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Abstract— In this paper, we provide an improved evolu-
tionary algorithm for bilevel optimization. It is an extension
of a recently proposed Bilevel Evolutionary Algorithm based
on Quadratic Approximations (BLEAQ). Bilevel optimization
problems are known to be difficult and computationally de-
manding. The recently proposed BLEAQ approach has been
able to bring down the computational expense significantly
as compared to the contemporary approaches. The strategy
proposed in this paper further improves the algorithm by
incorporating archiving and local search. Archiving is used
to store the feasible members produced during the course
of the algorithm that provide a larger pool of members
for better quadratic approximations of optimal lower level
solutions. Frequent local searches at upper level supported by
the quadratic approximations help in faster convergence of the
algorithm. The improved results have been demonstrated on two
different sets of test problems, and comparison results against
the contemporary approaches are also provided.

Index Terms— Bilevel optimization, evolutionary algorithms,
quadratic approximations, quadratic programming, local
search.

I. INTRODUCTION

Bilevel optimization is a complex optimization problem

with two levels of optimization tasks. The two optimization

tasks are commonly referred to as upper and lower level

tasks with the lower level nested within the upper level.

The lower level optimization task is a constraint to the

upper level optimization task such that a solution can be

considered feasible at the upper level only if it is an optimal

solution at the lower level and also satisfies the upper

level equality and inequality constraints. This requirement

makes bilevel problems difficult to solve. Along with two

levels of optimization, a bilevel problem also contains two

kinds of variables corresponding to each level. The variables

are also commonly referred to as upper and lower level

variables. A number of classical and evolutionary approaches

have been proposed to solve bilevel optimization problems.

However, on one hand most of the classical approaches are

too restrictive that they are applicable only to a small class of

problems, and on the other hand the evolutionary approaches

are computationally expensive that they do not scale for

problems with larger number of variables. Therefore, there
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is a need for efficient bilevel procedures that can handle

complex bilevel problems efficiently.

Recently, bilevel evolutionary algorithm based on

quadratic approximations (BLEAQ) has been proposed [42]

by the authors that has been shown to efficiently solve

a variety of bilevel optimization problems. In this paper,

we further improve upon the approach by incorporating

archiving and local search ability into the algorithm. Since

the BLEAQ approach is based on quadratic approximations

of the optimal lower level variables corresponding to

upper level variables, the idea of archiving supports the

quadratic approximations by providing a larger pool of

members for approximations, and the idea of local search

helps in utilizing the quadratic approximations for faster

convergence. Integration of archiving and local search

into BLEAQ improves the performance of the algorithm

substantially on all the test problems chosen in the paper.

The sections in the paper are organized as follows. In the

next section, we provide a generic formulation for bilevel op-

timization problems that is followed by the relevance of these

problems in practice. Thereafter, we provide a brief literature

review on bilevel optimization using evolutionary algorithms.

This is followed by a detailed description of the improved

methodology where we incorporate the archiving and local

search idea into BLEAQ. After this we evaluate the improved

algorithm on a number of test problems. Firstly, the improved

method is evaluated on a set of standard test problems chosen

from the literature [39], [2], [3], [9], [36], [35], [31], [53].

For these test problems, we provide a comparison against the

algorithms proposed in [52], [53] and the original BLEAQ

algorithm. Secondly, we evaluate the improved method on

the SMD test-suite [41], [43] and provide a performance

comparison against the original BLEAQ algorithm and a

nested bilevel evolutionary algorithm (NBLEA) [45], [43].

