point,
experiments show a gain in accuracy for our method against
fine-tuned standard kernels. For the latter, we show that
diversity is decreasing critically fast during the GP iterations,
but this decrease does not seems to affect performance of the
algorithm.

I. INTRODUCTION

NOWADAYS, kernels are one of the most fundamental
tools in machine learning applications. Their use in the

field first saw the light in 1964, when Aizerman et al. [1]
employed them in a famous convergence proof. Another im-
portant milestone was in 1992, when Boser et al. [2] derived
the nonlinear Support Vector Machine (SVM) algorithm.
Since then, positive-semidefinite (PSD) kernels have seen
a constant growth in importance, as depicted for example
by the widespread use of support vectors based algorithms
[3]. The kernel evaluation can be seen as performing a dot
product in a transformed input space, hence its design is
a critical choice whilst crafting a specific learning system.
In practice, however, a small set of kernels is used in the
majority of applications, due to their simplicity and universal
approximation capabilities [3], [4].

Clearly, such common kernels may result in sub-optimal
performance with respect to other, non-trivial choices. As
an example, there is agreement that combinations of base
kernels (the so-called Multiple Kernel Learning framework)
can result in an increased performance in kernel methods
[5]. In this respect, the choice of an optimal kernel can be
seen as an optimization problem, where the search space
is the space K of all possible PSD kernels, and the target
function is defined as a measure of error on the data,
e.g. the classification accuracy. Due to the richness of the

Authors are with the Department of Information Engineering, Electronics
and Telecommunications (DIET), “Sapienza” University of Rome, Via Eu-
dossiana 18, 00184, Rome. Email: {simone.scardapane, michele.scarpiniti,
danilo.comminiello, aurelio.uncini }@uniroma1.it.

algebra defined on K, however, a thorough search is by
all means intractable. Genetic Programming (GP) techniques
were employed successfully for similar problems [6], and for
this reason over the last years several authors have proposed
them for the evolution of an optimal kernel function [7]–[10].
GP algorithms construct solutions to an optimization prob-
lem incrementally, by drawing inspiration to the biological
mechanism of natural selection. Moreover, they are designed
to work whenever the solution of the problem admits a
structured representation, such as a graph or a tree.

Despite the wide range of possible configurations for
a GP implementation, all previously mentioned studies on
GP-based kernel evolution share the same workflow during
the initialization of the population, and in terms of genetic
operators used for constructing a new population. Moreover,
all of them use Support Vector Machines (SVMs) as the base
learning algorithm. They differentiate themselves mostly on
the way in which a single individual is constructed: either
using the input vectors as base components [7], or by directly
using a set of base kernels that are subsequently combined
[8]. Although all the initial studies found a decrease of testing
error using GP-based kernels on a set of UCI repositories
[7], the work by Koch et al. [10] challenged some of
these previously established results, showing that GP-based
kernels do not result in a significant increase in performance
against basic kernels whose parameters are well-tuned in the
context of SVMs. Due to the flexibility of GP algorithms,
however, they conclude that “results seem promising enough
to warrant further work in improving GP for support vector
kernel evolution” [10].

With respect to this, our aim in this paper is twofold.
First, we investigate the performance of a GP-based kernel
search method when employing a different kernel learning
method, in particular an L2-Regularization Network (RN)
[11]. To our knowledge, this is the first study employing
GP algorithms for kernel evolution outside SVMs classifiers.
Secondly, we are interested in the role that diversity plays
in kernel evolution. Diversity measures the heterogeneity of
the population during the GP process (or, in other terms, the
variety of individuals), and it is known that a fast drop in
diversity during the early iterations of a GP algorithm can
result in a poor performance of the overall procedure [12].
Up to this point, no studies have investigated this issue in
the context of kernel evolution. However, we hypothesize that
decrease of diversity and early convergence are both crucial
problems that need to be considered. Basic kernels, such as
the Gaussian one, can easily have a very high fitness from
the start of the GP process. Hence, there is the possibility
that they overcrowd the population in the first iterations,
possibly shadowing better solutions that require more time

1674

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

to be found by the procedure. This is in line with many
experimental findings, e.g. [10], where the GP algorithm
resulted in simply “rediscovering” basic kernels. If our
hypothesis is correct, we are also interested in investigating
whether adaptively maintaining a high level of diversity can
increase performance.

