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Abstract—The Particle Swarm Optimizer is used very widely 
for unimodal and multi-modal optimization problems. 
Recently, most of  variant PSOs are combing several 
evolutionary strategies in order to achieve a better 
performance on Benchmark functions, and even for shifted, 
rotated, or composite functions. In this paper, a new method 
known as Enhanced Vector of Convergence is proposed and 
combined with constrict factor to improve the convergence 
performance of Particle Swarm Optimizer. In experimental 
study, other 5 variant Particle Swarm Optimizers are 
compared, and acceptance rate, t-Test are used for further 
evaluation. The results indicate that the Enhance Vector of 
Convergence can significantly improve the accurate level of 
Particle Swarm Optimizer.

I. INTRODUCTION

P article Swarm Optimization (PSO) was born in 

1995, which is a new algorithm of swarm intelligence, 
mimicking the behavior of birds’ flock [1], [2]. 
Although PSO is considered as one of branch of 
Evolutionary Algorithm (EAs), it takes a simple 
principle to update all particles rather than using 
complicated classical evolutionary operation known as 
selection, crossover and mutation. The attractive 
advantage of PSO is easy to implement, and there is 
much faster convergence velocity of PSO than Genetic 
Algorithm (GA). Modified PSOs inspire more and more 
investigators; the variant PSOs are utilized in various 
engineering optimization, for example, in solving and 
optimal controller design. Despite the differential 
equations and recursion equations cannot explain the 
principle of PSO, in practical application, PSO is 
definitely proved as an efficient tool. Swarm 
communication makes the population converge faster. 
So, when PSO was introduced, and it has produced 
many representative results. But current composite 
functions are introduced, which is more difficult for 
EAs to find its global optimum.  The future test 
functions are more and more challenging.  Most 
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investigators hope that a simple and  efficient PSO will 
be proposed, and it can successfully find the global 
optimum in Benchmark functions, shifted, rotated, 
biased and even composite functions with a very higher 
accurate level and cost less time, moreover it is easy to 
implement.

In last decades, to provide more intelligence to the 
variant PSOs, the combined several evolutionary 
strategies are utilized. Just like Adaptive Particle 
Optimization (APSO), it contains four studying 
strategies such as convergence, exploitation, exploration 
and jumping out [3]. By following the corresponding 
studying strategies, the APSO can adaptively adjust 
inertia weight and accelerate coefficients to find the 
optima. Actually, a regulation used in the APSO is a 
supervisor to distinguish the status of the swarm. The 
Frankenstein’s PSO uses a topology strategy and 
adaptive inertia weight. The novel variant PSOs named 
Self-Learning Particle Swarm Optimization (SLPSO) 
classify the status of particles as four strategies, which 
are same as APSO. But SLPSO update the velocity and 
position of particles following on a different principle. 
The SLPSO does not take an advantage of any 
supervisor, the roulette wheel is used to assume the 
current status of the swarm, and then a specific update is 
doing based on different operation [4]. In 2013, 
Adaptive Particle Swarm Optimization with Multiple 
Adaptive Methods (APSO-MAM) finds the global 
optimum by controlling three parameters and adaptive 
inertia weight. The APSO-MAM can present a very 
high accurate level in these shifted, rotated functions [5], 
[6]. Since there is not any variant PSO can performs 
perfect on every Benchmark functions, the multiple 
learning strategies are more and more important and 
useful.