II. A BRIEF DESCRIPTION OF BILEVEL OPTIMIZATION

Bilevel optimization involves an optimization task within

the constraints of another optimization task. Such problems

contain two kinds of variables: the upper level variables

xu, and the lower level variables xl. At the upper level the

optimization is expected to be performed with respect to xu

as well as xl in the presence of constraints that includes

the nested optimization task. Lower level optimization is
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performed with respect to the lower level variables xl,

while the upper level variables xu act as parameters. We

provide two equivalent formulations for a general bilevel

optimization problem below:

Definition 1 (Bilevel Optimization Problem): Let X =
XU × XL denote the product of the upper-level decision

space XU and the lower-level decision space XL, i.e. x =
(xu, xl) ∈ X , if xu ∈ XU and xl ∈ XL. For upper-level

objective function F : X → R and lower-level objective

function f : X → R, a general bilevel optimization problem

is given by

Min
x∈X

F (x),

s.t. xl ∈ argmin
xl∈XL

{
f(x)

∣∣ gi(x) ≥ 0, i ∈ I
}
,

Gj(x) ≥ 0, j ∈ J.

(1)

where the functions gi : X → R, i ∈ I , represent lower-level

constraints and Gj : X → R, j ∈ J , represent upper-level

constraints.

The structure of the problem introduces a difficulty that

only the optimal solutions to the lower level optimization

task may be acceptable as possible feasible candidates to the

upper level optimization task. For instance, a member x(0) =

(x
(0)
u , x

(0)
l ) can be considered feasible at the upper level only

if x(0)
satisfies the upper level constraints, and x

(0)
l is an

optimal solution to the lower level problem corresponding

to x
(0)
u . Next, we provide an equivalent formulation of the

bilevel optimization problem by replacing the lower-level

optimization problem with a set valued function that maps a

given upper level vector to corresponding optimal lower-level

vector(s).

Definition 2 (Alternative formulation): Let the set-valued

function Ψ : XU ⇒ XL denote the optimal-solution mapping

of the lower level problem, i.e.

Ψ(xu) = argmin
xl∈XL

{
f(x)

∣∣ gi(x) ≥ 0, i ∈ I
}
.

A general bilevel optimization problem is then given by

Min
x∈X

F (x),

s.t. xl ∈ Ψ(xu),
Gj(x) ≥ 0, j ∈ J.

(2)

where the function Ψ may be a single-vector valued or a

multi-vector valued function depending on whether the lower

level function has multiple global optimal solutions or not.

Example 3: The above formulations have been explained

below with the help of a simple quadratic unconstrained

bilevel problem with a single upper level and a single lower

level variable.

Min
(xu,xl)

F (xu, xl) = (xu − a)2 + (xl − b)2,

s.t. xl ∈ argmin
xl

{
f(xu, xl) = (xu − xl)

2 − x2
u

}
,

−10(a+ b) ≥ xu, xl ≥ 10(a+ b).
(3)

where a and b are constants. In the example, the lower level

problem is a parameterized quadratic optimization problem.

Figure 1 shows different lower level optimization problems

corresponding to a few upper level points. The lower level

optimal solutions corresponding to those upper level points

are shown by small circles that are feasible solutions to the

upper level problem. The path traced by the optimal solutions

is shown by a broken curve that represents all the feasible

solutions to the upper level problem. A solution lying on this

broken line has a property such that the value of optimal xl

is equal to xu. This gets further clarified when one looks at

the xl vs xu plot in Figure 2. In the figure the straight line

represents the Ψ-mapping for the problem which is single-

valued in this case. The contours for the upper level objective

function are circular and the bilevel minimum corresponds

to the contour that is tangent to the straight line. The bilevel

optimum is given by (a+b
2 , a+b

2 ).

III. PRACTICAL APPLICATIONS OF BILEVEL

OPTIMIZATION

Bilevel optimization commonly appears in many practical

problems. They are often encountered in the fields of eco-

nomics [23], [50], [45], [44] in the context of Stackelberg

games, principal-agency problems and policy decisions. In

the domain of transportation [34], [18], [13] they commonly

arise in network design and toll-setting problems. In man-

agement [48], [8] bilevel optimization appears in facility

location problems and hierarchical decision making and

optimization within firms. The field of engineering [26], [46]

also involves a number of bilevel scenarios for example in

optimal structure design, optimal chemical equilibria etc. For

additional bilevel optimization problems found in practice

researchers may refer to [21], [6]. Next, we discuss a few

examples from practice to give a further insight to the readers

on the relevance of these problems.