As a starting point, we propose a customized GP pro-
cedure employing some modifications with respect to the
standard one. First, as stated before, we employ a faster
training method as base learning algorithm, which enable
us to consider longer evolutions in the GP cycle. Secondly,
we designed a different initialization method, where more
importance is given to small kernels. We found that this
method counteract the “random search” behavior found by
Koch et al. [10], allowing the algorithm to construct new
solutions incrementally. Finally, we include a post-processing
phase for fine-tuning the regularization parameter. Results
show that our algorithm has a significant increase in per-
formance on the same UCI datasets considered by previous
works, even against standard kernels whose parameters are
finely tuned by a grid search procedure. Answers to the
second question, however, are less clear. We show that our
hypothesis is correct, and diversity indeed decreases critically
fast, under many different control measures. Maintaining it,
however, seems to have only a slight increase in performance.
Therefore, we think this is an interesting starting point for
further research on the problem.

The rest of the paper is organized as follows. In Section
II we give a brief overview of the kernel method that we
employ, L2-Regularization Networks. Next, in Section III
we present our GP algorithm, with a particular emphasis
on the novel aspects that are introduced. In Section IV we
describe three measures that we use to analyze the evolution
of diversity, and we detail a simple adaptive criterion for
maintaining variety in the GP evolution. Finally, Section V
presents and analyzes the experimental results.

II. REGULARIZATION NETWORKS

Consider the standard supervised learning setting [11],
whose objective is finding a multivariate function that ap-
proximates as best as possible an unknown relation between
an input space X ⊆ RD and an output space Y . The output
space changes depending on the task we are considering.
Typically, in classification we have Y = {1, . . . ,M}, where
M is the number of classes, while in (one-dimensional)
regression we have Y ⊆ R. We are given a set of N examples
of this relation, in the form of a dataset {xi, yi}Ni=1 ,xi ∈ X ,
yi ∈ Y .

Regularization theory [11] formulates the problem as the
one of finding the function f that minimizes the following
functional:

min
f∈H

1

N

N∑
i=1

L(yi, f(xi)) + λ‖f‖2H (1)

where H is a (normed) hypothesis space, L(·, ·) a loss
function giving the cost we are incurring for any wrong

prediction, and λ ≥ 0 is a scalar, known as regularization
factor, that balances the two terms. If H is a Reproducing
Kernel Hilbert Space (RKHS), the Representer’s Theorem
[11] asserts that solutions to Eq. (1) have the form:

f(x) =
N∑
i=1

αik(x,xi) (2)

where k(·, ·) is the kernel associated to the RKHS, and
αi, i = 1, . . . , N a set of real scalars. The condition that
H is a RKHS can be equivalently expressed in terms of the
kernel, by defining the kernel matrix K : Kij = k(xi,xj).
It can be shown that Eq. (2) holds if and only if, for any
possible choice of the dataset and any z ∈ X , we have:

zTKz ≥ 0

i.e., K is positive semi-definite (PSD). In this case we also
say that the kernel function is PSD. In this framework,
Support Vector Machines for binary classification (C-SVM)
are obtained by using the Hinge loss function L(yi, f(xi)) =
(1 − yif(xi))+, where (a)+ = max {0, a}. This results in
a quadratic programming problem. A simpler optimization
problem can be obtained by considering the squared loss
function L(yi, f(xi)) = (yi − f(xi))

2. In this case the
resulting model is called an (L2) Regularization Network
(RN), and the coefficients of Eq. (2) are obtained by solving
the following linear system of equations:

(K+ λIN)α = y (3)

where we defined (α)i = αi, (y)i = yi and IN is the N×N
identity matrix. This formulation can be extended to take
into consideration a bias term [11], which is equivalent to
considering a shift of the decision boundary. Eq. (3) can
be solved more efficiently with respect to SVMs, providing
the possibility of considering longer evolutions in the GP
search. Moreover, RNs can be used directly for multi-class
classification, while the standard SVM model is formulated
only in terms of binary classification. Thus, a multi-class
problem has to be decomposed into smaller binary classifica-
tion problems, resulting in the necessity of training multiple
SVMs for a single task.