Based on our empirically evaluation and a large 
number of experiments, a novel variant PSO known as 
Particle Swarm Optimizer Based on Constrict Factor 
and Enhanced Vector of Convergence (CFPSO-EVC) is 
proposed. Since Particle Swarm Optimizer Based on 
Constrict Factor (CFPSO) can avoid balancing the 
global and local search by introduction of constrict 
factor, which is a nonlinear combination of two 
accelerate coefficients widely used in the traditional 
PSO and other variant PSOs. Compared with other 
anterior works, there are several distinctive mechanism 
are included in the CFPSO-EVC. Firstly, since inertia 
weight can balance global search and local search in 
PSO, an independent linear deceasing inertia weight, 
based on the iterations, is not very effective. Some 
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variant PSOs with random inertia weight do not solve a 
complicated multi-modal problem either. A variant 
inertia weight in accordance with fitness value is 
proposed, and it is combined with a presented time-
varying accelerate coefficients. Furthermore, a novel 
conception named Enhancement Vector of Convergence 
(EVC) is presented. The EVC can follow a certain 
known probability to replace the current position of 
particles, based on minimum fitness value. The EVC 
can reduce the iterations, with the same accurate level. 
However, the EVC is not a stable factor introduced in 
CFPSO-EVC. For PSOs, it is important to make sure all 
particles must be within the given range.

The rest of our paper is organized as below. The 
second section will introduce eminent and current 
relevant work on the variant PSOs. In third section, the 
details of CFPSO-EVC are described. Then, the fourth 
part is organized by the experimental comparison, 
which will be displayed in order to support the 
effectiveness of CFPSO-EVC. And the analysis and 
comparison will be made. The fifth section is going to 
make a conclusion.

II.VARIANT PARTICLE SWARM OPTIMIZER

A. Literature Review 
The canonical PSO is a stochastic algorithm based on the 

swarm intelligence, and the main difference from other EAs 
is the particle can learn interactive information from others. 
In contrast, the EAs as GA or Differential Evolution (DE) 
are not able to learn other so-called chromosome. A 
potential solution represents a particle in the given range. 
The initialization is the generation of a group of particles, 
and these random particles can obtain others’ information of 
position, moving toward current best position. PSO is 
likewise a flock of birds are pursuing their food. 

In 1999, Shi and Eberhart investigated the variant of 
inertia weight [7]. A changed inertia weigh according to 
iterations was able to provide a balance to global and local 
search. The linear decreasing inertia weight was proposed. 
Lately, a fuzzy logic for variant inertia weight was 
established [8]. The principle of adjusting inertia weight is 
as follow:

Several years later, based on analysis of convergence 
behavior of PSO, the PSO with constrict factor was 
presented. The CFPSO utilized a constrict factor to preserve 
the present velocity of particles rather than classical inertia 
weight and accelerate coefficients. Some investigators 
argued that two principles for updates the velocity is very 
similar [9], the CFPSO has a faster convergence speed and is 
more accurate than simple PSO; since the CFPSO used a 
combination mechanism of two accelerate coefficients, 
without consideration of global search and local search. It is 
a very difficult issue that an algorithm can apply global 
search or local search model in a right time. The global 
search model update based on the entire swarm, and it is 
rapid, but it is vulnerable to trap in a local optimum. 
However, the local search model is slow, but it updates with 
several elements of a whole swarm, and it is not easy to get 

stuck in local optimum. The CFPSO uses a principle to 
update as below:

The FIPS was a modified PSO to contain neighborhood 
information for update [10]. Moreover, the FIPS examined 
the topology of particles, which was vital for the PSOs. In 
2006, J. J. Liang and P. N. Suganthan reported CLPSO, 
which used a comprehensive learning mechanism that can 
construct current position by tournament selection [11]. 
Actually, it intentionally contained some worse positions, 
whose fitness value was much larger. It was thought as an 
efficient way to preserve the diversity of swarm. The 
CLPSO was really not vulnerable to trap in local optimum, 
and it was usually used as an exemplar for comparison. 