1) Toll Setting Problem: In this problem, there is an

authority that wants to optimize the tolls for a network

of roads. The authority acts as an upper level decision

maker and the network users act as lower level decision

makers. For any given toll the network users optimize

their own problem of cost and time minimization. The

structure of the problem is such that the authority can

optimize its revenues earned by tolls only by taking

the network users’ problem into account [13].

2) Stackelberg Games: A Stackelberg game is a strategic

competition involving a leader and a follower. In this

model, the leader makes the first move and has all

relevant information about the possible actions the

follower might take in response to the leader’s actions.

The follower is expected to react optimally to the

actions of the leader. In order to determine its optimal

actions, the leader has to take the possible follower

actions into account introducing a hierarchy into the

problem [23], [47].

3) Environmental Economics: Bilevel optimization com-

monly appears in environmental economics. For exam-
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along

with the Ψ-mapping.

ple, consider a mining activity [44] that leads to pollu-

tion as well as revenue generation. The mining activity

is performed by a mining company and regulated by

an authority. The regulating authority acts as a leader

and the mining company as a follower. The regulating

authority usually has two objectives of maximizing its

revenues by taxation and minimizing the environmental

damage. The mining company on the other hand may

have a sole objective of maximizing profits. Under this

situation, the authority solves a bilevel optimization

problem with two objectives at the upper level and a

single objective at the lower level in order to determine

an optimal taxation policy.

4) Chemical Industry: In chemical industries, the chemists

often face a bilevel optimization problem when they

have to decide upon the quantities of reactants in

order to optimally create one or more products. In

a chemical reaction products are produced when an

equilibrium is established between the reactants and

products. Therefore, in order to optimize the quantity

of products, one needs to ensure equilibrium which

itself is an optimization task. In this problem, the

upper level objective is to maximize the quantity of

a particular product, while the lower level problem

involves optimizing the entropy functional to ensure

that an equilibria is established [46].

5) Structural optimization: Structural optimization prob-

lems also involve a bilevel optimization task [10],

[16]. In structural optimization problems minimization

of the weight or cost of a structure appears as an

upper level objective. One needs to search for the

most suitable design variables in order to achieve the

objective. The upper level decision variables usually

are shape of the structure, choice of materials, amount

of material etc. The constraints at the upper level

involve bounds on displacements, stresses and contact

forces. The displacements, stresses and contact forces

are lower level variables whose values are determined

by minimizing the potential energy of the system that

appears as a lower level optimization task.

6) Defense applications: Bilevel optimization has a num-

ber of applications in the defense sector, for exam-

ple attacker-defender Stackelberg game [4], planning

the pre-positioning of defensive missile interceptors

to counter an attack threat [14], interdicting nuclear

weapons project [15], and homeland security applica-

tions [54], [32]. Other applications include strategic

bomber force structure, and allocation of tactical air-

craft to missions [20]. The bilevel problem in such

cases may involve maximizing the damage caused

to the opponent by taking into account the optimal

reactions of the opponent. Conversely, minimizing the

maximum damage that an attacker can cause is also a

bilevel optimization task.

7) Others: Bilevel optimization problems are also realized

in principal-agent problems, optimal pricing, network

facility location, optimal algorithm configuration, ma-

chine learning etc.