III. GP-BASED KERNEL EVOLUTION

In this section we describe our GP-based algorithm for
evolving kernel functions. The base structure is taken from
[9] and is exemplified in Fig. 1. Each individual in the GP
procedure (represented as a tree) identifies a kernel function,
whose fitness is computed depending on the validation error
it achieves on a given dataset. Individuals are recombined for
a predefined number of iterations until a termination criterion
is met, and the kernel with highest fitness is returned in
output to the algorithm. In the following we describe with
more detail each block of Fig. 1, with a particular emphasis
on the modifications we introduced.

1675

Population
Initialization Network

Training
Network
Testing

Training
Set

Validation
Set

SelectionReproduction

Fitness Evaluation

New
Population

Fig. 1. Block Diagram of the Algorithm

A. Initialization

A possible kernel (denoted as an individual) is represented
as a tree. Each leaf node of the tree can be one of four basic
kernels1:

• Linear kernel: k(x,y) = 〈x,y〉, where 〈x,y〉 is the
standard inner product in RN defined as xTy.

• (Homogeneous) Polynomial kernel: k(x,y) = 〈x,y〉d,
where d ∈ N.

• Gaussian kernel: k(x,y) = exp
{
−γ ‖x− y‖22

}
, where

γ ∈ R.
• Hyperbolic kernel: k(x,y) = tanh {γ 〈x,y〉+ r},

where γ, r ∈ R.

Note that the polynomial kernel has the linear kernel as a
special case (with d = 1), but we consider them separately
to give more emphasis to the linear one during construction
of an individual. An internal node of the tree can be one of
the following operations:

• Sum of two kernels: k(x,y) = k1(x,y) + k2(x,y),
• Scaling of a kernel: k(x,y) = a× k1(x,y),
• Shifting of a kernel: k(x,y) = k1(x,y) + a,
• Kernel product: k(x,y) = k1(x,y)× k2(x,y),
• Exponentiation of a kernel: k(x,y) = exp {k1(x,y)},

where k1(·, ·), k2(·, ·) can be themselves composite kernels,
and a ∈ R. These operations are chosen since they respect
the closure properties of positive-semidefinite kernels [9]2.
Hence, we are assured that if we respect the n-arity of the
operators while recombining individuals, the resulting kernel
will always be positive-semidefinite. The algorithm is started
by initializing a pool of P individuals, that is known as
a population. Differently from previous works, we do not
use the standard grow method [6] for initializing a kernel.
Instead, we found that a better choice was to give more
emphasis in the beginning to small kernels:

1In the following, we use the terms basic and standard interchangeably
to refer to these four kernels.

2Shifting of a kernel is not a standard operation in this context, but it can
be seen as a shift of the hyperplane in the transformed space. See [11] and
the discussion in Section II.

• A third of the population is initialized using the four
basic kernels detailed before. The parameters are gen-
erated randomly according to the procedure detailed in
[9]. Moreover, slightly less probability is given to the
linear kernel of being chosen.

• A third of the population is composed using kernels of
depth 2, i.e., single operations on basic kernels. Here,
internal nodes have not the same probability of being
generated. In particular, addition and multiplication are
more probable than scaling and shifting, which in turn
are more probably that exponentiation. These rules of
thumb were chosen based on a large series of experi-
mental tests with our procedure.

• The final third of the population is composed of kernels
of depth 3. Generation of internal nodes follows the
same guidelines as the previous point.

A measure of fitness is evaluated for each individual, by
training an RN model and then validating its performance
over an independent validation set. For robustness, this eval-
uation is repeated K times using a K-fold cross-validation.
The accuracy of each kernel up to a certain tolerance t (3
decimal places in our experiments) is then assigned as its
fitness value. It can happen that individuals, even if they
respect the condition of positive semi-definitiveness, result
in highly ill-conditioned inversion problems in Eq. (3). In
previous works [9] this had the consequence of making the
SVM solver hangs indefinitely. Using RNs, we can check
this by computing the 2-norm condition number r of the K
matrix [13] and assigning the lowest possible fitness value
whenever r is less than a certain threshold (10−6 in our
experiments).

