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Abstract— Engineering optimization problems often involve
multiple objectives and constraints that are computed via
computationally expensive numerical simulations. While the
severe nonlinearity of the objective/constraint functions demand
the use of population based searches (e.g. Evolutionary Al-
gorithms), such algorithms are known to require numerous
function evaluations prior to convergence and hence may not be
viable in their native form. On the other hand, gradient based
algorithms are fast and effective in identifying local optimum,
but their performance is dependent on the starting point. In
this paper, a hybrid algorithm is presented, which exploits
the benefits offered by population based scheme, local search
and also surrogate modeling to solve optimization problems
with limited computational budget. The performance of the
algorithm is reported on the benchmark problems designed for
CEC 2014 Special Session and Competition on Single Objective
Real-Parameter Numerical Optimization.

I. INTRODUCTION AND BACKGROUND

Evolutionary algorithms (EA) are population based meta-
heuristic methods that can be applied to solve uncon-
strained/constrained nonlinear optimization problems. Evo-
lutionary Algorithms do not require gradient information
and can be applied to solve non-linear, constrained, dis-
continuous/mixed integer as well as black-box functions.
EAs search for global optimum solution(s) to optimization
problems by searching different regions of the design space
simultaneously.

In evolutionary algorithms, a population of candidate solu-
tions is evolved over a number of generations to find the opti-
mum solutions. Evolutionary algorithms are known to require
evaluations of large number of solutions. Hence, for the de-
sign optimization problems requiring expensive simulations
to evaluate the objective and the constraint functions, the
total cost of the optimization can become quite prohibitive.
Therefore, an important motivation exists to improve the
efficiency and the effectiveness of evolutionary algorithms to
reduce the computational cost of the optimization process.

To reduce the number of evaluations required for opti-
mization, there are two key approaches in literature. The
first approach relies on hybridization, i.e., a combination of
a global search technique with a local search scheme. While
local search algorithms are fast and effective, their perfor-
mance is largely dependent on the starting point. Therefore,
providing a good starting point for such algorithms is critical
to find a good solution. In hybrid methods, a suitable global
search method (such as EA) is used to identify good regions
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of search space, where the optimum is likely to be located.
Thereafter, the local search is applied in order to refine the
solution quickly. Such forms of algorithms can consist of a
single cycle (global search followed by a local search), or
multiple cycles (alternating global and local searches). This
hybrid approach is also referred to as memetic algorithm [1].
For a review on memetic algorithms, the readers are referred
to [2].

The second approach aims to reduce the computational
cost of an optimization exercise through the use of approx-
imations. Implied is that the objective and the constraint
functions are approximated using certain functions. These
replacement functions are referred to as surrogate models
or metamodels. These surrogate models are computationally
inexpensive to evaluate when compared to the simulations
of the mathematical models and can be used in place of the
expensive simulations. Even though surrogate models have
being used within evolutionary algorithms, their use in not
straightforward and requires consideration of many issues –
type of the surrogate model, selection of the training data,
global versus local models, and accuracy of the prediction –
to name a few [3].

Function approximation involves building surrogate mod-
els that can approximate the response for the functions
and are computationally cheaper than the original function
evaluations. A generic function can be mathematically rep-
resented as F (x, y) = 0, where x is a vector of m inde-
pendent variables and y is the response. A surrogate model
is trained using the responses y1, y2, . . . , yN to solutions
x1,x2, . . . ,xN sampled in the design space. The surrogate
model is an explicit function of the form y = f(x) that
mimics the response y. The number of samples required to
train the surrogate model is often related to the complexity
of the function being approximated. The more complex
the function, the more samples are required to adequately
represent the response. Since the number of samples dictates
the number of actual function evaluations, it is essential to
keep the number of samples as low as possible for function
evaluations requiring computationally expensive simulations.
For a given number of samples, various sampling techniques
try to position those samples in the design space to improve
the quality of the surrogate model built using those samples.

There are many different types of surrogate models in-
cluding Response Surface Methods (RSM) [4], Artificial
Neural Networks (ANN) [5], Kriging [6], Support Vector
Machines (SVM) [7] etc. In this work, a Kriging based
surrogate model has been used. In the last decade, Kriging
models have become quite popular due to their ability to
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represent non-linear functions accurately. Kriging has been
used with EAs to speed up the convergence for numerical test
problems [8], [9], [10], [11] and in engineering applications
including satellite boom optimization [12], piezoelectric ac-
tuator design [13], airfoil shape design [14], welded beam
design [15].

In Kriging [16], the function of interest y(x) is expressed
as a combination of a global model and localized deviations:

y(x) = f(x) + Z(x), (1)

where f(x) is a polynomial function and Z(x) is a Gaussian
model with mean 0 and variance σ2. The co-variance matrix
of Z(x) is given by:

Cov[Z(xi), Z(xj)] = σ2R (2)

where, R is a correlation matrix. Given a data set of ns

samples, the correlation between sample i and sample j is
denoted by R(xi, xj). The matrix R is symmetric and of size
(ns × ns). We assume a Gaussian correlation function with
pk set to 2.