IV. A REVIEW OF BILEVEL ALGORITHMS

In this section, we highlight some of the studies in classical

and evolutionary optimization literature on bilevel optimiza-

tion. Bilevel programming was introduced in the domain of
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mathematical programming by Bracken and Mcgill [12] in

the early seventies. Since then a number of studies have

been conducted on bilevel programming [17], [49], [22]. A

number of solution methodologies have also been developed

by researchers in classical optimization with simplifying

assumptions like smoothness, linearity or convexity. These

assumptions limit the application of the methodologies only

to a smaller class of bilevel problems. Researchers have

attempted to solve bilevel programming problems using

Karush-Kuhn-Tucker approach [11], [25], branch-and-bound

techniques [7], and the use of penalty functions [1]. However,

one often needs to resort to other approaches like evolu-

tionary techniques when bilevel problems get complex. A

number of evolutionary algorithms for bilevel optimization

have also been proposed with a number of them being nested

strategies [33], [55], [29], [45], [5] that solve the lower level

optimization problem completely for any given upper level

decision. In [33], [55], [29] the authors handle the upper

level optimization task using an evolutionary algorithm and

the lower level is handled using a classical approach. In

[45], [5] the authors handle both levels using an evolution-

ary technique. Researchers in the evolutionary community

have also attempted to replace the lower level optimization

task with the Karush-Kuhn-Tucker conditions [51], [28],

[30] to convert the bilevel optimization into a single level

constrained optimization task. Co-evolutionary approaches

to handle bilevel optimization problems have been proposed

in [35], [27]. Wang et al. [52] developed an evolutionary

algorithm based on a constraint handling scheme, where

they successfully solve a number of standard test problems.

Later on, they provided an improved algorithm [53] that

was able to handle non-differentiable upper level objective

function and non-convex lower level problem. There has also

been an interest in multi-objective bilevel optimization using

evolutionary algorithms. Some of the studies in the direction

of solving multi-objective bilevel optimization problems are

[24], [38], [19], [40], [37], [56].

V. ALGORITHM DESCRIPTION

Recently, a bilevel evolutionary algorithm based on

quadratic approximations (BLEAQ) [42] has been proposed

that is shown to perform better than some of the recently

proposed techniques. In this section, we further improve

upon that method by incorporating archiving and local search

in the BLEAQ approach. For brevity, we focus on the

algorithm description at the upper level, where archiving and

local search is incorporated. Other parts of the algorithm

like lower level optimization, constraint handling, crossover,

mutation and termination are kept the same as in the original

algorithm. We recommend the readers to refer to [42] for

further details.

S. 1 Initialize a random population of upper level vari-

ables of size N . Execute the lower level optimiza-

tion problem to identify optimal lower level vari-

ables. Assign fitness based on upper level function

value and constraints. Initialize generation number

as gen← 0.

S. 2 Tag all upper level members that have undergone

a successful lower level optimization run as 1, and

others as 0. Copy the tag 1 members to an archive.

S. 3 Increment generation number as gen ← gen + 1.

Choose the best tag 1 member as one of the parents

(index parent) from the population
1
. Randomly

choose 2(µ− 1) members from the population and

perform a tournament selection based on upper

level fitness to choose remaining µ− 1 parents.

S. 4 Create λ offspring from the chosen µ parents, using

crossover and polynomial mutation operators.

S. 5 If the number of tag 1 members in the pop-

ulation is greater than
N
2 and archive size is

greater than
(dim(xu)+1)(dim(xu)+2)

2 + dim(xu),

then select
(dim(xu)+1)(dim(xu)+2)

2 +dim(xu) clos-

est archive members
2

from the index parent. Con-

struct quadratic functions Qt, t ∈ {1, . . . , dim(xl)}
to represent lower level optimal variables as a

function of upper level variables.

S. 6 If a quadratic approximation was performed in the

previous step, find the lower level optimum for

the offspring using the quadratic functions (Qt). If

the mean squared error emse is less than e0(1e-

3), the quadratic approximation is considered good

and the offspring are tagged as 1, otherwise they

are tagged as 0. If a quadratic approximation was

not performed in the previous step, execute lower

level optimization runs for each offspring. Tag the

offspring as 1 for which a successful lower level

optimization is performed.

S. 7 Copy the tag 1 offspring from the previous step (if

any) to the archive. After finding the lower level

variables for the offspring, choose r members from

the parent population. A pool of chosen r members

and λ offspring is formed. The best r members

from the pool replace the chosen r members from

the population.

