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Abstract—In this paper we continue the research on learn-
ing qualitative differential equation (QDE) models of biolog-
ical pathways building on previous work. In particular, we
adapt opt-AiNet, an immune-inspired network approach, to
effectively search the qualitative model space. To improve the
performance of opt-AiNet on the discrete search space, the
hypermutation operator has been modified, and the affinity
between two antibodies has been redefined. In addition, to
accelerate the model verification process, we developed a more
efficient Waltz-like inverse model checking algorithm. Finally,
a Bayesian scoring function is incorporated into the fitness
evaluation to better guide the search. Experimental results
on learning the detoxification pathway of Methylglyoxal with
various hypothesised hidden species validate the proposed
approach, and indicate that our opt-AiNet based approach
outperforms the previous CLONALG based approach on
qualitative pathway identification.

I. INTRODUCTION

Qualitative Differential Equation Model Learning
(QML) [1] involves inferring qualitative models in the form
of qualitative differential equation (QDE) for a dynamic
system from available data and background knowledge.
QML is particularly suitable for situations where only
sparse, noisy data and/or incomplete knowledge about the
system are available. In the last three decades, a number
of QML systems have been proposed to solve different
problems and address various issues of QML. Examples of
these systems include GENMODEL [2], MISQ [3], QSI [4],
QME [5], ILP-QSI [6] (formerly known as QOPH [7]),
and the most recent QML-Morven framework [8], [9], an
earlier description of which can be found in [10].

In particular, in our previous work [11] we developed
a special-purpose QML system for qualitative system iden-
tification of biological pathways. In this QML system we
used an immune-inspired algorithm named CLONALG (the
CLONal selection ALGorithm) [12] as a search strategy.
For ease of description, in this paper this QML system will
be named QMLPI-CLONALG, where “PI” means pathway
identification. QMLPI -CLONALG aimed to address two
issues of QML: first, how to make better use of domain
specific knowledge (biological knowledge); second, how
to improve the scalability of QML when dealing with
large-sized model spaces. In that research we proposed a
CLONALG based algorithm for searching multimodal model

spaces (search spaces containing multiple global or local
optima), and promising results were obtained. However, due
to the expensive computational cost of qualitative simulation,
for complicated candidate pathways it was not possible to
perform the actual qualitative simulation, and this prevented
us from further investigating the performance of immune
inspired QML for pathway identification.

In this paper, given the assumption that in a complicated
pathway there are many hidden variables (those variables
that cannot be measured by biological experiments) and
only a few measured variables, which is a very common
situation in biology, we first develop a more efficient way
for model verification. This allows us to perform in-depth
experiments on testing the performances of immune-inspired
QML systems. In particular, we focus on exploring the
potential of an alternative immune-inspired approach, opt-
AiNet [13], [14], on learning QDE models of pathways
because of its previously proven performance on multi-
model search spaces. More importantly, as reported in our
previous research [15] opt-AiNet is an effective search strat-
egy for general-purpose QML systems, and it can achieve
comparable performance to CLONALG. This motivates us
to explore the potential of opt-AiNet as a search strategy
for special-purpose QML systems, in particular, the QML
system for pathway identification problems. The resulting
QML system is named QMLPI -AiNet.

The rest of this paper is organised as follows: we first
briefly introduce the basics about QDE models in Section II.
This is followed by a description of the algorithm for
converting pathways to QDE models in Section III. In
Section IV we give a formal description of the search space
of the problem and define different kinds of pathways. The
proposed QMLPI -AiNet will be presented in Section V, and
the experiments to validate QMLPI -AiNet are detailed in
Section VI. Finally Section VII concludes the paper.

II. QUALITATIVE DIFFERENTIAL EQUATIONS

In this research we use the Morven framework [16], [17]
to represent QDE models. Formally, a QDE is defined as a
tuple <V, Q, C, T> [18], where V represents the set of
qualitative variables; Q is the set of quantity spaces, each
of which is associated with a qualitative variable in V; C is
a set of qualitative constraints that apply to the variables in
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TABLE I. THE SIGNS QUANTITY SPACE

Quantity Range

negative(-) (−∞, 0)

zero(0) 0

positive(+) (0, ∞)

TABLE II. FUNCTION MAPPINGS UNDER THE SIGNS QUANTITY

SPACE

Function(A,B) negative zero positive

negative 1 0 0

zero 0 1 0

positive 0 0 1

V; T is a set of transitions between qualitative states. Simply
speaking, a QDE is the conjunction of all its qualitative
constraints, which link the qualitative variables and express
the relations among these variables.