B. Mutation and Crossing-Over

Based on the fitness values, a new population of kernels
is composed by selecting individuals and recombining them.
A full cycle of fitness evaluation/recombination is called a
generation. Selection is done through lexicographic tourna-
ment selection, where a set of T individuals, with T chosen
a priori, is extracted at random from the population, and
the fittest one is then selected. In case of equal fitness, the
one with fewer nodes is selected. We refer to the number of
nodes of an individual as its length.

We introduce in our algorithm an elitist procedure, i.e., the
fittest E individuals of the previous population are always
chosen for the next generation. Then, the rest of the new
population is constructed as follows:
• A fraction r(P −E) of individuals, with r ∈ [0, 1], are

created by crossover over two selected parents. An ex-
ample of this operation is detailed in Fig. 2. Each node
in the two parents is labeled with an integer number
using a depth-first strategy. Two nodes, one for each
parent, are randomly selected and the corresponding
trees are interchanged. Finally, the resulting individuals
are pruned if they exceed a maximum depth of d, by
substituting non-terminal nodes at depth d with one of
their randomly chosen leaf nodes.

1676

exp

+

k1

k2

a

k3
+ =

exp

+

k1

k2

a

k3
+

Fig. 2. Crossing-Over Between Two Kernels

TABLE I
LIST OF PARAMETERS.

Notation Description
M Maximum number of generations.

P Size of the population (number of
kernels).

T Tournament size.

r Reproduction rate (fraction of individ-
uals created by crossover).

m Mutation probability.

d Maximum kernel depth.

E Elitism degree.

K Number of folds in K-fold cross-
validation.

t Tolerance for evaluating the fitness
function.

• The remaining (1− r)(P −E) individuals are selected
and passed to the new population without modifications.

• Each individual in the new population has a probability
m ∈ [0, 1] of being randomly mutated at one of its
nodes. Mutation can happen at any node, and the new
subtree is generated randomly according to the same
specifications detailed in Section III-A. Moreover, depth
of the mutated subtree cannot exceed depth of the
original one.

As a termination criterion, the algorithm is allowed to run
for a maximum of M generations. The full list of parameters
is collected for simplicity in Table I. As in previous works
[9], the computation complexity of our algorithm is in the
order of O(MP) fitness evaluations. Each fitness evaluation
requires the inversion of an N × N matrix, where N is
the number of training samples. However in practice, as we
stated in Section II, solving Eq. (3) is found to be much
faster than training classical SVMs, which results in a large
improvement in computational time.

C. Regularization Parameter

A critical choice in the GP evolution is given by the
regularization parameter λ in Eq. (1). Increasing λ increases
the regularization term, which after a certain point worsen
the obtained solution. The optimal λ, however, depends on
the specific kernel that is used and on the dataset itself,
so it must be chosen wisely for every problem at hand.
Previous works used either a fixed λ for each problem [7],
or an adaptive one computed in terms of the variance of the

data in the transformed space [10]. In our algorithm both
approaches were found unsatisfactory, and we adopted a dif-
ferent method. Two RNs using a Gaussian and a Polynomial
kernel are trained, and their parameters are fine-tuned using
a grid search (see Section V for details on the grid search).
After this, we obtain two optimal parameters, denoted as λ∗P
and λ∗G. The regularization parameter of the GP algorithm
is then initialized as λ∗ = max {λ∗P , λ∗G}. For an additional
fine-tuning, after the GP evolution is over, a post-processing
phase is performed by running a grid search for λ over the
set
{
2−5, . . . , 210

}
using the final kernel returned by the GP

procedure.

IV. DIVERSITY IN KERNEL EVOLUTION

A. Computing Diversity

Diversity in a GP algorithm relates to the variety of
individuals in a population. If a few of them compose the
overall population, we say that diversity is low, and vice
versa. It is known that a fast decrease in diversity in the
early iterations of the GP procedure can be correlated with
poor performance [14], and premature convergence to a local
minimum. Controlling diversity is not straightforward, how-
ever, because GP individuals posses an inherent topological
structure, and defining an appropriate metric to compute
similarity is an open problem in the general case [14].

Diversity measures are generally categorized in genotypi-
cal measures, that depend on the morphological structure of
each individual, and phenotypical measures, that only relate
to the fitness values. Clearly, the former are a more accurate
description of the true diversity of the population, although
they are more elaborate to compute. To test the evolution of
diversity in our problem, we use three widely used measures
that spans both categories and that we describe next.