S. 8 If gen is divisible by gl and quadratic functions

were generated at Step 5, then reduce the bilevel

problem to a single level problem, such that optimal

lower level solutions are given by the quadratic

functions Qt. Solve the single level optimization

problem using local search (Refer to Subsection V-

A) around the best population member.

S. 9 If a local search is performed, test the upper level

solution produced from the previous step by per-

forming a lower level optimization at that point

and evaluating the upper level fitness. If the newly

produced point is better than the population best

then replace the population best by the newly

1The choice of best tag 1 member as a parent makes the algorithm faster.

However, for better exploration at upper level some other strategy may also

be used.

2
Please note that a quadratic fit in d dimensions requires at least

(d+1)(d+2)

2
points. However, to avoid overfitting we use at least

(d+1)(d+2)

2
+ d points.
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generated point.

S. 10 Perform a termination check. If the termination

check is false, the algorithm moves to the next

generation (Step 3).

A. Local Search

To perform local search, we reduce the bilevel opti-

mization problem to a single level optimization problem

using the quadratic functions Qt that approximate the lower

level optimal solution for any given upper level vector. The

auxiliary problem can be written as follows,

Min
x∈X

F (xu, xl),

s.t. xl,t = Qt(xu), ∀ t ∈ {1, . . . , dim(xl)}
Gj(xu, xl) ≥ 0, j ∈ J.

(4)

where Qt is a quadratic function of the xu variables. The

above single level problem can be solved using sequential

quadratic programming, if the functions are differentiable.

The best upper level member in the population is used as a

starting solution. If the functions F (xu, xl) and Gj(xu, xl)
are non-differentiable, we approximate them with quadratic

functions by sampling points around the best member in the

population and then use sequential quadratic programming.

Please note that Qt represents a single-valued function

between xu and optimal xl. It is not necessary that the

mapping between xu and optimal xl is single-valued, rather

there can be multiple optimal xl for a given xu. Therefore,

the auxiliary problem should not be considered as a local

approximation of the bilevel problem. The benefit in solving

such a single level problem is that it is able to direct the

BLEAQ approach into better regions in the search space.

B. Parameter Setting

The parameters in the algorithm are fixed as µ = 3, λ = 2
and r = 2 at both levels. Parameter gl that determines

the frequency of local search is fixed as 50, such that a

local search is performed after every 50 generations. The

probability for crossover is fixed at 0.9 and the probability

for mutation is fixed at 0.1. The population sizes at both

levels are fixed at 50 for all the problems. The termination

strategy and the termination parameters are kept the same as

proposed in [42].

VI. RESULTS

In this section, we present the results obtained from the

modified version of the BLEAQ approach. A comparative

study has been performed against the previous version of

the BLEAQ approach, nested bilevel evolutionary algorithm

(NBLEA) [41], [45], and two other approaches [52], [53].

We choose two sets of test problems for comparison. The

first set contains 10 standard bilevel test problems (referred

to as TP [42]) collected from the literature [39], [2], [3], [9],

[36], [35], [31], [53]. The second set consists of 6 recently

proposed scalable unconstrained bilevel problems (referred to

as SMD [41]). These test problems evaluate the performance

of the approaches on different kinds of complexities that

may arise in realistic bilevel problems. Next, we provide the

results on the two sets in separate subsections.