As for the set of quantity spaces Q, different qualitative
reasoning engines may have different forms of representa-
tion, but all qualitative variables are restricted to only take
qualitative values from their associated quantity spaces. The
most commonly used and simplest quantity space is the signs
quantity space, in which there are only three qualitative
values: positive, zero, and negative, as shown in Table I.

The set of qualitative constraints C are of two types:
algebraic constraints and functional constraints. The former
represent algebraic relations between variables as in quanti-
tative mathematics, for instance, addition, subtraction, and
multiplication; the latter describe incomplete knowledge be-
tween two variables, for example, the monotonically increas-
ing and decreasing relations, which state that one variable
will monotonically increase with the increase/decrease of
another.

function constraints in the Morven framework are the
above-mentioned functional constraints, and they define
many-to-many mappings which allow flexible empirical de-
scriptions between two variables without knowing the exact
mathematical relation. One example of function mappings
in Morven is shown in Table II. In this table variables A
and B use the signs quantity space as shown in Table I; “1”
stands for the existence of a mapping between variables A
and B, and “0” otherwise.

Table IV lists some Morven constraints and their cor-
responding mathematical equations. In this table variables
in the right column such as X(t) are continuous functions
of time t. f is a function that is continuously differentiable
over its domain. In the constraints listed in the left column
of the table, the label dt means derivative, and the integer
immediately following it indicates which derivative of the
variable (0 means the magnitude). This means each place in
a Morven constraint can represent not only the magnitude,
but also arbitrary derivative of a variable.

We use the single tank system described in Fig. 1 as an
example, and show how we represent this system by a QDE
model under the Morven framework. The quantitative model
for a linear version of the single tank system is as follows:

qo = k ∗ V ,
dV/dt = qi − qo,

Fig. 1. The Single Tank System

TABLE III. THE Morven MODEL FOR THE SINGLE TANK SYSTEM

Differential Plane 0

C1: Function (dt 0 qo , dt 0 V) (qo = k ∗ V )

C2: sub (dt 1 V, dt 0 qi , dt 0 qo) (V ′ = qi − qo)

Differential Plane 1

C3: Function (dt 1 qo , dt1 V) (q′
o
= k ∗ V ′)

C4: sub (dt 2 V, dt1 qi , dt1 qo) (V ′′ = q′
i
− q′

o
)

TABLE IV. SOME QUALITATIVE CONSTRAINTS IN Morven AND

THEIR CORRESPONDING MATHEMATICAL EQUATIONS

Morven Constraints Mathematical Equations

sub (dt 0 Z, dt 0 X, dt 0 Y) Z(t) = X(t) − Y (t)
mul (dt 0 Z, dt 0 Y, dt 0 X) Z(t) = Y (t) × X(t)
div (dt 0 Z, dt 0 Y, dt 0 X) Z(t) = Y (t)/X(t)
Function (dt 0 Y, dt 0 X) Y (t) = f(X(t))
sub (dt 1 Z, dt 0 X, dt 0 Y) dZ(t)/dt = X(t) − Y (t)
Function (dt 1 Y, dt 0 X) dY (t)/dt = f(X(t))

V=<pos, zer, zer>
qi=<pos, zer>
qo=<pos,zer>

Fig. 2. A Qualitative State of the Single Tank in Morven

where V is the volume of the liquid in the tank, qi is
the inflow, qo is the outflow, and k is a positive constant
coefficient determined by the cross sectional area of the tank
and the density of the liquid.

The corresponding Morven model is shown in Table III.
This model is composed of four constraints, C1 to C4, which
are distributed over two differential planes [16]. The mean-
ing of these constraints has been explained in Table IV, and
the corresponding quantitative relation for each constraint is
shown on the right hand side in the brackets. For variable V ,
the magnitude, the first and second derivatives are used; for
variable qo and qi, only the magnitude and the first derivative
are used.