During a single generation, after fitness is computed for
each individual, fitness values of the population are subdi-
vided into k bins, where the number of bins is designed to be
slightly coarser than the accuracy t chosen before (e.g., 10t−1

bins). The frequency of individuals in bin k is denoted as pk.
The phenotypic diversity (PD) is defined as the number of
non-empty bins. The entropy (E), instead, is a more accurate
measure defined as:

E = −
∑
k

pk log {pk} (4)

As a genotypical measure, we decided to compute the edit-2
distance (E2D) between each individual and the best solution
found so far [14]. The E2D d(p1, p2) between two individuals
p1 and p2 is computed as follows:

1) Starting from the root node, the two individuals are
superimposed. Whenever this operation is not possible
(e.g., nodes with different n-arity or terminal and non-
terminal nodes) empty nodes are added to the smaller
tree. After this operation, both individuals have n nodes
that are in bijective correspondence. We denote with
p
(j)
i the j-th node of individual i.

1677

TABLE II
DESCRIPTION OF THE DATASETS.

ID Name Input features Instances Desired output Task Type

G Glass 9 214 Glass quality Regression
I Ionosphere 34 315 Target detection Classification
W Wdbc 30 569 Cancer diagnosis Classification
YA Yacht 6 308 Residuary resistance Regression
YE Yeast 8 1484 Localization site of protein Classification

2) The difference dk at node k is 1 if the two nodes are
of the same category (i.e., both scaling operators) and
0 otherwise. The difference between a non-empty node
and an empty one is defined to be 0.

3) The E2D at node k is then computed recursively as:

d(p
(k)
1 , p

(k)
2) = dk +

1

2

∑
i∈Nk

d(p
(i)
1 , p

(i)
2) (5)

where Nk denotes the possibly empty set of children
of node k. The E2D of two individuals is the E2D
between their root nodes.

The E2D is chosen in GP algorithms because it gives
more emphasis to nodes closer to the root node (due to
the scaling factor in Eq. (5)). This is desired since a large
body of practical findings seems to imply that these nodes
have more importance in the performance of an individual
[14]. Moreover, the E2D only uses information on the
topology of the individual, and not on the contents of each
node, which makes it more robust to small mutations of an
individual. The main drawback of the E2D is that it requires
an artificial ordering of the child of a node in step 1 of
the computation. However, discarding this assumption would
make its computation exponential in the depth of the tree,
hence intractable.

B. Maintaining Diversity

The diversity measures described in the previous section
can be used in the GP procedure for enforcing a high
degree of variety in the individuals. Here we elaborate
on a simple adaptive criterion based on a fitness sharing
technique described in [12] to attain this objective. The
main idea of fitness sharing is to change the fitness of
an individual depending on its similarity with the rest of
the population. This operation is controlled by a parameter,
generally called sharing factor, that balances between the
degree at which diversity is enforced and performance of
the algorithm. Following [12], here we consider an adaptive
sharing factor whose evolution depends on the performance
of the algorithm and on the overall level of diversity of the
population.

First, the E2D between each individual in the population
is computed. Then, the sharing level sij between individual
i and j is defined as:

sij =

1−
(
d(pi,pj)

α

)2
if d(pi, pj) ≤ α

0 otherwise
(6)

where the parameter α is called the sharing factor. The total
sharing si of individual i is then given by:

si =
P∑
j=1

sij

The fitness of each individual is then normalized by its total
sharing:

f ′i =
fi
si

The sharing factor is initialized to 1 and adaptively changed
during the run of the algorithm every 3 generations. In partic-
ular, denote by dE the relative change in entropy during the
last 3 generations, and by dF the relative change in average
fitness. If the entropy of the population has dropped more
than 50%, i.e., dE < 0.5, the sharing factor is increased:

α = α/dE

Conversely, if the average fitness has decreased (i.e., dF <
1), the sharing factor is decreased:

α = α · dF

In this way, whenever diversity is decreasing rapidly, in-
dividuals which are largely different from the rest of the
population have a proportionally higher fitness. However, this
effect is attenuated if fitness is not increasing.