R(xi, xj) = exp
[−∑nd

k=1 θk|xi
k − xj

k|pk
]
, (3)

where nd is the dimensionality of x, θk and pk are the hyper-
parameters and xi

k and xj
k are the kth components of xi and

xj respectively. For a new point xns+1 where the prediction
is sought, the approximated value ŷ is given by the equation
below:

ŷ = μ̂ + rT R−1(y − 1μ̂) (4)

where, y is the column vector of size ns containing the
function values at the given data points and 1 is a column
vector of all 1’s.

μ̂ is estimated using the following equation:

μ̂ = (1T R−11)−11T R−1y (5)

rT is a correlation vector of length ns between the new
point xns+1 and the ns sampled data points:

rT = [R(xns+1, x1), . . . , R(xns+1, xns)]T (6)

The variance, σ̂2, can be estimated as follows:

σ̂2 = 1
ns

[
(y − 1μ̂)T R−1(y − 1μ̂)

]
(7)

Finally, the correlation parameters, θk can be estimated
by maximizing the likelihood and solving the following
optimization problem:

Maximize
(− 1

2 (ns ln(σ̂2) + ln |R|)) (8)

The above optimization problem can be solved using a
non-linear optimizer.

In this paper, a hybrid surrogate based evolutionary al-
gorithm is presented to solve computationally expensive

Algorithm 1 Proposed Hybrid Surrogate Based Algo-
rithm (HSBA)
Require: N {Population Size}
Require: NG > 1 {Number of Generations}
Require: FEmax {Maximum Number of Function

Evaluations}
1: FE = 0
2: pop1 = Initialize()
3: Evaluate A(pop1)
4: Update FE
5: Archive = pop1

6: for i = 2 to NG do
7: childpopi−1 = Evolve(popi−1)
8: Evaluate A(childpopi−1) {True evaluation}
9: Update FE,Archive

10: S=Rank(childpopi−1 +popi−1 )
11: popi = S(1 : N)
12: end for
13: xbestGA = Best solution obtained from GA
14: M=Generate-Model(Archive)
15: xbestPS = Pattern search(xbestGA)
16: Evaluate A(xbestPS) {True evaluation}
17: Update FE
18: x0,LS = Better solution among xbestGA and xbestPS

19: xbestLS = Local search(x0,LS) {Max. evals. allowed =
FEmax − FE}

20: Update FE
21: if FE < FEmax then
22: xbest = Pattern search(xbestLS) {Max. evals al-

lowed = FEmax − FE}
23: else
24: xbest = xbestLS

25: end if

problems. The search proceeds in three successive phases: a)
Global search, b) Kriging model building and search, and c)
Local search. The algorithm is tested on the set of benchmark
functions [17] proposed for CEC 2014 Special Session and
Competition on Single Objective Real-Parameter Numerical
Optimization using a limited number of function evaluations.

II. PROPOSED HYBRID SURROGATE BASED

ALGORITHM (HSBA)

The algorithm presented here attempts to capitalize on
both surrogate model building as well as local search in order
to solve computationally expensive problems with limited
budget. The method is outlined in Algorithm 1, while the
steps involved are discussed in the following subsections.

A. Global search

The first phase of the proposed algorithm is a global
search using a population based stochastic algorithm (GA).
A population size of 2×Nvar is evolved for 10 generations
on the true objective function. An archive of all solutions
explored in the process is maintained. Thus, the archive
contains all solutions evaluated using the true function. The
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best solution obtained from the search is referred to as
xbestGA. The MATLAB inbuilt GA has been used in this
phase with its default settings.

B. Kriging model generation and optimization

Once the global search is complete, a Kriging model for
the problem is built with the solutions in the archive using the
method described in Section I. For calculating the likelihood
function, code available at [18] is used, while Matlab GA
is used to maximize the likelihood function to construct the
model. Thereafter, the best solution obtained from the global
search (xbestGA) is used as a (potentially good) starting
solution for an exhaustive Pattern search [19], [20] on the
Kriging model (as opposed to true function evaluations). The
best solution obtained from this search (in terms of predicted
objective values from Kriging model), is then evaluated using
the true function. This solution is referred to as (xbestPS).

C. Local search

Next, the better solution among xbestGA and xbestPS

is referred to as x0,LS and used as the starting solution for
the local search. For performing the local search, fmincon
function in Matlab is used. The final solution obtained after
the local search is designated as xbestLS.

Lastly, if there are still leftover function evaluations, i.e.,
if the total number of function evaluations used in above
three phases is less than the allowed number of function
evaluations FEmax, a pattern search is used (starting from
xbestLS) to further refine the solution obtained using the
local search. The output of this step is the final xbest
obtained by the algorithm.