Three years later, another two variant PSOs were 
presented. There are Frankenstein’s Particle Swarm 
Optimizer (FPSO) and Adaptive Particle Swarm Optimizer 
(APSO) respectively. The FPSO embraced several 
advantages of previous variant PSOs [12]. Firstly, it 
considered the influence of topology; furthermore, the FPSO 
took the linear decreasing inertia weight; finally, the FPSO 
did not simply update all particles following a canonical 
regulation; it used a fully informed model which was 
introduced by FIPS. And, APSO used a multiple learning 
strategies to update.  A regulation on reorganization current 
status of particles was designed. For anterior investigations, 
the inertia weight and accelerate coefficients were set to 
pursue a single model, just like the linear decreasing. 
However, in APSO, there were 4 kinds of adjust for these 
parameters. The APSO was able to reduce or increase each 
parameter, when it was necessary. The performance of 
APSO was more accurate, compared with other previous 
work on variant PSOs [3]. In TRIBES-PSO, the topology 
was adjusted according to the swarm behavior and the 
strategies of replacement were selected based on 
performances of the particles [13]. In 2012, SLPSO was 
presented as another variant PSO using multiple learning 
strategies. It updates the positions and velocity of particles 
following different 4 strategies, which can be decided by 
roulette. Compared with APSO, the SLPSO used four 
different regulations for update as: Exploitation, Jumping 
Out, Exploration, and Convergence. These four kinds of 
principle is helpful to SLPSO update the particles according 
to different situations. The aforementioned four principles 
are similar to the APSO, but the method for update is 
entirely different. Only APSO can adjust these three 
parameters, but the SLPSO utilizes four different regulations 
to update. The SLPSO performs better than other previous 
variant PSO on shifted, rotated, and shifted, rotated 
Benchmark functions. Moreover, SLPSO was accurate on 
higher dimensional experiment. Generally, the higher 
dimension of functions influent the performance of all PSOs 
seriously. In [4], SLPSO was evaluated under 30, 50 and 100 
dimensions. 

An intelligent augmented PSO with multiple adaptive 
methods (PSO-MAM) was proposed and was demonstrated 
to be efficient for most Benchmark functions. But, the 
performance of PSO-MAM heavily depended on the settings 
of three parameters: the two accelerate coefficients and the 
inertia weight. A parameter control mechanism adaptively 
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adjusts the parameters and thus improves the robustness of 
PSO-MAM was used for a new method-adaptive PSO-MAM 
(APSO-MAM). Despite APSO-MAM used a complicated 
mechanism to change these three key parameters, it achieved 
a perfect performance including test was made on composite 
Benchmark functions. And, APSO-MAM is more robust 
than PSO-MAM.

There are a large number of variant PSOs, based on 
previous research work, it is obvious that the adaptive 
mechanism, multiple learning strategies are demonstrated to 
be very effective, and to improve the diversity of whole in 
later stage of PSO or variant PSOs is an important issue.

III. ENHANCED VECTOR OF CONVERGENCE FOR CFPSO
The EVC is a novel conception proposed in this paper, 

and firstly using for CFPSO-EVC. Based on anterior 
research, it is well known that adaptive inertia weight, and 
time-varying accelerate coefficients are considered to 
enhance the convergence diversity. These modifications 
enhance the improvement of convergence velocity, but they 
are not very ideal. Despite there are some investigators to 
test or change the value of the inertia weight and 
acceleration coefficients, only modify these parameters that 
is not an efficient way to improve the performance of PSO. 
Therefore, based on a lot of empirically evaluation and 
attempts, some new ideas on revision on current positions of 
particles are discussed. A serious disadvantage of PSO is 
vulnerable to get stuck in the local optimum, since the some 
particles in the early period of evolution cannot jump out of 
local optima [14]-[16]. But this drawback is able to be used 
rightly under some control. Based on tournament selection 
used in CLPSO [11], some particles with smaller fitness 
value rather than larger value are included. 