V. EXPERIMENTAL RESULTS

A. Setup

We test the GP algorithm described in Section III over
5 UCI datasets taken from previous works on the subject
[7], [9]. The algorithm is compared against 3 RNs using
respectively (i) a Gaussian kernel (denoted as RN-G), (ii) a
Polynomial kernel (denoted as RN-P), and (iii) a linear kernel
(denoted as RN-L). For all three of them, the eventual param-
eter of the kernel and the regularization parameter are found
by performing a grid search using a 3-fold cross validation as
performance measure. λ and the parameters of the Gaussian
kernel are searched in the interval [2−5, . . . , 210], while the
degree of the polynomial in [2, . . . , 15].

Regarding the RN with the GP algorithm (denoted as
RN-GP), we use a population of 70 individuals which are
recombined for 50 iterations. The elitism degree is set equal
to 2, and the rest of the population is composed by crossover

1678

TABLE III
EXPERIMENTAL RESULTS. MISCLASSIFICATION RATE IS SHOWN FOR
DATASETS I, W AND YE, WHILE NRMSE FOR DATASETS G AND YA.

Dataset RN-G RN-P RN-L RN-GP

G 0.51 0.52 0.53 0.49

I 0.08 0.10 0.19 0.05

W 0.02 0.06 0.06 0.02

YA 0.10 0.05 0.61 0.04

YE 0.47 0.49 0.49 0.45

TABLE IV
OPTIMAL PARAMETERS FOUND BY THE GRID-SEARCH PROCEDURE.

ID RN-G RN-P RN-L

G C = {4, 16} C = {1, 2}
C = 2

γ = {0.25, 0.5} d = 2

I C = {4, 8, 32} C = 0.03
C = {1, 8}

γ = {0.25, 0.5} d = {3, 4}

W C = {4, 8, 16} C = {4, 16, 64}
C = {32, 256}

γ = {0.5, 2} d = {1, 2}

YA C = 1024 C = 1024
C = {64, 1024}

γ = {0.5, 1} d = 5

YE C = {0.25, 1} C = {8, 16, 32}
C = {4, 32, 64}

γ = {16, 64} d = {2, 8}

for 90% and by selection for the remaining 10%. The
mutation rate is set to 20%. Tournament size and maximum
kernel depth are both 6. Finally, the fitness computation uses
the same 3-fold validation defined for the grid search.

The algorithms are tested using an outer 5-fold cross vali-
dation, and results are averaged over 5 different runs. Name,
number of input features and dimension of the datasets are
detailed in Table II. For classification, we use the opposite
of the misclassification error as the measure of performance.
For regression, we use the opposite of the Normalized Root
Mean-Square Error (NRMSE), defined for a testing set S as:

NRMSE(S) =

√∑
(xi,yi)∈S(f(xi)− yi)

2

|S|σ̂y
(7)

where |S| denotes the cardinality of the set S and σy is
an empirical estimate of the variance of y. We found that,
due to the presence of the normalization factor in Eq. (7),
this performance measure resulted in more consistent results
inside the GP procedure.

B. Results

Results of the simulations are detailed in Table III. For
readability, we show the opposite of the fitness measure,
i.e., misclassification rate for datasets I, W and YE, and
NRMSE for datasets G and YA. The best result for each
dataset is highlighted in bold. Typical parameters obtained
by the grid search for the three basic RNs are in Table IV.
If the grid search found different parameters in different

folds, we present all the possible configurations between
curly brackets. We can see from Table III that RN-GP
obtains a significant decrease of error for dataset I, a slightly
lower decrease for datasets G, YA and YE, and has a
similar performance to the Gaussian kernel for W. Hence,
the procedure seems to work consistently better than finely
tuned kernels in the majority of cases under study.

It is interesting to mention that low performance, e.g. in
the W dataset, seems to be correlated to an increased rate
of convergence to simple kernels. As an example, in the I
dataset, the average depth of the resulting kernel was 3.64,
and during all the iterations (25 folds in total) the algorithm
converged only three times to basic kernels. Conversely, in
the W dataset, average length was 2.6, and the algorithm con-
verged consistently to basic kernels. Consider as an example
the resulting kernels for the fourth run, depicted in Table V.
We see that kernels k1 and k2 are simple Gaussian kernels,
kernels k3 and k5 are products of Gaussian kernels (hence
Gaussian kernels) and only the kernel k4 is a nontrivial one.
It is also worth of mention that the range of the γ parameter
in Table V is very similar to the optimal parameter found for
RN-G using a grid search (see the fourth row of Table IV).
The situation for the YA dataset (where the improvement is
minimal) is in between, although we found an increased rate
of convergence with respect to basic polynomial kernels of
large degree.

