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Abstract— Genetic programming(GP) has become an in-
creasingly hot issue in evolutionary computation due to its
extensive application. Anomaly detection in crowded scenes
is also a hot research topic in computer vision. However,
there are few contributions on using genetic programming
to detect abnormalities in crowded scenes. In this paper, we
focus on anomaly detection in crowded scenes with genetic
programming. We propose a new method called Multi-Frame
LBP Difference(MFLD) based on Local Binary Patterns(LBP)
to extract pixel-level features from videos without additional
complex preprocessing operations such as optical flow and
background subtraction. Genetic programming is employed to
generate an anomaly detector with the extracted data. When
a new video is coming, the detector can classify every frame
and localize the abnormality to a single-pixel level in real-
time. We validate our approach on a public dataset and
compare our method with other traditional algorithms for
video anomaly detection. Experimental results indicate that our
method with genetic programming performs better in detecting
abnormalities in crowded scenes.

I. INTRODUCTION

ANOMALY detection is an important issue in the fields
of video behavior analysis and computer vision. Mean-

while, a lot of surveillance cameras have been installed
in many public places due to the increasing attention to
public safety and decreasing cost of monitoring device,
resulting in a large amount of video data. In most cases, the
purpose of surveillance is to analyze real-time behaviors in
videos and detect deviations, which are called abnormalities,
from the normal in order to ensure social public safety.
Because of the lack of insufficient intelligent functions, the
traditional surveillance systems require huge human effort.
However, manual monitoring has the characteristics of low
efficiency and poor real-time while abnormal behaviors of
videos are rare and short-lived in general, so the majority
of abnormalities will be missed. Therefore, intelligent video
monitoring [1], which can drastically reduce manpower ex-
pense and enhance the accuracy of anomaly detection, is of
great practical significance. In the real world, most cases of
surveillance are crowded scenes such as stations, markets,
shopping malls and etc. And anomaly detection in crowded
scenes becomes a hot topic in computer vision due to their
border prospects [2]–[5]. In this paper, we focus on video
anomaly detection in crowded scenes.

Various approaches have been proposed for behavior anal-
ysis and anomaly detection. These approaches can be divided
into two kinds according to the type of scene representation.
Approaches of the first category are based on trajectory [6]–
[10], which contains a lot of information that objects we
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detected follow in the scene. Subspace constraints and shape
theory are used to recognize deviation of people from a
well-controlled path they should follow in [6] [7]. Dee et
al. [8] determine if a moving person is normal or abnormal
according to the fact that people usually move along regular
paths. Robertson et al. [9] add additional information to
the tracking-based information for tennis analysis in videos.
Other object and frame-based information are added to the
trajectories by Porkili et al. [10], they also show anomaly
detection in synthetic and simple real-life scenes. The key
technology of above methods are to track the objects in
videos and get their trajectories at first, which will lead to
a phase called modeling learning. Then abnormalities can
be detected based on this model. These approaches depend
on the accuracy of tracking while it is difficult, even for
human beings, to effectively distinguish different trajectories
from a crowded scene which contains a large number of
moving objects. Furthermore, most researchers have used
the manually marked tracks, so most of the methods cannot
achieve real-time results.

Many researchers have turned to approaches based on
motion features [11]–[15] which are reliably extracted from
videos by optical flow, pixel change histograms or some
background subtraction operations. These approaches are
more robust than trajectory-based approaches. The extracted
features contain information about motion direction and
magnitude. Then, two popular methods called sparse cod-
ing and topic model will be used to train a model for
anomaly detection with these features. Sparse coding utilizes
the normal scene to train a dictionary and calculate the
reconstruction cost to judge whether a scene is an abnor-
mal one or not [12] [15]. Methods of topic model assign
different topics to behaviors in a video [13] [14], which
can distinguish different types of abnormalities. However,
all these approaches will lose abnormality information due
to variations of object appearance. Moreover, methods for
video feature extraction such as optical flow and background
subtraction might not be applicable for crowded scenes,
where exist motion background and lots of clutter.

All the methods mentioned above require some complex
operations for video preprocessing such as motion detection,
object tracking, video summarization, crowd counting, image
segmentation and etc. In this paper, we propose a new sim-
ple method for feature representation without any complex
preprocessing. The extracted features will contain spatial-
temporal information of videos. After the phase of feature
extraction, GP is used to address the classification task.

