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Abstract—With the exponential development of mobile 

communications and the miniaturization of radio frequency 

transceivers, the need for small and low profile antennas at 

mobile frequencies is constantly growing.  Therefore, new 

antennas should be developed to provide both larger bandwidth 

and small dimensions.  This paper presents a smart optimization 

technique using a hybridized Genetic Algorithms (GA) and 

comparison with more classical GA techniques. The 

hybridization involves primarily a clustering mechanism 

coupled with the intelligence of the Binary String Fitness 

Characterization (BSFC) technique. The optimization engine is 

applied to the design of a Planar Inverted-F Antenna (PIFA) in 

order to achieve an optimal bandwidth performance in the 2 

GHz band.  During the optimization process, the PIFA is 

modeled and evaluated using the finite-difference time domain 

(FDTD) method. 

I. INTRODUCTION 

HE Planar Inverted-F Antenna (PIFA) is the most widely 

used antenna owing to its low profile, simple structure and 

ease of fabrication, and primarily its high efficiency and 

wideband characteristic. Recently, PIFAs have drawn much 

attention in antenna design and manufacturing as published in 

[1] and [2] papers. High gain of antennas, which is an 

important characteristic in terms of their performance, may 

only be attained through proper design and structure. 

However, there are many parameters, such as the sizes of the 

radiating elements, position of feeding wires, etc. that 

challenge engineers and manufacturers to design smaller 

antennas.  The objective of this work is to maximize the 

bandwidth of a PIFA antenna while keeping its overall size 

small. While doing so, the GA optimization techniques have 

been analyzed to find a better convergence mechanism when 

applied to the modeling method. 

 

The GA is a very powerful search and optimization tool 

which works differently compared to classical search and 

optimization methods. GA is nowadays being increasingly 

applied to various optimizing problems owing to its wide 

applicability, ease of use and global perspective. 

 

The GA tool actually provides interesting insight into the 

design and optimization of antennas. As described in [3] GAs 
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are able not only to optimize performance of existing antenna 

designs, but also to create new kinds of antennas with highly 

counterintuitive designs. Using a GA, it is possible to 

prescribe the desired performance of an antenna and allow the 

computer to find the parameters for the optimal design. 

 

Previous researches [4] have demonstrated that GAs are 

being applied to many different antenna designs. GAs are very 

suitable in the engineering areas as antenna principles, which 

are a subset of electromagnetics and founded on Maxwell’s  

equations, are complex to understand and grasp intuitively. 

One of the studies which are more relevant to the context of 

this project have explored the design and optimization of 

PIFA antennas using FDTD and GA [5], with focus on 

standard GA technique. 

 

Genetic algorithms (GA) are a class of evolutionary 

algorithm which provides optimization capabilities to a wide 

range of problems. Some of the issues that affect the 

traditional tools also affect GAs, but GAs have proved to be 

far more robust at handling complex and non-linear problems. 

The GA can providentially alleviate the difficulties of the 

sub-optimal solution.  

 

This paper presents a smart hybridized GA which has been 

applied to the FDTD modeling technique and the performance 

analysis has been extended and compared using other GA 

techniques. 

II. METHODOLOGY 

The methodology used in this project involves the modeling 

of the PIFA using the FDTD method through which the 

bandwidth of the antenna is evaluated. The bandwidth is 

adjusted and fine-tuned by varying some of the key 

parameters, such as the height of the radiating plates or the 

position of the feeding wire of the antenna. The optimal 

performance is achieved using the GA technique. As part of 

the optimization work, different GA techniques have been 

experimented to analyze the convergence behavior towards 

the best solution. 

A. Implementation of the FDTD 

FDTD starts by discretizing a three-dimensional space into 

rectangular cells, which are called Yee Lattice [6].  The Yee 

lattice is specially designed to solve vector electromagnetic 

field problems on a rectilinear grid.  The grid is assumed to be 

uniformly spaced, with each cell having edge lengths ∆x, ∆y 
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and ∆z. Fig. 1 shows the positions of fields within a Yee cell. 

Every E component is surrounded by four circulating H 

components.  Likewise, every H component is surrounded by 

four circulating E components.  In this way, the curl 

operations in Maxwell’s equations can be performed 

efficiently.  Arrays must be used to represent the discrete 

space into a high-level programming language.  

One-dimensional space is represented by a 1D array, similarly 

2D and 3D discrete spaces are represented by 2D and 3D 

arrays respectively.  As explained in [7], the electric and 

magnetic equations are expressed in Array Space as 
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After having discretized the computational space and time, 

the FDTD has to be applied to the PIFA in order to simulate 

the propagating E-fields and H-fields.  The structure of the 

PIFA varies according to the different context in which it is 

used.  This work deals only with the basic geometry of a PIFA 

which normally consists of a ground plate, a radiating plate 

and a feeding wire. 