Hence, the GP algorithm seems to oscillate between two
distinct behaviors: either recovering non-trivial kernels that
outperform standard ones by a few percentage points, or
simply converging to them. This latter behavior can indicate
an early convergence to a local minimum (a basic kernel),
or simply the impossibility for the RN-GP algorithm to
improve over a standard kernel. In the following subsection,
we analyze this behavior from the point of view of diversity.

C. Analysis of Diversity Evolution

We found that diversity has a similar evolution in all the
5 datasets we investigated, resulting in a very fast decrease
under the 3 measures that were detailed in Section IV. We
show two representative examples, taken from datasets I
and YE, in Fig. 3, where the RN-GP algorithm is shown
with a solid red line. It can be seen that the average edit
distance with the best individual goes in both cases to ≈ 1.4
(Fig. 3 (c)-(d)), while the final number of distinct fitness
values is oscillating between 10 and 12 (Fig. 3 (e)-(f)) in
the end of the runs. Similarly, entropy decreases by a factor
of 3 during the first few iterations (Fig. 3 (a)-(b)). Overall,
it seems that the GP procedure is converging very rapidly
to a population composed of a few number of significant
individuals which are then recombined, hence wasting a large
part of its computational effort.

Inserting an adaptive criterion for maintaining diversity,
however, did not result in a significant increase in perfor-
mance. We show in Table VI the final testing error of the
GP algorithm using the criterion described in Section IV-B,
denoted as RN-GP-FS. The only differences with respect

1679

TABLE V
KERNELS OBTAINED IN RUN 4 OF THE W DATASET

Fold Kernel

1 k1(x, y) = exp
{
−0.9‖x− y‖2

}
2 k2(x, y) = exp

{
−0.2‖x− y‖2

}
3 k3(x, y) = exp

{
−0.2‖x− y‖2

}
· exp

{
−0.6‖x− y‖2

}
· exp

{
−0.4‖x− y‖2

}
4 k4(x, y) = 0.85 ∗ tanh {0.0002 ∗ {x, y}+ 1} · exp

{
−0.2‖x− y‖2

}
· exp

{
−0.6‖x− y‖2

}
5 k5(x, y) = exp

{
−0.9‖x− y‖2

}
exp

{
−0.7‖x− y‖2

}

10 20 30 40 50 60
1.5

2

2.5

3

Generation

E
n
tr

o
p
y

RN−GP

RN−GP−FS

(a) Entropy for the I dataset

10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

Generation

E
n
tr

o
p
y

RN−GP

RN−GP−FS

(b) Entropy for the YE dataset

10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Generation

E
d
it
 D

is
ta

n
c
e

RN−GP

RN−GP−FS

(c) Average E2D with best individual for the I dataset

10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Generation

E
d
it
 D

is
ta

n
c
e

RN−GP

RN−GP−FS

(d) Average E2D with best individual for the YE dataset

10 20 30 40 50 60
10

15

20

25

Generation

P
h
e
n
o
ti
p
ic

 D
iv

e
rs

it
y

RN−GP

RN−GP−FS

(e) Phenotipic diversity for the I dataset

10 20 30 40 50 60
8

10

12

14

16

18

20

22

24

26

Generation

P
h
e
n
o
ti
p
ic

 D
iv

e
rs

it
y

RN−GP

RN−GP−FS

(f) Phenotipic diversity for the YE dataset

Fig. 3. Evolution of 3 different diversity measures for 2 representative datasets.

to the behavior of RN-GP are a small decrease of error
for dataset YA, and a similar increase of testing error for
dataset YE. The evolution of the different diversity measures
that are computed for RN-GP-FS is shown in Fig. 3 with
a dashed black line. We see that the adaptive criterion is
indeed maintaining a relatively high degree of variety in the

individuals, with a final edit distance with the best individual
that generally goes to ≈ 2.5, and more than 20 distinct fitness
values in the end. This is not compensated, however, by an
equivalent increase in performance. With respect to what has
been said earlier, this can be interpreted in two different
ways: either the algorithm is truly converging to a global