III. NUMERICAL EXPERIMENTS

In this section, the performance of HSBA on the set of
benchmark problems for CEC 2014 Special Session and
Competition on Single Objective Real-Parameter Numerical
Optimization are presented. HSBA is implemented in Matlab
2009a.

A. Parameter settings

For each of the phases described in the algorithm in
Section II, default functions available in Matlab 2009a are
used. The functions are ga for the global search (GA),
patternsearch for the Pattern search, and fmincon for the
local search. Except for the population size (2×Nvar) and
generations (10) for the global search phase, none of the
algorithm parameters have been specified or adjusted. The
algorithms are run with their default values in Matlab 2009a.

B. Results

The statistics of the results are calculated over 20 runs. The
results reported are after FEmax evaluations, which is set to
500, 1000 and 1500 for 10, 20 and 30 variable problems
respectively.

The convergence plots for a typical run are shown in
Figures 1, 2 and 3 for 10, 20 and 30 variable problems
respectively. In most plots, four distinct segments can be

observed, which correspond to the improvement in the
function value in each stage (global search, Kriging model
optimization, local search using fmincon and pattern search).
The last phase is only present for cases where total function
evaluations for first three phases where less than FEmax.

C. Algorithm complexity

The relative time complexity (T̂1/T0) of running the
algorithm on different problems is summarized in Table II,
where T̂1 is the average time taken for one run, and T0 is
the time taken to run the following routine in Matlab 2009a:

---------------------------------
for i=1:1000000
x= 0.55 + double(i);
x=x + x; x=x/2; x=x*x; x=sqrt(x);
x=log(x); x=exp(x); x=x/(x+2);
end
t0=toc(tstart);
---------------------------------

TABLE II: Average time complexity of HSBA for different
problems across 20 runs

Problem T̂1/T0

1 864.306
2 7464.985
3 27972.132
4 784.309
5 7546.807
6 27511.990
7 828.780
8 7395.496
9 27487.388
10 651.977
11 7376.580
12 28238.899
13 543.936
14 6884.168
15 29643.927
16 690.278
17 7597.546
18 27732.008
19 812.133
20 7664.854
21 28439.405
22 703.126
23 7379.044
24 28139.415

IV. SUMMARY AND CONCLUSIONS

In this paper, a Hybrid Surrogate Based Algo-
rithm (HSBA) is proposed to solve computationally expen-
sive problems in very limited number of evaluations. The
algorithm works by building a Kriging model obtained from a
global search, and then further refines the solutions by doing
a local search on the model as well as true problem. The
performance of the algorithm is reported for the CEC 2014
Special Session and Competition on Single Objective Real-
Parameter Numerical Optimization. A comparison with other
algorithms on the same problems is awaited from the special
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TABLE I: Results obtained using HSBA after FEmax evaluations, for 20 runs

Problem Best Worst Median Mean Std.
1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
4 0.00000000 0.00000046 0.00000003 0.00000009 0.00000014
5 0.00000584 0.77935033 0.00481393 0.11144856 0.23943036
6 0.51373562 20.45091600 6.13638360 6.86658650 5.20101890
7 0.00000000 0.00000047 0.00000002 0.00000010 0.00000015
8 0.00327427 2.89277350 0.07208472 0.26583767 0.64039366
9 1.73164360 46.92244100 10.14122900 14.50943400 12.31920700
10 5.00000000 34.00000000 17.50000000 17.05000000 6.36168630
11 81.00000000 168.00000000 126.00000000 120.65000000 22.21965700
12 214.00000000 375.00000000 305.50000000 307.10000000 41.92713000
13 5.42414240 10.01616600 7.14840180 7.81596390 1.44906310
14 7.98453620 10.79675700 9.63006320 9.46549280 0.67411500
15 9.44224060 11.21212600 10.70945900 10.67134800 0.41202425
16 0.04921299 0.06398661 0.06398562 0.05807692 0.00742507
17 0.00000000 0.00000237 0.00000036 0.00000070 0.00000077
18 0.00000000 0.00000320 0.00000009 0.00000031 0.00000071
19 0.01255563 9.03805260 4.20116600 3.78768880 3.17235040
20 0.22826525 71.38461400 17.09644100 24.03333700 23.61827900
21 26.45026100 83.72679400 29.03959700 33.28979000 14.52148800
22 30.84367500 37.80831800 37.80831800 36.46513400 2.58797660
23 29.41721200 43.11223200 33.82310900 34.40343200 3.16913760
24 91.58095200 108.46712000 101.48667000 102.13593000 4.64321080

session, which will reveal the strengths and weaknesses of the
proposed algorithm in dealing with different kind of single
objective problems.
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Fig. 1: Convergence plots for a typical run for 10 variable problems
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Fig. 2: Convergence plots for a typical run for 20 variable problems
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Fig. 3: Convergence plots for a typical run for 30 variable problems
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