GP has proved to be an effective technology in problem
solving and has been successfully applied in a wide variety
of fields [16], especially in computer vision related tasks
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[17]–[21]. Zhang et al. [17] used GP for problems of various
object detection. GP was employed by Howard et al. [18] to
detect vehicles in different indoor and outdoor environments
such as industrial, urban and rural in images. The GP-based
motion detection method was introduced by Song et al. in
[19] and has proved effective in various real world scenarios
[20] [21]. It has proved to be true that the detectors generated
by GP can achieve similar or even better performance to the
traditional human designed models developed for those tasks.
However, by far there are few researchers working on the
issue of applying GP to video anomaly detection in crowded
scenes. Our work will represent this application.

In this paper, we aim to investigate the effectiveness of
genetic programming for video anomaly detection in crowd-
ed scenes. Firstly, we will propose a new simple method
to extract pixel-level features containing spatial-temporal
information from videos, while traditional methods require a
slightly more complex operations for feature extraction such
as optical flow and background subtraction Secondly, we
will employ genetic programming to generate an anomaly
detector with some training data, where a training sample
is a cutout with label negative or positive, divided from a
frame with grids. A negative sample means that there is no
abnormality in the subregion while positive sample means
that abnormal object or event exists in the subregion in
contrast. When a new video is coming, the detector can
classify each frame of this video and localize the abnormality
to a single-pixel level. Finally, we validate our approach on
the public dataset UCSD 1 and compare our method with
other traditional approaches for anomaly detection in the
same dataset. Experimental results indicate that our method
with genetic programming performs better in detecting ab-
normalities in crowded scenes.

The main work in this paper are as follows:
• Represent a new study of applying genetic programming

to video anomaly detection in crowded scenes.
• Propose a new simple method for feature extraction

from videos without additional complex preprocessing.
• Prove that our GP-based method can perform anomaly

detection on new-coming videos in real-time.
The remainder of this paper is organized as follows. In

section II we will introduce the genetic programming. The
proposed method for anomaly detection in crowded scenes
is described in detail in section III. The dataset and exper-
imental results are presented in section IV, and comparison
with traditional methods is also provided. Finally, section V
concludes the paper.

II. GENETIC PROGRAMMING

Genetic programming [22] is a systematic method for get-
ting computers to automatically solve a problem starting from
a high-level statement of what needs to be done using princi-
ples of Darwinian evolution. Genetic programming is derived
from genetic algorithm(GA). The main difference between
them is that programs in GP are expressed as tree structure

1http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm

rather than as lines of code in GA. The anomaly detector
is also expressed in tree structure. Furthermore, a program
tree in this situation for anomaly detection is regarded as a
classifier which takes features of small subregions or cutouts
from video frames as the input and produces an output to
decide which class that input subregion should belong to.
Anomaly detection only includes two classes: abnormal and
normal. A normal sample, labeled with negative, means that
there is no abnormality in the subregion while abnormal
sample labeled with positive means that abnormal object
or event exists in the subregion. However, the output of a
program tree is usually a real number and the results we
need are class labels. So we use dynamic range selection [23]
to determine the mapping between output values and class
labels. Fig.1 shows a simple GP program tree, representing
the detector for anomaly detection.

Fig. 1. A simple GP program tree. The mapping between output values
and class labels is determined by dynamic range selection.

In a GP program tree, the nodes indicate the instructions to
execute and the links indicate the arguments for each instruc-
tion. The internal nodes in a tree will be called Functions,
while the tree’s leaves will be called Terminals. For a
specific problem, the ingredients include specialized func-
tions and terminals. For example, if the goal is to get
GP to automatically program a robot to mop the entire
floor of an obstacle-laden room, the human user must tell
genetic programming what the robot is capable of doing. For
example, the robot may be capable of executing functions
such as moving, turning, and swishing the mop.

GP is a domain-independent method that genetically
breeds a population of computer programs to solve a prob-
lem. Specifically, given a problem, GP typically starts with
a population of randomly generated computer programs
composed of available functions and terminals. For each GP
program, a number of samples with labels are used to evalu-
ate its performance, which is recorded as the Fitness. Then,
GP will transform a population of computer programs into a
new generation of programs. The individual programs for the
new population are created by applying analogs of naturally
occurring genetic operations with specified probabilities:
Reproduction, copying the selected individual programs
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withing higher fitness to the new population; Crossover,
randomly recombining chosen parts from two selected pro-
grams; Mutation, randomly mutating a randomly chosen
part of one selected program. Performance evaluation is
also needed for the new programs on the same detection
task. Iteratively perform the sub-steps, called a Generation,
of performance evaluation and individual generation on the
population until a best program is found or the maximum
number of generation is reached. Then the best GP program
is the solution of this problem.