In order to excite the PIFA structure, ideally the field 

distribution of the dominant mode in the plane of excitation 

would be used. However, this distribution is not accurately 

specified for an arbitrary geometry. Instead, a y-directed 

electric field can be used to excite the antenna. A Gaussian 

pulse implemented as soft source is used as the excitation 

source. 

The Voltage Standing Wave Ratio (VSWR) is the key to 

obtaining the bandwidth of the PIFA and thus, the key to 

achieve the objective of this project.  In order to obtain the 

VSWR, the input impedance of the PIFA has first to be 

determined.  The generalized input or line impedance can be 

simply calculated using the line voltage and current at a fixed 

point on the transmission line.  These are obtained by Fourier 

transforming the time-dependent voltages and currents.  Using 

the input impedance calculated, the S11 parameter can be 

obtained and consequently the VSWR is calculated as 
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B. Implementation of the GA 

The GA is the engine driving the optimization process and 

the FDTD modeling forms part of the fitness evaluation of the 

optimization. The GA begins its optimization with an initial 

random population, evaluates the fitness of each solution and 

selects the best ones for convergence towards the optimal 

solution, which will result to the best bandwidth performance, 

therefore the optimal antenna design. Following the previous 

work done in this area where different techniques were 

studied, this work presents further experimentation which 

involves the BSFC. In this work, the GA has been enhanced 

using a novel hybrid technique combining both BCGA and 

RCGA. As this is a binary problem, the BSFC, when using the 

proposed CPS method, consist of ones representing correct 

outputs and zeros representing outputs which are incorrect. 

For the PIFA consisting of 5 different parameters, in this 

context, the BSFC length was taken as 32 bits.  

 

1) BSFC 

In GA, selecting parents based on their fitness value, 

whether using absolute values, tournaments or a ranking 

system, is by far one of the most important conditions to 

satisfy in order to have a population evolving in the right 

direction. However, as demonstrated in [8] considering an 

individual in terms of a single value can be often limiting. In a 

typical GA problem, an individual may be very good at certain 

aspects of the problem and very poor at others. Consequently, 

considering only a consolidated overall fitness value for an 

individual may ignore the individual’s detailed task-wise 

performance. In this regards, this technique has been applied 

in this project and the population strengths and weaknesses 

has been considered for the fitness evaluation.  

As part of this process, an efficient pairwise parent 

selection process, the Comparative Partner Selection (CPS) 

[8] has been used for the crossover operation.  This method 

aims to minimize the population variance throughout the 

iteration process. In the CPS process, the fitness value can be 

seen as the probability of two individuals mating and the 

mathematical formula of this probability can be expressed as 
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where fm is the binary fitness string of individual m and Ʃ 

represents the summation of each bit in the binary string. 
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Fig. 1.  An FDTD cell or Yee cell showing the positions of electric and 

magnetic field components. 
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The objective is to maintain the search period of the 

optimization process, while individuals that do not satisfy all 

training cases equally (i.e., having a BSFC consisting of ones) 

do not dominate the population. Unlike other proposed 

methods to maintain diversity as evolution proceeds, the 

process experimented in this work is an effective mechanism 

for problem decomposition. The idea is to maintain a 

population that is capable of solving all training cases equally 

and has a good overall fitness value. The probability of 

crossover is devised in such a way that two similar individuals 

in terms of BSFC is less likely to happen than the crossover of 

two individuals with considerable difference in weaknesses. 

 

2) Smart Hybrid GA 

The analysis and work done in the fitness evaluation area 

[8], [9] has highlighted the benefits of the BSFC. However, 

when applied to the current problem, it has been observed that 

the performance varies, and in most of the cases the process of 

converging to the optimal solution takes longer, as compared 

to the other techniques experimented.  

Therefore, in order to optimize the process and to bring 

more intelligence to the computation, the clustering algorithm 

has been applied along with the BSFC concept. The clustering 

GA helps to reduce the cost of evaluation and accelerate the 

convergence [10].  Fig. 2 illustrates the conventional GA and 

the clustered GA. 

Clustering is a simple method of grouping the population 

into several small groups, called as clusters [11].  The 

algorithm evaluates only one representative for each cluster.  

The fitness of other individuals is estimated from the 

representatives’ fitness.  Using this method, large population 

can be maintained with reasonably less evaluation cost.  One 

of the important factors to take into consideration for 

clustering is the similarity measure.  This is commonly 

achieved using distance measures such as Euclidean distance, 

City block distance and Minkowski distance.  Computation of 

the distance is generally done using equation 
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where m=1, m=2 and m ≥  3 for City block distance, 

Euclidean distance and Minkowski distance respectively. In 

order to adapt to the project situation, a combination of 

binary-coded and real-coded has been used. The BCGA has 

been used for the BSFC and evaluation process whereas the 

RCGA has been used for better clustering. 