Then, one dimension of particles are randomly selected 
from gbest to construct to each element of a vector. Next, the 
vector is added to the current position to next iteration. By 
the observation on Benchmark functions, especially for 
unimodal functions including shifted and rotated ones, the 
EV dramatically improve the convergence velocity; for 
example, the canonical PSO, based on our evaluation, does 
not perform qualifiedly on 30 dimensions unimodal 
functions, however, if EV is added, the performance is 

superior to some prominent variant PSOs, such as FIPS, 
CLPSO, POMA , FPSO. Moreover, compared with CLPSO, 
for the same accurate level, the canonical PSO with EV just 
need about 1,000 iterations, but CLPSO really needs about 
100,000 iterations. For further improvement, EV is not used 
alone, and it should be better to combine other mechanism as 
adaptive inertia weight and time-varying acceleration 
coefficients. A pseudo-code of  EV:
Step 1 for each dimension d of gbest
Step 2      Vector( i ):=random(0,1)  gbest( i );
Step 3 end for
Step 4 Calculate fitness value of Vector;
Step 5  Find the minimum fitness value and the relevant Vector( i );
Step 6 Perform Roulette Wheel to find a particle;
Step 7 Use Vector( i ) to substitute original position
The gbest is: 

][ 21 Nggggbest  (1)
Each ig represents an element of gbest, in step 2, each ig  is 
used to construct a vector such as  ][ iii gggvector  ; by 
iterations, we can pick up a vector with a minimum fitness 
value in step 3 and step 4 , and the Enhance Vector of 
Convergence such as )1(],[ NPgggEVC PPP   ; 
finally, in step 6 and step 7, EVC is utilized to replace one 
particle of  pbest in PSO.
The EVC is really efficient for improvement of convergence 
velocity, but including EVC is sometimes a negative factor 
for some functions. The influence of EV is really powerful, 
it may cause some particles are running out of the given 
range. And the passive influence is continuous functional 
until the allowance maximum iteration is reached. The result 
is that most of particles search the space which is out of 
given range. All particles diverge rather than convergence. 
As a result, it must be developed a new strategy to control 
the diverging phenomena. The principle proposed in CLPSO 
is used to avoid the negative factor of EVC, if the position of 
particle is out of given range, this particle cannot be used to 
update.
  The update model is the same as CFPSO, and EVC is 
applied when the update of positions and velocity is finished. 
The best information of position will be abstracted, and EVC 
is constructed as a potential power to attract other particles 
to move toward the global optima.

IV. EXPERIMENTAL STUDY

A. Test Functions
 Benchmark functions and its revised version is used 

widely as an experimental system for PSO in recent years [3]-
[6], [11] and [14]. Test functions f1-f11 is selected from 
standard Benchmark functions [17], and f12-f16 is shifted 
Sphere, shifted Rosenbrock, shifted Schwefel 1.2, shifted 
Ackley, and rotated Sphere, respectively [4], [18]. The test 

functions f1-f16 is in 30 dimensions. The functions f17-f20 
are are corresponding to f12-f15 of standard Benchmark 
functions. In Table 1, the parameters setting of six variant 
PSOs is shown :

TABLE I
PARAMETER TUNING 

Name Setting Reference
CFPSO [9]
 UPSO [19]
 CPSO [16]
FIPS [10]

CLPSO [11]
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CFPSO_EVC 9.0,05.2 021  CC

B. Results
In this section, our new variant CFPSO-EVC is firstly 

tested on 20 functions, compared with other 5 peer PSOs. 
The dimension of function f1-f16 is 30.  All algorithms are 
run independent 30 times. The mean and variance solution 
accuracy is presented.  Furthermore, all algorithms are 
compared by successful rate experiment.  In [14], the 

acceptance of function f1-f11 are introduced, the comparison 
is made from f1 to f11. Finally, a statistical known as t-test 
can indicate the distinctive of these 6 variant PSOs based on 
30 independent tests. The analysis of aforementioned 3 
experiments will be discussed in the following section.