A. Standard test problems

Table I defines the set of 10 standard test problems. The

table contains the dimensions of the upper and lower level

variables in the first column, the problem formulation in the

second column, and the best known solution in the third

column. We evaluate five different approaches on this test

set. The first approach is the modified BLEAQ approach, the

second approach is the original BLEAQ approach, the third

(WJL) and fourth (WLD) approaches are the ones proposed

by Wang et al. [52], [53] in 2005 and 2011 respectively, and

the fifth approach is a nested strategy (NBLEA). Table II

shows the best, mean and worst function evaluations at the

two levels required by the modified BLEAQ approach. The

mean accuracy at the upper and the lower level is also

reported. Table III provides a comparison between modified

BLEAQ and other approaches. In the table, the mean function

evaluations (MFE) represents the average of the sum of upper

and lower level function evaluations required by an approach

on a particular test problem. Mean function evaluations

ratio (MFER) represents the ratio of MFE for two different

approaches. Original BLEAQ, WJL, WLD and NBLEA ap-

proaches have been compared against the modified BLEAQ

algorithm in terms of MFER. It can be observed that the

modified BLEAQ approach performs consistently better than

original BLEAQ approach and significantly better than WJL,

WLD and NBLEA.

B. SMD test problems

For brevity, we do not present the SMD test problems in

this paper rather refer the readers to [41] for the description

of the test problems. We evaluate the performance of the

modified BLEAQ approach, original BLEAQ approach and

the nested bilevel evolutionary algorithm approach on this

test set. The results of the study are presented in Table IV that

provides the mean lower and upper level function evaluations

along with the mean accuracy at the two levels. The MFER

has been reported for original BLEAQ and NBLEA when

compared against modified BLEAQ. For SMD problems

again we observe a consistently better performance of the

modified BLEAQ idea over the other two strategies.

VII. CONCLUSIONS

The original BLEAQ approach [42] has been shown to

outperform a number of contemporary strategies for bilevel

optimization. In this paper, we further improve upon the

original idea by incorporating archiving and local search

in the methodology. It has been shown how the idea of

quadratic approximations can be used to reduce the bilevel

problem to a single level optimization task for local search

at the upper level. Though the auxiliary problem may not

be an excellent approximation of the bilevel problem, it is

usually sufficiently informative to direct the search of an

algorithm in better regions. Frequent local searches based

on this auxiliary problem lead to a faster convergence. The

archive maintains a large pool of members for performing

quadratic estimations with higher accuracy. Incorporation
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TABLE I

DESCRIPTION OF THE SELECTED STANDARD TEST PROBLEMS (TP1-TP10) WITH x AS UPPER LEVEL VECTOR AND y AS LOWER LEVEL VECTOR.

Problem Formulation Best Known Sol.

TP1

n = 2 m = 2

Minimize

(x,y)

F (x, y) = (x1 − 30)
2

+ (x2 − 20)
2 − 20y1 + 20y2,

s.t.

y ∈ argmin

(y)

{

f(x, y) = (x1 − y1)
2

+ (x2 − y2)
2

0 ≤ yi ≤ 10, i = 1, 2

}

,

x1 + 2x2 ≥ 30, x1 + x2 ≤ 25, x2 ≤ 15

F = 225.0

f = 100.0

TP2

n = 2 m = 2

Minimize

(x,y)

F (x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60,

s.t.

y ∈ argmin

(y)







f(x, y) = (y1 − x1 + 20)
2

+ (y2 − x2 + 20)
2

x1 − 2y1 ≥ 10, x2 − 2y2 ≥ 10

−10 ≥ yi ≥ 20, i = 1, 2







,

x1 + x2 + y1 − 2y2 ≤ 40,

0 ≤ xi ≤ 50, i = 1, 2.

F = 0.0

f = 100.0

TP3

n = 2 m = 2

Minimize

(x,y)

F (x, y) = −(x1)
2 − 3(x2)

2 − 4y1 + (y2)
2
,

s.t.

y ∈ argmin

(y)















f(x, y) = 2(x1)
2

+ (y1)
2 − 5y2

(x1)
2 − 2x1 + (x2)

2 − 2y1 + y2 ≥ −3

x2 + 3y1 − 4y2 ≥ 4

0 ≤ yi, i = 1, 2















,

(x1)
2

+ 2x2 ≤ 4,

0 ≤ xi, i = 1, 2

F = −18.6787

f = −1.0156

TP4

n = 2 m = 3

Minimize

(x,y)