In this project, the initial setup has been adjusted to fit the 

PIFA optimization context. A large enough population size of 

100 individuals was initialized. The number of bits, 

representing the problem variables, has been increased so as 

to have more relevant and significant outcome. Finally to cater 

for the hybridized approach, the number of individuals in the 

cluster has been setup to 5. 

 

The run parameters are described in the table 1. 

 

The high level process experimented is illustrated in Fig. 3. 

 

Conventional GA Clustered GA

 
Fig. 2.  Conventional GA vs. Clustered GA. 

TABLE I 

INITIAL SETUP AND PARAMETERS 

Parameter Setup Value 

  

Number of generation 150 

Population size 100 

Number of problem variables 50 

Number of individual in a cluster 5 

Genetic operators Crossover, 

Mutation 

Selection operator CPS 

Operator probabilities 0.9, 0.1 

  

 

 
 

Fig. 3. High level workflow of the Smart Hybrid GA. 
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III. EXPERIMENTAL RESULTS 

A succession of tests was carried out throughout the work to 

check whether the implementation of the FDTD was 

appropriate to evaluate the performance of the PIFA.  These 

tests were carried out using different boundary conditions, 

different excitation pulses and different computational space 

size. Fig. 4 shows the electromagnetic propagation simulated 

from the FDTD. 

The PIFA was excited using a Gaussian waveform of 

frequency ranging from 1.9 GHz to 2.5 GHz.  The feeding 

point, that is, the source location was varied by adjusting the 

parameters fx and fz.  The height of the radiating plate from 

the ground plate was also varied by changing the value of 

another parameter ‘h’.  The variation of the height was quite 

small (approximately 2mm) since the idea of the project is to 

maximize the bandwidth of the PIFA while keeping the 

overall dimensions constant.  The bandwidth is defined by the 

range of frequencies where the VSWR is less than 2, which 

represents the 2GHz range.  

A graph of VSWR against frequencies, as shown in Fig. 5, 

is plotted to show how the bandwidth is obtained. 

The bandwidth obtained from the simulation is 

approximately 420 MHz.  This is the optimal solution 

generated by the GA.  The ground and radiating plates’ 

dimensions were set to 50x26mm and 22x14mm respectively.  

The values of the parameters used for achieving this particular 

bandwidth are fx = 3 cells (6mm), fz = 3 cells (6mm) and h = 4 

cells (8mm).  The results could be enhanced if the population 

size of the GA was bigger and if the number of discrete values 

used for the parameters were larger.  However, as mentioned 

previously, this would cause the simulation to last much 

longer. 

The Binary Coded GA has proved to be a very good 

optimizing tool and if used properly, it may serve to solve 

various problems of search and optimization. Classical 

optimizing methods usually take much longer time to find the 

optimal solution as compared to the Binary GA method. Fig. 6 

shows one of the convergence trend of the BCGA during the 

simulation. 

The Real Coded GA has been chosen as the alternative for 

Binary Coded GA. One of the most important features of the 

RCGA is its capacity to exploit local continuities. Owing to 

the use of real parameters in RCGA, large domains for the 

variables can be used as opposed to BCGA implementations 

where increasing the domain would decrease the precision. In 

our work, the convergence towards the optimal solution was 

seen to happen more quickly. However, owing to large 

computational space and real valued parameters, the RCGA 

took significantly more time for the optimisation and 

simulation. Fig. 7 shows one of the convergence trends of the 

RCGA, which is noticeably smoother than the BCGA. 

 

 
Fig. 4.  Electromagnetic propagation from PIFA using FDTD. 

 

                ~ 420 MHz 
 

Fig. 5.  Graph of VSWR v/s frequency. 

 
Fig. 6.  BCGA Convergence. 

 
Fig. 7.  RCGA Convergence. 
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The GA by clustering, on the other hand, has shown to 

converge efficiently to the optimal solution. The 

computational cost is much lower than RCGA and 

consequently, the population size could be increased without 

considerably affecting the performance of the optimisation. 

Fig. 8 shows one of the convergence trend of the Clustering 

GA during the simulation. The convergence seems to be 

longer than the RCGA but performance is much better 

because of the FDTD evaluation of only the representatives of 

each cluster. 

 

The BSFC/CPS method was experimented on the PIFA 

problem in an attempt to further enhance the GA optimisation 

process. From the outcome of the simulation, it is observed 

that the convergence gain is obvious in terms of average 

fitness and the number of runs ending in optimal (zero error) 

solution is increased. As this is a binary problem, the BSFC, 

accompanied by the CPS method, consisted of ones 

representing correct outputs and zeros representing outputs 

which are incorrect. For the PIFA consisting of five different 

parameters, the BSFC length was taken as 32 bits. Fig. 9 

shows one of the convergence trends of the BSFC GA during 

the simulation.  