TABLE II
COMPARISON OF MEAN AND VARIANCE

Functions F1 F2 F3 F4
CFPSO 7.04e+001 1.23e-001 3.47e+002 4.84e+000 1.33e+003 2.38e+000 4.92e+001 8.53e+000
UPSO 9.84e-056 3.25e-098 1.97e-028 3.09e-045 5.28e-054 3.27e-084 1.28e-001 6.83e-004
CPSO 1.54e-005 4.63e-010 5.76e-003 4,73e-005 7.51e-004 5.94e-008 3.34e-001 6.52e-003
FIPS 1.76e-019 2.67e-025 7.54e-004 3.45e-010 1.17e-004 3.93e-006 3.94e-001 4.57e-003

CLPSO 7.36e-029 3.43e-053 7.67e-015 3.45e-024 9.48e-023 7.43e-030 9.49e-014 6.47e-020
CFPSO-EVC 0.00 0.00 0.00 0.00 0.00 0.00 3.27e-108 2.23e-177

Functions F5 F6 F7 F8
CFPSO 3.46e+004 4,83e+001 1.41e+001 3.83e+000 4.24e+004 3.84e+000 5.43e+006 3.24e+002
UPSO 8.79e+001 9.84e+000 0.00 0.00 9.89e+001 9.35e-001 4.66e+010 3.25e+002
CPSO 4.66e+001 3.56e+000 3.97e-006 4.83e-010 1.47e+001 9.83e-001 1.33e-002 6.35e-005
FIPS 2.44e+001 9.19e-001 3.53e-007 4.78e-011 9.46e+000 8.86e-001 3.24e+004 2.48e+001

CLPSO 2.24e+000 8.76e-001 6.37e+000 3.24e-002 8.98e+000 5.56e-001 1.04e+004 1.36e+001
CFPSO-EVC 1.02e+000 7.64e-001 0.00 0.00 1.00e+000 1.24e-001 9.84e+002 7.45e+000

Functions F9 F10 F11 F12
CFPSO 1.12e+002 2.64e-001 1.82e-006 4.46e-009 1.17e+000 5.31e-002 2.04e+001 3.84e-001
UPSO 6.16+001 5.47e-001 1.82e-006 3.94e-010 0.00 0.00 0.00 0.00
CPSO 8.66e-007 4.37e-009 5.45e-004 3.84e-008 7.06e-006 8.92e-010 2.14e-005 7.08e-008
FIPS 1.03e+002 9.73e+000 1.01e-004 5.52e-007 7.17e-004 6.03e-007 1.53e-006 7.83e-011

CLPSO 0.00 0.00 1.83e-006 3.83e-010 0.00 0.00 4.93e+001 3.98e+000
CFPSO-EVC 0.00 0.00 1.82e-010 4.55e-010 0.00 0.00 0.00 0.00

Functions F13 F14 F15 F16
CFPSO 7.31e+003 4.55e+001 1.55e+001 3.65e+000 3.18e-001 0.00 0.00
UPSO 7.28e+001 6.43e+000 0.00 0.00 7.39e-002 8.14e-004 1.81e-008 2.36e-011
CPSO 2.70e+001 4.36e-001 9.14e-003 8.97e-005 3.69e-002 4.93e-003 4.78e-012 5.67e-020
FIPS 4.36e+001 3.55e+000 2.20e-001 3.64e-003 4.58e-005 9.74e-006 1.21e-004 3.06e=005

CLPSO 7.14e+002 3.98e+000 2.56e+001 7.84e-001 7.83e-001 3.45e-003 3.22e-029 4.56e-035
CFPSO-EVC 1.24e+001 5.43e-001 0.00 0.00 0.00 0.00 1.11e-022 4.53e-030

Functions F17 F18 F19 F20
CFPSO 1.13e+001 4.49e+000 4.84e+001 1.81e+001 1.98e+000 5.92e-016 3.43e-009 4.41e-011
UPSO 4.39e+000 3.21e+000 2.19e-001 1.17e-009 2.00e+000 1.48e-013 9.15e-004 1.67e-004
CPSO 4.31e+001 1.93e-001 3.91e-002 2.41e-003 1.98e+000 6.38e-012 8.00e-003 1.65e-002
FIPS 4.51e+001 3.87e+001 4.97e+001 6.93e+001 1.99e+000 2.96e-012 1.00e+000 4.98e-05

CLPSO 4.31e+001 1.92e-001 2.69e+001 1.06e+001 1.98e+000 3.11e-013 1.00e-003 4.57e-004
CFPSO-EVC 3.46e+000 2.55e-010 2.43e+000 1.15e-009 1.98e+000 4.68e-016 1.00e-003 4.17e-004