If all the qualitative variables (including their magnitudes
and derivatives) use the signs quantity space defined in
Table I, the mappings of the Function in constraint C1 and
C3 are given in Table II.

After qualitative simulation of a QDE model, the output
could be either an envisionment containing all possible
qualitative states and their legal transitions, or a behaviour
tree which is part of the envisionment. A qualitative state is
a complete assignment of qualitative values to all qualitative
variables of the system. One possible qualitative state of the
QDE model described in Table III is shown in Fig. 2. In this
figure the assignment V =< pos, zer, zer > means that the
magnitude of V is positive, the first and second derivatives
are zero (all values are taken from the signs quantity space
defined in Table I). It is similar for the assignments of qi
and qo.
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III. FROM PATHWAYS TO QDE MODELS

As in [11], we consider that a pathway P is composed
of several biochemical reactions, including the enzymatic
and non-enzymatic ones. We also make standard biological
assumptions on the pathway, that is, all enzymatic reactions
follow the Michaelis-Menten kinetics, and all non-enzymatic
reactions obey the law of mass action. For a non-enzymatic
reversible reaction, A+B←→C+D, according to the law of
mass action the reaction rate is:

V = K1[A][B]−K2[C][D] (1)

= −
1

a
×

d[A]

dt
= −

1

b
×

d[B]

dt
=

1

c
×

d[C]

dt
=

1

d
×

d[D]

dt
,

where K1 and K2 are the rate constants of the forward
and backward reaction respectively; a, b, c, and d are
stoichiometric coefficients; [A], [B], [C] and [D] stand
for concentrations of the corresponding species. For an
enzymatic reaction A−→B, the reaction rate V is defined
as follows:

V = −
d[A]

dt
=

d[B]

dt
= Vmax ×

[A]

ks + [A]
. (2)

In the above, Vmax and ks are constants. We can see that
with the increase of the concentration of A, the reaction rate
will increase too. This can be considered as a monotonically
increasing relation in the qualitative context.

Based on Equations (1) and (2), a possible pathway
can be converted into a QDE model by the converting
algorithm, details of which can be found in [11]. In this
way we can perform the search in the pathway level, that is,
search all reasonable pathways, rather than in the qualitative
constraint level as in [15], e.g., search all possible QDE
models directly. This will significantly reduce the size of the
search space. For instance, considering the following simple
pathway which is composed of only three reactions:

r1: A+B ←→C+D

r2: B −→ E

r3: E −→ C

Using the converting algorithm, we can convert the above
pathway into a QDE model (using the Morven formalism), as
shown in Table V. In this table, Constraints c1∼ c5 and c8∼
c11 are related to Reaction r1; Constraints c6, c9, and c12
are related to Reaction r2; Constraints c7, c10, and c12 are
related to Reaction r3. In this table variables whose names
start with “Aux” are called auxiliary variables, which are
used to break down long equations so that the qualitative
constraints can be used (more details may be found in [11]).
All Function constraints in this table represent monotonically
increasing relations, and their mappings are as shown in
Table II.

From Table V we see that for a simple pathway con-
sisting of three reactions, the corresponding QDE model
contains 12 constraints. This means it will be easier to
perform the search at the reaction level rather than at
the qualitative constraint level, because at the qualitative
constraint level the search space is much bigger.

TABLE V. THE QUALITATIVE MODEL FOR AN EXAMPLE PATHWAY

Index Qualitative Constraints Mathematical Equations

c1 mul (dt 0 Aux1, dt 0 A, dt 0 B) Aux1=A × B

c2 Function (dt 0 Aux2, dt 0 Aux1) Aux2=f (Aux1) (f ′ > 0)

c3 mul (dt 0 Aux3, dt 0 C, dt 0 D) Aux3=C*D

c4 Function (dt 0 Aux4, dt 0 Aux3) Aux4=f (Aux3) (f ′ > 0)

c5 sub (dt 0 Aux5, dt 0 Aux2, dt 0 Aux4) Aux5=Aux2-Aux4

c6 Function (dt 0 Aux6, dt 0 B) Aux6= f (B) (f ′ > 0)