 

The BSFC/CPS driven GA is seen to outperform the 

standard crossover methods in terms of convergence. 

The hybridised GA consists primarily of the clustering 

mechanism along with the BSFC methodology applied to the 

optimisation process. Since the BSFC alone was observed to 

consume considerable amount of computational cost, some 

further intelligence by clustering mechanism has been applied 

to the optimisation process to reduce the surplus of 

computational calculation. Fig. 10 shows one of the 

convergence trends of the smart hybridised GA during the 

simulation.  

 

The results are interesting as although the number of 

iterations to reach the optimal has increased, the 

computational cost is significantly lower. 

In order to demonstrate the efficiency of the smart hybrid 

GA, a comparison analysis has been made on the recently 

proven converging mechanism, the Heuristic Particle Swarm 

Ant Colony Optimiser (HPSACO). Fig. 11 shows one of the 

convergence trends of the HPSACO when applied to the PIFA 

problem. 

 

The smart hybridised GA is observed to have visible 

tendency to converge to the optimal solution whereas the 

 
Fig. 8.  Clustered GA. 

 
Fig. 9.  BSFC GA Convergence. 

 
Fig. 10.  Smart Hybridized GA Convergence. 

 
Fig. 11.  HPSACO Convergence. 
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HPSACO has an erratic behaviour although the optimal 

solution was achieved at several points. 

Fig. 11 shows the comparison of the simulation time using 

the different algorithms.  

 

The results highlight the efficiency of the smart hybrid GA 

as compared to the other techniques explored. This 

hybridisation could be applied in multi-objective 

computation, such as enhancing the performance optimisation 

done in [12] using multi-objective GA. Similarly, in the 

problem presented as a multi-objective optimisation in [13], 

the hybridised GA could be a good enrichment in the 

optimisation context. 

Owing to its combinatorial optimisation, the GA has been 

used extensively in this project using binary mode as well as 

continuous mode for the optimisation of the PIFA. The GA 

has proved to be a very robust algorithm with respect to its 

parameters, namely the population size and operators – 

selection, crossover and mutation. 

The bandwidth obtained is approximately 420 MHz. This is 

the optimal solution generated by the optimisation GA. The 

values of the parameters used for achieving this particular 

bandwidth are: fx = 3 cells (6mm), fz = 3 cells (6mm) and h = 4 

cells (8mm). 

The convergence could have been better if the population 

size of the GA was bigger and if the number of values used for 

the parameters were larger. However, this might have caused 

the simulation to last much longer. Subsequently, a proper 

trade-off between convergence and computational cost was 

considered and the number of values taken for the parameters 

were optimised and the population size adjusted accordingly 

so that the simulation could efficiently output pertinent 

results.  

One of the major drawbacks observed in the GA is the local 

optima. In Binary-Coded GA or Real-Coded GA, a difficulty 

regarding the boundaries of the decision variables may often 

arise and the optimisation may converge wrongly or take very 

long to converge to the optimal solution. GA therefore may 

get stuck on a local optimum solution, which is only the 

sub-optimal solution of the more global problem. Similar 

issues on convergence or slowness of convergence have been 

faced during the PIFA optimisation process while adjusting 

the parameters. It has then been observed that the operators 

play a crucial role in tackling these issues. The operators 

(crossover or mutation) can change an individual in a 

population in such a way that it may provide the required 

escape from the suboptimal zone. In this way the operators act 

as one of the main drives towards the optimal solution. 

 

IV. CONCLUSION 

The GA has demonstrated to be a much convenient tool for 

complex engineering problems, particularly those which can 

be described in chromosome encoding. Its application in the 

PIFA design optimisation has resulted in interesting results. 

One of the particularities observed in GA is that the problem 

can be solved using multiple solutions, even though the 

problems are multi-dimensional, non-differential, 

non-continuous or non-parametrical. 

While the BCGA and RCGA have shown to be very good 

optimization methods, it has been observed that both may get 

stuck to sub optimal solution.  The BSFC/CPS method was 

experimented with 150 runs for our PIFA problem and the 

convergence gain is visible in terms of average fitness and the 

number of runs ending in optimal (zero error) solutions is 

increased. 

However, even though the BSFC/CPS driven GA 

outperforms the others methods in terms of convergence, an 

increase in computational cost has been observed. In this 

regards, the smart hybrid mechanism through clustering, 

involving both BCGA and RCGA, has been applied. 

Consequently, this has led to an increase in the number of 

iterations to reach the optimal solution but the computational 

cost is much lower. As such, a proper trade-off between 

convergence and performance could be observed. The 

simulated time comparison highlight the efficiency of the 

smart hybrid GA as compared to the other techniques 

explored. 
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