TABLE III
COMPARISON OF ACCEPTANCE RATE 

#S(ACCEPTANCE RATE>80%), #PS(50%< ACCEPTANCE RATE <80%) AND #NS (ACCEPTANCE RATE<50%)

ITERATION UPSO CPSO FIPS CFPSO CLPSO CFPSO-EVC

#S, #PS, #NS 5000 0,2,9 0,1,10 0,4,7 0,1,10 0,0,11 10,0,1

#S, #PS, #NS 10000 2,2,7 1,1,9 1,3,7 0,2,9 5,3,3 10,1,0
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#S, #PS, #NS 100000 10,0,1 9,1,1 2,3,6 2,1,8 10,0,1 10,1,0

TABLE IV
COMPARISON OF T-TEST 

#+(BETTER), #~(EQUAL) AND #-(WORSE)

ITERATION UPSO CPSO FIPS CFPSO CLPSO CFPSO-EVC

#+, #~, #- 10000 2,7,11 2,0,18 0,2,18 1,0,19 2,1,17 8,5,7

C.  Analysis
Table II indicates that the testing results of comparison on 

mean and variance.  
  CFPSO performs excellent on some low dimensional 
functions, but fail in most of higher dimensional problems. 
The performance of CFPSO is influence by shifted, rotated 
methods. 
  UPSO can obtain a higher accuracy in shifted problems, for 
standard problems, and UPSO can also achieve a relative 
accurate results. For f8, UPSO cannot find a qualified result, 
compared with CLPSO and CFPSO-EVC. UPSO can solve 
some multimodal problem in low dimension.
  CPSO can provide the most accurate result of f8, but this 
variant PSO does not perform well on most unimodal, 
multimodal, and even shifted, rotated functions. 
  The performance of FIPS is not impressive. For most test 
problems, the FIPS cannot present a qualified accurate level. 
Its performance is like to UPSO, in some low dimensional 
multimodal problem, and it can gain the most accuracy.
  CLPSO is not skillful at solving most unimodal problem. 
Although CLPSO owns a slow convergence velocity for 
unimodal functions, it obtains the most accurate result for 
rotated problems.
  Based on constrict factor and EVC, CFPSO-EVC owns a 
very fast convergence velocity and most accuracy for most 
functions. The performance on Rosenbrock function (f5) and 
shifted Rosenbrock function (f13) better than other peer 
variant PSOs. CFPSO-EVC can achieve a very good 
accurate level for shifted functions, and gain the most 
accurate results on the most of unimodal problems. CFPSO-
EVC is not good at solving rotated functions, and some low 
dimensional multimodal functions. For f17-f20, the four 
multimodal functions, CFPSO-EVC obtains the highest 
accurate level in f17.  In f19, the performance of CFPSO-
EVC is equal to CPSO, CLPSO and CFPSO. 

Based on acceptance rate and t-Test, obviously, CFPSO-
EVC is superior to other 5 PSOs. Generally, CFSO-EVC is 
more accurate variant PSOs, and owns a faster convergence 
velocity.

V. CONCLUSION

This paper presents a new mechanism combined constrict 
factor and EVC. The principle EVC is trying to collect the 
best information of global optima found by the whole swarm, 

and then the EVC is randomly to substitute original position 
of particles. Generally, EVC is a potential power to persuade 
other particles to move toward best value. The disadvantage 
of EVC is that some particles are more vulnerable to jump 
out the given range, which is a negative factor for 
convergence. As a result,  the particles, which is within the 
original range, will be used to update.

Based on our test, CFPSO-EVC is very skilled at 
unimodal problems, shifted unimodal and some multimodal 
problems. For some low dimensional multimodal problems, 
the CFPSO-EVC is not a right choice. 

CFPSO-EVC can be combined with other algorithm to 
enhance the convergence velocity in order to obtain a more 
accurate level in most problems.
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