III. OUR APPROACH FOR ANOMALY DETECTION IN
CROWDED SCENES

In this section, we are going to explain our GP-based
method for anomaly detection in crowded scenes in detail.
The overview of our method is illustrated in Fig.2. There are
three main phases in our method:

• Feature Extraction. Extract pixel-level features from
videos using our proposed method and divide them into
training set and testing set with manual labels.

• GP Evolution. Include two stages: Generating, which
is to generate GP programs as anomaly detectors given
the training data. Evaluating, which is to evaluate the
generated anomaly detector on testing data. The best
performing program with highest fitness during the
evaluating stage is then selected as the anomaly detector.

• Anomaly Prediction. The produced anomaly detector is
applied to perform anomaly prediction on new-coming
video streams and localize the abnormality to a single-
pixel level.

Fig. 2. Overview of our method

A. MFLD

Traditional methods for anomaly detection require some
operations for video preprocessing such as motion detection,
object tracking, video summarization, crowd counting, image
segmentation and etc. However, all these operations are
complex and time-consuming. To avoid the shortage of
traditional methods, we propose a new simple method for
feature representation without any complex preprocessing
based on local binary patterns(LBP).

The original LBP operator was introduced by Ojala et
al. [24], designing for texture description originally. The
operator assigns a label to every pixel of an image by
thresholding the 3 × 3-neighborhood of each pixel with the
center pixel value and considering the result as a binary
number. The LBP value of each pixel is calculated as follows:

LBP (x) =
∑7

k=0 B(Gk −Gx)× 2k (1)

In Equation 1, Gx is the gray-scale value of the center pixel
while the Gk is the gray-scale value of the eight correspond-
ing neighborhood pixels. B(x) is a binary function, based
on the following definition:

B(x) =

{
1 x ≥ 0

0 x < 0
(2)

Since then LBP has become a basic representation for
pixel-level feature, obtaining continuous improvement and
optimization. Also it has been applied in various fields,
especially in face detection [25] [26] . Fig.3 shows the
representation of LBP.

Fig. 3. Representation of LBP. In a 3 × 3 pixels image, the gray-scale
value of the center pixel is 50, and the LBP value of this pixel is equal to
55 in decimal.

Equation 1 calculates the LBP value of each pixel in a
frame. Then we propose a new feature representation of each
pixel based on the LBP. This representation calculates the
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average difference of LBP between each pair of consecu-
tive frames over n number of frames. We define this new
representation as Multi-Frame LBP Difference(MFLD). The
MFLD value of each pixel x in a frame is calculated as
follows:

MFLD(x) =

∑n−1
i=1 (|LBPxi − LBPxi+1 |)

n− 1
(3)

In Equation 3, each pixel x of a frame is calculated as the
average difference between the LBP of pixel x for n previous
frames. LBPxi refers to the LBP of pixel x in frame i, where
i = 1 refers to the current frame, i = 2 refers to the previous
frame, i = 3 refers to the second previous frame and so on.
Fig.4 shows the representation of MFLD.

Fig. 4. Representation of MFLD. The MFLD value of a pixel is equal to
the average difference of LBP between each pair of n consecutive frames.

Since LBP contains local spatial information of each
frame and the MFLD takes consecutive frames into account.
The proposed MFLD based on LBP for feature extraction
can extract pixel-level features containing spatial-temporal
information from video with no need for complex operations
compared to traditional methods.

B. Feature Extraction

Before performing genetic programming, a series of ac-
tions need to be performed to deal with the given videos:

• Randomly select several frames containing normal and
abnormal objects from the video.

• Calculate the MFLD value of each pixel in frames
according to Equation 3.

• Divide the selected frames into a grid with a fixed cell
to extract feature vectors. For example, if the resolution
is 200 × 100, and each cell is 10 × 10, then the grid
is 20 × 10. That means a frame contains 200 samples
and a sample contains 100-dimensional features. The

value of each dimension is equal to the MFLD value
of corresponding pixel. The number of features grows
with the increasing size of the cell, which is problem
and video dependent. A large size would require more
computational resource and increase the search space.
Otherwise, a small size may leads to low accuracy
for classification despite decreasing the computational-
complexity.

• Label the samples manually. The classes of anomaly
detection only include abnormal and normal. A normal
sample regarded as negative means that there is no
abnormality in the subregion while abnormal sample
regarded as positive means that abnormal object or event
exists in the subregion.