F (x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3,

s.t.

y ∈ argmin

(y)























f(x, y) = x1 + 2x2 + y1 + y2 + 2y3

y2 + y3 − y1 ≤ 1

2x1 − y1 + 2y2 − 0.5y3 ≤ 1

2x2 + 2y1 − y2 − 0.5y3 ≤ 1

0 ≤ yi, i = 1, 2, 3























,

0 ≤ xi, i = 1, 2

F = −29.2

f = 3.2

TP5

n = 2 m = 2

Minimize

(x,y)

F (x, y) = rt(x)x − 3y1 − 4y2 + 0.5t(y)y,

s.t.

y ∈ argmin

(y)







f(x, y) = 0.5t(y)hy − t(b(x))y − 0.333y1 + y2 − 2 ≤ 0

y1 − 0.333y2 − 2 ≤ 0

0 ≤ yi, i = 1, 2







,

where

h =

(

1 3

3 10

)

, b(x) =

(

−1 2

3 −3

)

x, r = 0.1

t(·) denotes transpose of a vector

F = −3.6

f = −2.0

TP6

n = 1 m = 2

Minimize

(x,y)

F (x, y) = (x1 − 1)
2

+ 2y1 − 2x1,

s.t.

y ∈ argmin

(y)































f(x, y) = (2y1 − 4)
2

+ (2y2 − 1)
2

+ x1y1

4x1 + 5y1 + 4y2 ≤ 12

4y2 − 4x1 − 5y1 ≤ −4

4x1 − 4y1 + 5y2 ≤ 4

4y1 − 4x1 + 5y2 ≤ 4

0 ≤ yi, i = 1, 2































,

0 ≤ x1

F = −1.2091

f = 7.6145

TP7

n = 2 m = 2

Minimize

(x,y)

F (x, y) = −
(x1+y1)(x2+y2)

1+x1y1+x2y2
,

s.t.

y ∈ argmin

(y)







f(x, y) =
(x1+y1)(x2+y2)

1+x1y1+x2y2
0 ≤ yi ≤ xi, i = 1, 2







,

(x1)
2

+ (x2)
2 ≤ 100

x1 − x2 ≤ 0

0 ≤ xi, i = 1, 2

F = −1.96

f = 1.96

TP8

n = 2 m = 2

Minimize

(x,y)

F (x, y) = |2x1 + 2x2 − 3y1 − 3y2 − 60|,

s.t.

y ∈ argmin

(y)















f(x, y) = (y1 − x1 + 20)
2

+ (y2 − x2 + 20)
2

2y1 − x1 + 10 ≤ 0

2y2 − x2 + 10 ≤ 0

−10 ≤ yi ≤ 20, i = 1, 2















,

x1 + x2 + y1 − 2y2 ≤ 40

0 ≤ xi ≤ 50, i = 1, 2

F = 0.0

f = 100.0

TP9

n = 10 m = 10

Minimize

(x,y)

F (x, y) =
∑10

i=1

(

|xi − 1| + |yi|
)

,

s.t.

y ∈ argmin

(y)











f(x, y) = e

(

1+
1

4000

∑10
i=1

(yi)
2−

∏10
i=1

cos(
yi√
i
)

)

∑10
i=1

(xi)
2

−π ≤ yi ≤ π, i = 1, 2 . . . , 10











,

F = 0.0

f = 1.0

TP10

n = 10 m = 10

Minimize

(x,y)

F (x, y) =
∑10

i=1

(

|xi − 1| + |yi|
)

,

s.t.

y ∈ argmin

(y)











f(x, y) = e

(

1+
1

4000

∑

10
i=1

(yixi)
2−

∏

10
i=1

cos(
yixi√

i
)

)

−π ≤ yi ≤ π, i = 1, 2 . . . , 10











,

F = 0.0

f = 1.0
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TABLE II

PERFORMANCE OF MODIFIED-BLEAQ ON STANDARD TEST PROBLEMS (TP). UPPER LEVEL FUNCTION EVALUATIONS ARE DENOTED AS ULFE AND

LOWER LEVEL FUNCTION EVALUATIONS ARE DENOTED AS LLFE.