c7 Function (dt 0 Aux7, dt 0 E) Aux7=f (E) (f ′ > 0)

c8 sub (dt 1 A, dt 0 Aux2, dt 0 Aux4) d A/dt=Aux2-Aux4

c9 sub (dt 1 B, dt 0 Aux5, dt 0 Aux6) d B/dt=Aux5-Aux6

c10 sub (dt 1 C, dt 0 Aux7, dt 0 Aux5) d C/dt = Aux7-Aux5

c11 sub (dt 1 D, dt 0 Aux4, dt 0 Aux2) d D/dt= Aux4-Aux2

c12 sub (dt 1 E, dt 0 Aux6, dt 0 Aux7) d E/dt= Aux6-Aux7

IV. THE SEARCH SPACE, REASONABLE AND

CANDIDATE PATHWAYS

For a pathway P to be identified, given all the species
involved in this pathway and the standard assumptions about
enzymatic and non-enzymatic reactions mentioned in Sec-
tion III, we can generate all possible reactions by enumer-
ating all combinations of species and reaction types. These
reactions are further partitioned into several subgroups, each
of which contains all reactions having the same reactants.
Suppose SS is the set containing all these subgroups:

SS = {S1, S2, ..., Sn}. (3)

In the above Si (1≤i≤n) contains all possible reactions
with the same combination of reactants. In addition, for ease
of implementation, we add a “dummy” reaction in each Si,
denoted φ. If a dummy reaction φ is selected in Si, the
pathway will not include any reaction from Si.

Definition 1: Possible Pathway. A possible pathway is
constructed by selecting one and only one reaction (includ-
ing the dummy reaction) from each Si in SS.

This is because one combination of reactants can only
lead to unique products. Accordingly, the size of the search
space containing all possible pathways is

|SSP | =
n
∏

i=1

|Si|. (4)

In the above SSP stands for the search space for the
pathway P. |SSP | and |Si| denote the size of the search
space and the number of reactions in the subset Si, respec-
tively.

Definition 2: Reasonable Pathway. A reasonable path-
way is a possible pathway that satisfies the following con-
straints: (1) Completeness: a pathway must include at least
all given species. (2) Consistency: there are no conflicting
reactions. (3) Connection: there is no disjoint section in
the pathway. (4) Domain-specific constraints: a pathway
must satisfy additional constraints extracted from domain
knowledge.

Definition 3: Candidate Pathway. If the QDE model
of a reasonable pathway can cover given qualitative data
(GQD), this pathway is a candidate pathway with respect
to GQD.

It is noted there are often many candidate pathways for
GQD because the model space is often highly multimodal.
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For each candidate pathway, we calculate its Bayesian score
to indicate the probability of this pathway being the right
one.

Definition 4: Bayesian Score of a Candidate Pathway.
The Bayesian Score of a candidate pathway is the Bayesian
score of the QDE model converted from this candidate
pathway.

The Bayesian score of a QDE model is calculated
according to Muggleton’s learning from positive data frame-
work [19], as shown below:

Bayes(M) = p ln
1

g(M)
− ln sz(M) (5)

In the above sz(M) is the size of the given QDE model
M, g(M) is the generality of the model, and p is the
number of positive examples. So this Bayesian scoring is
the tradeoff between the size and generality of a model.
Based on previous work [6], in Equation (5) sz(M) is
estimated by summing up the sizes of all constraints; g(M) is
defined as the proportion of qualitative states obtained from
simulation to all possible qualitative states generated from
given variables and their associated quantity spaces; p is the
number of given qualitative states.

The bigger the Bayesian score of a candidate pathway,
the higher the probability that this pathway is the correct
model. In this research, the above described Bayesian score
is incorporated into the fitness evaluation to guide the search.

V. QMLPI -AINET

In this section the detailed implementation of QMLPI -
AiNet will be presented.

A. Antibody Encoding and Decoding

Similar to QMLPI -CLONALG, an antibody in QMLPI -
AiNet is composed of several slots, each of which corre-
sponds to a reaction subset Si in SS described in Equation
(3). In contrast to the integer encoding for antibodies in
QMLPI -CLONALG, in QMLPI -AiNet the real number
encoding is used, which is the same encoding strategy as
in the original opt-AiNet. An antibody is represented as
follows:

Ab = {Sl1, Sl2, ..., Sln}. (6)

In the above Ab stands for an antibody; Sli (1≤i≤n)
represents the value assigned to the corresponding slot of
Ab, satisfying Sli ∈ R and 1 ≤ Sli ≤ |Si|.