1680

TABLE VI
RESULTS OF ADAPTIVELY MAINTAINING DIVERSITY

Dataset RN-GP RN-GP-FS

G 0.49 0.49

I 0.05 0.05

W 0.02 0.02

YA 0.04 0.03

YE 0.45 0.47

10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

S
h
a
ri
n
g
 F

a
c
to

r

I dataset

W dataset

YA dataset

Fig. 4. Evolution of the sharing factor for 3 representative datasets.

optimum, or the adaptive criterion that we introduced is not
sufficient to promote an intelligent level of diversity.

This is also exemplified by the sharing factor evolution,
that we show in Fig. 4 for three representative datasets.
We see that the sharing factor tends to decrease during the
evolution, meaning that the algorithm is able to keep an high
level of diversity with a relative ease, which is exemplified
by the lack of a significant sharing factor increase in Fig.
4. Additionally, we see that promoting diversity generally
results in an increase of the average fitness, which is shown
by the constant decrease of the sharing factor.

VI. CONCLUSIONS

In this paper we have investigated the problem of auto-
matically generating a kernel function by means of Genetic
Programming techniques. In particular, to our knowledge

this is the first work employing GP techniques for evolving
the kernel of a Regularization Network. Our GP algorithm
has interesting performance on a series of UCI datasets,
which are consistent over the experiments we performed.
We conjectured that diversity maintenance is an important
factor to consider in GP evolution, and tested an adaptive
criterion for enforcing it. Results show that diversity is indeed
decreasing very fast, but maintaining it seems to have no
consequence on the actual performance of the algorithm.
Overall, we think this paves the way for further research
on the topic.

REFERENCES

[1] A. Aizerman, E. M. Braverman, and L. I. Rozoner, “Theoretical
foundations of the potential function method in pattern recognition
learning,” Automation and remote control, vol. 25, pp. 821–837, 1964.

[2] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the fifth annual workshop
on Computational learning theory. ACM, 1992, pp. 144–152.

[3] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in
machine learning,” The Annals of Statistics, vol. 36, no. 3, pp. 1171–
1220, Jun. 2008.

[4] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” The Journal
of Machine Learning Research, vol. 7, p. 26512667, 2006.

[5] X. Xu, I. W. Tsang, and D. Xu, “Soft margin multiple kernel learning,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 24,
no. 5, p. 749761, May 2013.

[6] R. Poli, W. Langdon, N. McPhee, and J. Koza, A field guide to genetic
programming, 2008.

[7] T. Howley and M. G. Madden, “The Genetic Kernel Support Vector
Machine: Description and Evaluation,” Artificial Intelligence Review,
vol. 24, no. 3-4, pp. 379–395, Nov. 2005. [Online]. Available:
http://www.springerlink.com/index/10.1007/s10462-005-9009-3

[8] K. M. Sullivan and S. Luke, “Evolving kernels for support vector
machine classification,” in Proceedings of the 9th annual conference
on Genetic and evolutionary computation - GECCO ’07. ACM Press,
2007, p. 1702.

[9] L. Dioan, A. Rogozan, and J.-P. Pecuchet, “Improving classification
performance of Support Vector Machine by genetically optimising
kernel shape and hyper-parameters,” Applied Intelligence, vol. 36,
no. 2, pp. 280–294, Oct. 2010.

[10] P. Koch, B. Bischl, O. Flasch, T. Bartz-Beielstein, C. Weihs, and
W. Konen, “Tuning and evolution of support vector kernels,” Evo-
lutionary Intelligence, vol. 5, no. 3, pp. 153–170, May 2012.

[11] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and
support vector machines,” Advances in Computational Mathematics,
vol. 13, pp. 1–50, 2000.

[12] A. Ekrt and S. Z. Nmeth, “Maintaining the diversity of genetic
programs,” in Genetic Programming, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2002, vol. 2278, pp. 162–171.

[13] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.

[14] E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic
programming: An analysis of measures and correlation with fitness,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 1, pp.
47–62, 2004.

1681