Best (LLFE) Best (ULFE) Mean (LLFE) Mean (ULFE) Worst (LLFE) Worst (ULFE) UL Mean. Acc. LL Mean. Acc.

TP1 12408 715 12273 721 19868 1239 0.000000 0.000000

TP2 10175 1298 11112 1426 13782 2270 0.012535 0.000130

TP3 3796 323 3403 318 5689 476 0.000000 0.000000

TP4 12091 215 11523 254 12149 320 0.040435 0.007425

TP5 8178 438 14106 1203 12202 1378 0.008348 0.038291

TP6 12846 215 14686 265 16539 327 0.000101 0.000333

TP7 186032 3106 218169 3616 257227 4371 0.089834 0.089556

TP8 8274 1231 10069 1398 15900 1967 0.001758 0.000066

TP9 76553 464 73972 627 93016 736 0.000012 0.000000

TP10 73586 498 87882 549 92252 611 0.000106 0.000000

TABLE III

COMPARISON OF MODIFIED-BLEAQ (BLEAQAR+LS
) AGAINST THE RESULTS ACHIEVED BY ORIGINAL-BLEAQ (BLEAQ), WJL, WLD AND

NBLEA APPROACH ON STANDARD TEST PROBLEMS (TP).

MFE=Mean(ULFE + LLFE) MFER= BLEAQ

BLEAQ
AR+LS

WJL

BLEAQ
AR+LS

WLD

BLEAQ
AR+LS

NBLEA

BLEAQ
AR+LS

TP1 14142 1.13 6.15 6.09 11.40

TP2 14394 1.15 17.20 11.90 16.86

TP3 3741 1.26 24.63 25.62 32.27

TP4 13954 1.15 20.71 15.19 19.55

TP5 14540 1.17 5.52 4.78 10.19

TP6 14642 1.22 11.28 4.50 12.38

TP7 213497 1.23 5.13 4.42 4.05

TP8 11933 1.16 17.79 15.26 26.70

TP9 87259 1.14 - 4.04 7.62

TP10 78372 1.28 - 5.92 7.65

TABLE IV

PERFORMANCE OF MODIFIED-BLEAQ (BLEAQAR+LS ) AGAINST THE RESULTS ACHIEVED BY ORIGINAL-BLEAQ (BLEAQ) AND NBLEA

APPROACH ON SMD1-SMD6 TEST PROBLEMS.

LL Mean Acc. UL Mean Acc. Mean LLFE Mean ULFE MFER=
BLEAQ

BLEAQ
AR+LS

NBLEA

BLEAQ
AR+LS

SMD1 0.003244 0.006351 92234 675 1.23 19.26

SMD2 0.003093 0.003035 77329 506 1.18 19.12

SMD3 0.004325 0.009754 111955 750 1.17 11.21

SMD4 0.002864 0.006728 68359 683 1.11 15.05

SMD5 0.003584 0.004232 113607 579 1.16 16.21

SMD6 0.000007 0.000012 103729 880 1.23 22.85

of archiving and local search in BLEAQ has led to an

improved performance on all the test problems chosen in this

paper. Though the modified BLEAQ and original BLEAQ

approaches are based on quadratic approximations of the

lower level optimal variables with respect to upper level

variables, they are still applicable to generic bilevel problems

without the restrictions of differentiability, convexity etc. A

proper choice of the crossover and mutation operators will

make the procedures applicable for discrete bilevel problems

as well. Integrating concepts from classical optimization into

evolutionary algorithms have already been found to be of

immense significance. We hope that similar hybridizations

in the field of evolutionary bilevel optimization could lead

to algorithms that are efficient and non-restrictive.
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