As the real number encoding strategy is used, when we
decode an antibody, each value Sli will be rounded off to its
nearest integer, denoted as [Sli]. If Sli is in the middle of two
integers, the smaller integer will be taken. Then the newly
obtained integer for each slot will be used as an index to
retrieve the corresponding biochemical reaction in each Si.
So after the decoding of an antibody represented by Equation
(6), the following pathway P will be obtained:

P = {R[Sl1], R[Sl2], ..., R[Sln]}. (7)

In the above R[Sli] means the [Sli]-th reaction in Si.

Fig. 3. The Antibody Encoding and Decoding of QMLPI -AiNet

Figure 3 shows an example of the antibody encoding and
decoding in QMLPI-AiNet. In this figure, the antibody has n
slots, which correspond to S1, S2, ... , Sn in SS described in
Equation (3), respectively. In Slot 1 the current value is 2.1.
After decoding we get an integer 2, so the second reaction r2
in S1 is selected (indicated in bold font). It is similar for the
other slots. After decoding the pathway contains reactions
r2, r12, and r91.

B. Fitness Evaluation

We note here that in QMLPI -CLONALG this process is
called the affinity evaluation. In QMLPI-AiNet the affinity
has a different meaning which will be defined later in
Section V-D. In the fitness evaluation process of QMLPI -
AiNet, an antibody is first decoded into a pathway, then
this pathway is checked against the reasonable pathway
constraints, as given in Definition 2. The more constraints a
model satisfies, the higher fitness value this model will get.

If this pathway is a reasonable one, it will be converted
to a QDE model (as described in Section III) and checked
against the given data. In previous work [11], we checked
the model coverage by qualitative simulation with Morven.
However the qualitative simulation is very computationally
expensive for large-sized models. In this research, consid-
ering the situation that in a complex pathway only a few
variables can be measured, instead of simulating the model
converted from a pathway, we inversely check whether the
given qualitative states can make the model consistent, or in
other words, make all qualitative constraints of the model
consistent. This is done by using a Waltz-like constraint
propagation algorithm as described in [20].

The details of the model checking by the Walltz-like al-
gorithm are described as follows: we first extract qualitative
values from a qualitative state (described in Section II and
one example is given in Figure 2), say QS, and substitute
these values into variables in the candidate qualitative model,
say M, to be checked. Because QS only contains values of
observed variables in M, the values of unobserved (hidden)
variables of M cannot be determined at the very beginning.
However, If we consider a QDE model as a constraint
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network with each variable being a node and each qualitative
constraint being a connection of variables, we can apply the
Waltz-like constraint propagation algorithm [20] to check
whether the substituted values can lead to inconsistency
in the network. In the process of the Waltz algorithm, we
propagate the values of the observed variables throughout
the constraint network (the model), and this may enable us
to calculate the values of some hidden variables, which may
lead to the calculation of more hidden variables. We do this
in an iterative manner until either an inconsistency occurs in
a qualitative constraint, which means QS cannot be covered
by the model M, or the value of any variable in the model
cannot be updated further and there is no inconsistency in
the model, which means QS is consistent with M.

In the above inverse checking algorithm, the smaller the
proportion of observed variables to all variables, the more
effective the algorithm is. This efficient model checking
algorithm enables us to perform the learning tasks when
there are many hidden variables.

After the data coverage of a pathway has been checked,
if this pathway is a candidate pathway according to Defi-
nition 3, we can further calculated the Bayesian score of
this pathway according to Definition 4, and the obtained
Bayesian score will be added into the total fitness value to
guide further search.