• Randomly divide the generated samples into two data
sets: the training set and the testing set.

Each sample of the data set consists of several features
and only one label, which represent the input and output
respectively in GP. Each input item is a pixel represented
in MFLD representation and the corresponding output is the
expected label for that cutout from the video frame.

C. GP Evolution

The main purpose of the GP evolution is to evolve a
program as the anomaly detector. After finishing the phase
of feature extraction, we generate the training data set and
the testing set, which are used to evolve and to evaluate the
anomaly detector respectively. For the problem of anomaly
detection, regions where abnormal objects or events occur
usually occupy a small proportion of a video frame compared
to regions of normal cases. Therefore negative samples are
the majority. To avoid imbalance, we randomly remove some
negative samples both in training set and testing set. So the
number of negative samples is almost the same amount as the
positive samples. The best detector with the highest fitness on
the testing data set is then selected as the anomaly detector
to process videos in the phase of anomaly prediction.

First of all, we should specify several major preparatory
steps of GP.

1) Function Set: As described in section II, each GP
program is represented in tree structure, on which the internal
nodes are made up of functions from the function set and the
external nodes are made up of terminals from the terminal
set. The function set used in our experiments is described
in Table I. The input represents the number and the type
of values that operator can deal with. The output represents
the type of returned value of that operator. In our exper-
iments, we use arithmetic operators, comparison operators
and operator If . Arithmetic operators contains addition(+),
subtraction(−), multiplication(×) and division(/). For the di-
vision operator, if a number is divided by zero, then the result
is zero. All these four arithmetic operators have two real input
values and one real returned value. Comparison operators
includes equal to(=), larger than(>) and less than(<). The
input of them is same to the arithmetic operators, but the
returned type is boolean. The operator If needs three inputs,
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representing that if the first input is true or equal to one, then
the second input is returned, else the third input is returned.
The first input of operator If can be any one of the output
of comparison operators. Each real input is either terminal
from the terminal set or output of one of the operators, whose
returned type is real.

TABLE I
FUNCTION SET

Function Output Input

+ Real Real, Real

− Real Real, Real

× Real Real, Real

/ Real Real, Real

= Boolean Real, Real

> Boolean Real, Real

< Boolean Real, Real

If Real Boolean, Real, Real

2) Terminal set: Table II shows the terminal set used
in our experiments. Apart from the Feature terminal that
represents the MFLD representation of a video frame cutout,
another terminal is Rand, which is a random number set
between 0 and 1, which would act like coefficient in normal
functions.

TABLE II
TERMINAL SET

Terminal Type Value

Rand Real [0,1]

Feature Real MFLD

3) Fitness: The fitness measure, evaluating the perfor-
mance of individual programs, is the primary mechanism
for communicating the high-level statement of the problem’s
requirements to the genetic programming system. In addition,
the function and terminal set define the search space whereas
the fitness implicitly specifies the desired goal of the search.
In our experiments, we regard the accuracy on classifying
the training data as the fitness, calculated as Equation 4.

Fitness =
TP + TN

NUM
× 100 (4)

In Equation 4, the fitness is normalized between 0 to 100. TP
and TN represent true positive and true negative respectively.
TP stands for the number of correctly classified positive
samples. Analogously, TN stands for the number of correctly
classified negative samples. NUM is the total number of
samples in testing set. This evaluation criterion is basically
the classification accuracy or anomaly detection accuracy. GP
programs with higher fitness are desired.

4) Runtime Parameter: Table III shows the specific con-
trol parameters for the run of GP in our experiments. The

population size is set to 1000 here, which can maintain the
balance between time cost and detector’s performance. The
maximum number of generations is set to 500. The depth
of a program tree of each individual is limited between 3
and 9. Furthermore, the rate of crossover, reproduction and
mutation is set to 0.8, 0.1 and 0.1 respectively to generate
new programs. These parameters were found to be effective
according to amount of experiments.

TABLE III
GP RUNTIME PARAMETERS

Parameter Value

Population Size 1000

Generations 500

Minimum Depth 3

Maximum Depth 9

Crossover Rate 0.8

Reproduction Rate 0.1

Mutation Rate 0.1

With these parameters, we conduct the GP for classifica-
tion on ECJ 2, a public Java-based evolutionary computation
research system. During the iterative runtime, if the fitness
of a program calculated by Equation 4 reaches 100, meaning
that this detector can classify all the testing samples correctly,
then the GP will be terminated. Otherwise, it will run until
the preset number of generations has been reached. The
best GP program with highest fitness will be selected as the
anomaly detector for anomaly prediction.