C. Mutation

The original mutation operator of opt-AiNet was defined
for continuous problems. Considering the discrete qualitative
model space, the following mutation operation is proposed
for each slot of the antibody:

C′ =

{

U(1, n) if U(0, 1) < αN(0, 1)
C otherwise

(8)

α =
1

β
e−f∗

(9)

In the above, C′ and C are the mutated value and current
value for one slot of the antibody, respectively. U(0, 1) is a
uniformly distributed random number with the range [0,1].
Similarly, U(1, n) stands for a uniformly distributed random
number with the range [1, n], where n is the number of
constraints in the current slot of the antibody. N(0, 1) is a
Gaussian random variable which has a mean value of 0 and
standard deviation of 1. f∗ is the normalised fitness with
the range [0,1]. e−f∗

is the inverse exponential function. α
stands for the amount of mutation, and β is a parameter
that adjusts the exponential function. This new mutation
operator first determines whether a slot should be mutated.
The probability of mutating is proportional to the fitness
value of the current antibody. Once the current slot is set to
mutate, the mutation will follow the uniform distribution.

D. Affinity

In opt-AiNet the affinity is defined as the Euclidean
distance between two antibodies. In QMLPI -AiNet because
we use the integer decoding strategy, and each antibody
represents a possible pathway composed of several reactions,
we define the affinity between two antibodies as “the degree

TABLE VI. PARAMETERS IN QMLPI -AINET

Name Meaning

Ni Number of initial antibodies in the population

Nc Number of clones for each antibody

AvgFitError Threshold determines the stability of population

Supp The suppression threshold

d The percentage of new antibodies

to be added into the population

β control parameter for mutation

of dissimilarity” between two pathways represented by the
two antibodies. The degree of dissimilarity between two
pathways is calculated by simply counting the number of
different reactions in these two pathways.

E. The Detailed Steps of QMLPI -AiNet

The steps of QMLPI -AiNet follow the framework of opt-
AiNet. First we list the parameters used by the algorithm
in Table VI. The steps of the proposed QMLPI -AiNet
algorithm are given in detail as follows:

Step 1: Randomly generate Ni antibodies.
While (stop criteria are not satisfied) iteratively execute Step
2 ∼ Step 4:

Step 2: Clonal Selection

• Step 2-1: Antibody fitness evaluation: calculate the
fitness values of all antibodies according to the
description in Section V-B.

• Step 2-2: Clone: Generate Nc clones for each anti-
body.

• Step 2-3: Mutation: Each antibody will be mutated
according to the description in Section V-C. In par-
ticular, the original and modified mutation operators
will both be tested.

• Step 2-4: Fitness Evaluation: evaluate all the newly
cloned antibodies. Calculate the normalised fitness
value for each antibody.

• Step 2-5: Selection: Select the antibody which has
the biggest fitness value from each parent antibody
and its clones. All the selected antibodies construct
a new antibody population.

• Step 2-6: Average Fitness Error Calculation: Calcu-
late the average fitness of the new population. If the
difference between the old average fitness and new
average fitness is bigger than the given threshold
AvgFitError, repeat Step 2; otherwise proceed to
Step 3.

Step 3: Network Suppression: Each antibody interacts
with others. If the affinity of two antibodies (defined in
Section V-D), is less than the suppression threshold Supp,
the one with the smaller fitness value will be removed.

Step 4: Add d percent of the randomly generated anti-
bodies to the population.

VI. EXPERIMENTS

In this section we will test the performance of QMLPI -
AiNet by a series of experiments, each of which is designed
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to learn a pathway with a different number of hypothesised
hidden variables. The more hidden variables there are in
the pathway, the larger the search space and hence the
more challenging the learning task. We will compare the
scalability of QMLPI -AiNet and QMLPI -CLONALG when
applied to learning the pathways with different levels of
complexity.

More specifically, we will complete and extend the
experiments in [11]. In [11], for learning the MG pathway,
we also assumed different numbers of hidden variables
and tested how well QML-CLONALG could find candidate
pathways compared to other algorithms. However, the use
of qualitative simulation to test the data coverage of models
restricted us from testing the algorithm on more complicated
pathways, and we have to ignore the data coverage tests
for such complicated pathways because the corresponding
qualitative simulation is very expensive. In this sense some
of the previous experiments performed in [11] are not
complete.

In this research, we will use the more efficient Waltz-like
inverse checking algorithm to verify models as mentioned in
Section V-B. We will also use the Bayesian Score to evaluate
each candidate pathway as described in Secion IV. This
enables us to perform the full experiments which include
the data coverage test.

A. The MG Detoxification Pathway

According to the current (incomplete) understand-
ing [21], the MG detoxification pathway is composed of
one non-enzymatic reaction and two enzymatic reactions, as
shown below:

MG+G ←→ H
H −→ S
S −→ G

In the above, MG stands for Methylglyoxal; G stands for
glutathione; H is hemithioacetal; S is S-lactoyl-glutathione.
The first reaction is a reversible one and follows the mass
action law. The second and third enzymatic reactions are
irreversible and catalysed by GlxI (glyoxalase I) and GlxII
(glyoxalase II), respectively, and they are assumed to con-
form to Michaelis-Menton kinetics. As the exact mecha-
nisms of the MG detoxification are still not fully understood,
we hypothesise different numbers of hidden variables and try
to reconstruct the pathway from qualitative data.

B. Qualitative Data

The qualitative data are obtained by simulating the quali-
tative model converted from the current understanding of the
MG pathway. In the simulation, all variables take the signs
quantity space as described in Table I. In all experiments,
the same qualitative data are provided. There are a total of
33 qualitative states, which are listed in Table VII.

C. Experimental Settings

Based on the current understanding of the MG pathway,
we hypothesise three, five, seven, and nine hidden variables,
which gives us four sets of experiments, and these four sets
of experiments are called MG-3Hid, MG-5Hid, MG-7Hid,

TABLE VII. QUALITATIVE DATA USED FOR LEARNING

MG G H S

<pos,pos> <pos,pos> <pos,neg> <pos,neg>

<pos,zer> <pos,pos> <pos,neg> <pos,neg>

<pos , neg> <pos , neg> <pos , neg> <pos , neg>

<pos , neg> <pos , zer> <pos , neg> <pos , neg>

<pos , neg> <pos , pos> <pos , neg> <pos , neg>

<pos , neg> <pos , neg> <pos , zer> <pos , neg>

<pos , neg> <pos , zer> <pos , zer> <pos , neg>

<pos , neg> <pos , pos> <pos , zer> <pos , neg>

<pos , neg> <pos , neg> <pos , pos> <pos , neg>

<pos , neg> <pos , zer> <pos , pos> <pos , neg>

<pos , neg> <pos , pos> <pos , pos> <pos , neg>

<pos , pos> <pos , pos> <pos , neg> <pos , zer>

<pos , zer> <pos , pos> <pos , neg> <pos , zer>

<pos , neg> <pos , neg> <pos , neg> <pos , zer>

<pos , neg> <pos , zer> <pos , neg> <pos , zer>

<pos , neg> <pos , pos> <pos , neg> <pos , zer>

<pos , neg> <pos , neg> <pos , zer> <pos , zer>

<pos , neg> <pos , zer> <pos , zer> <pos , zer>

<pos , neg> <pos , pos> <pos , zer> <pos , zer>

<pos , neg> <pos , neg> <pos , pos> <pos , zer>

<pos , neg> <pos , zer> <pos , pos> <pos , zer>

<pos , neg> <pos , pos> <pos , pos> <pos , zer>

<pos , pos> <pos , pos> <pos , neg> <pos , pos>

<pos , zer> <pos , pos> <pos , neg> <pos , pos>

<pos , neg> <pos , neg> <pos , neg> <pos , pos>

<pos , neg> <pos , zer> <pos , neg> <pos , pos>

<pos , neg> <pos , pos> <pos , neg> <pos , pos>

<pos , neg> <pos , neg> <pos , zer> <pos , pos>

<pos , neg> <pos , zer> <pos , zer> <pos , pos>

<pos , neg> <pos , pos> <pos , zer> <pos , pos>

<pos , neg> <pos , neg> <pos , pos> <pos , pos>

<pos , neg> <pos , zer> <pos , pos> <pos , pos>

<pos , neg> <pos , pos> <pos , pos> <pos , pos>

TABLE VIII. EXPERIMENTAL SETTINGS

Experiment Set Species Search Space

MG-3Hid M,G, H, S, A, B, C 1.38 × 1013

MG-5Hid M,G, H, S, A, B, C, D, E 1.93 × 1020

MG-7Hid M,G, H, S, A, B, C, E, E, F, I 1.21 × 1028

MG-9Hid M,G, H, S, A, B, C, E, E, F, I, J, K 2.48 × 1036

and MG-9Hid, respectively. For all four sets of experiments,
we make the following reasonable assumptions: (1) there is
one mass action reaction, and one of the reactants of this
reaction must contain Methylglyoxal; (2) the number of en-
zymatic reactions is unknown. Each set of experiments will
be learnt by both QMLPI -CLONALG and QMLPI -AiNet,
and we will also use the completely random algorithm as
baselines.

The experimental settings are listed in Table VIII. In
this table M, G, S, H are the four identified species in
the pathway, and A∼K are hyphothesised hidden species.
All the experiments were performed on a computer cluster
with 43 compute nodes, and each node has two Intel XEON
E5520 (2.268GHz) quad-core processors and 12GB RAM).
To ensure a fair competition, all algorithms are restricted to
use a maximum of 4GB memory for all experiments.

D. Experimental Results

The experimental results are listed in Table IX. In this
table we tested the performance of three algorithms on the
four experiment sets, and recorded the number of candidate
pathways and pathways with highest Bayesian scores found
by each algorithm. All algorithms were run for ten trials, and
the best and average performance (with standard deviation)
were recorded. Each algorithm was run for 2,000 seconds.
The parameter settings for QMLPI-AiNet are as follows:
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Fig. 4. Experimental Results for MG-7Hid: Average Number of Candidate
Models Found Over Ten Trials

Fig. 5. Experimental Results for MG-7Hid: Average Bayesian Score of
the Best Candidate Model Over Ten Trials

Ni=20; Nc=10; AvgFitError=0.001; supp is 10 for MG-
9Hid, 9 for MG-7Hid, 7 for MG-5Hid, 5 for MG-3Hid;
d=0.2; β=1. The parameter settings for QMLPI -CLONALG
are as follows: the clonal size is 10; the hyper-mutation
probability is 0.1; the population size is 100 for MG-3Hid,
1000 for other experiment sets. The values of parameters
are chosen according to either classical values taken in both
algorithms or considering the complexity of the search space
and the performance of the search.

From the results shown in Table IX we see that with
the increase of the size of the search space, QMLPI -AiNet
performs better and better than QMLPI-CLONALG in terms
of the number of candidate pathways found as well as
the quality of the best solutions measured by Bayesian
scores. This is also illustrated in Figures 4 and 5, which
show the detailed experimental results for MG-7Hid. From
Figure 4 we can see that in average QMLPI -AiNet found
one order of magnitude more candidate pathways than
QMLPI -CLONALG, which well demonstrated the ability
of QMLPI-AiNet to deal with multimodal search spaces.
From Figure 5 we can also see that QMLPI -AiNet found
pathways with higher Bayesian scores and converged to
the highest Bayesian score more quickly compared with
QMLPI -CLONALG. This indicates that QMLPI -AiNet can
better deal with large-scale multimodal qualitative model
spaces than QMLPI-CLONALG.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an immune network
approach to learning QDE models of biological pathways.

The proposed QMLPI -AiNet employs an opt-AiNet based
search strategy to search the qualitative model space, which
could be highly multimodal given incomplete knowledge and
data.

A comparison of the performance of QMLPI -AiNet
with the previous system QMLPI -CLONALG indicates that
the proposed QMLPI -AiNet can better deal with highly
multimodal qualitative model spaces, and is also more scal-
able to large search spaces. Given the same computational
resources, in all experiments QMLPI -AiNet outperformed
QMLPI-CLONALG. This indicates that QMLPI -AiNet is
a very suitable special-purpose QML system for qualitative
pathway identification.

Finally, it is noted that the proposed special-purpose
immune network approach to QML can be generalised to
solve other real-world applications, such as identification of
economic, logistics [22], mechanical, and electrical systems,
provided a method of converting models representing such
real-world applications to QDE models is developed. In the
future work, we will consider the situations where there are
noisy qualitative states or only a few qualitative states are
available, which is similar to previous study [23], [6] on
general-purpose QML systems. How to make QMLPI -AiNet
adapt to these situations will become a challenging task.
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