D. Anomaly Prediction
With the best GP program selected in the evolution phase,

it can be regarded as the anomaly detector in the problem
of anomaly prediction and will be applied to new videos of
same scenes with the video for feature extraction.

Fig.5 shows the procedure of anomaly prediction. When a
video is coming, it will be processed as follows:

• Retrieve all frames of the video without any preprocess-
ing work.

• Convert each frame into MFLD representation.
• For each frame, sample subregions by a sliding window,

which is with the same size as the cell for feature
extraction. The sliding window moves from the top-
left corner to the bottom-right corner of the frame with
the moving step of m pixels, where m can be adjusted
manually.

• Convert each 2D window of the frame into an array
of features, which are given as input to the anomaly
detector.

• The anomaly detector will classify the subregion as
either positive or negative for anomaly according to the
input.

• Since the moving step is usually less than the size
of window, sliding windows in a frame will overlap

2Available from http://cs.gmu.edu/∼eclab/projects/ecj/
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Fig. 5. Procedure of Anomaly Prediction

to some extent. A pixel will be classified by different
overlapped sliding windows, so a vote count is adopted
to record the number of positive and negative votes for
each pixel.

• Once a frame has been retrieved by all sliding windows,
each pixel of this frame will be colored red if it has more
positive than negative votes.

• Display the final results intuitively in video format.
The red regions of video contain the detected abnormal
objects or events.

IV. EXPERIMENTS

In this section, we will show how our method will work
to detect abnormalities in videos under crowd scenes.

A. Dataset

We test our approach on the UCSD anomaly dataset in
crowded scenes presented in [3]. This dataset was gathered
in UCSD campus by a fixed camera, overlooking pedestrian
walkways. The crowd density of the walkways ranges from
sparse to very crowded. The normal objects in this dataset are
only pedestrians while the abnormal objects include bikers,
skaters, carts and people walking across a walkway or in
the surrounding grass. That means non-pedestrian objects
accessing the walkway and pedestrians moving in anomalous
patterns or in non-walkway regions are abnormalities. Fig.6
shows the normal and the abnormal events of this video.

The dataset consists of two subsets, corresponding to
different scenes. We use the second subset called Ped2 to
verify our method. This subset contains scenes with moving
pedestrians, which are parallel to the camera. The camera is
recorded at 10 FPS with a resolution of 360×240. Moreover,
the video was split into 16 clips of training sets and 12
clips of testing sets, each of which contains between 120 and
200 consecutive frames. Corresponding manually generated

pixel-level binary masks are also provided, which identify the
regions containing anomalies. This is intended to enable the
performance evaluation with respect to the ability to localize
anomalies.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Normal and Abnormal events in Ped2 of UCSD dataset. (a) and
(b) only contain normal event of pedestrians. (c), (d), (e) and (f) contain
abnormalities in red boxes such as bikers, skaters and carts.

B. Anomaly Detection

In order to validate our approach, we conduct experiments
in terms of three phases discussed in Section III.

1) Feature Extraction: Firstly, randomly select 100 frames
containing both normal and abnormal events and represent
them in MFLD representation. The parameter n representing
the consecutive frames is set as 15. Then divide each frame
into a grid with 15× 15 pixels cells. Afterwards, transform
each cell into a feature vector. Each vector consists of 225-
dimensional features. The value of each dimension is equal
to the MFLD value of corresponding pixel. Not all samples
are employed. A total of 1100 positive and 1500 negative
samples of them are created, among which, 500 positive and
800 negative samples are randomly selected as the training
set and the remaining are for the testing set.

2) GP Evolution: With the training and testing set, which
are used to evolve and to evaluate the anomaly detector
respectively. We can conduct GP for classification task
according to the parameters defined in Table III. The best
program with the highest fitness on the testing data set is
then selected as the anomaly detector. Phase of GP evolution
is the most significant phase of our method. In addition,
GP has the properties that each run is probabilistic, and
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it will virtually never produce the same result for different
runs, which attempt to solve the same problem. Ten different
programs are generated from ten independent runs by genetic
programming, the best of which is then selected for anomaly
prediction.

3) Anomaly Prediction: When a new video is coming,
transform each frame of the video into MFLD representation.
Then employ a 15 × 15 pixels sliding window to move
from the top-left corner to the bottom-right corner of the
frame with the moving step of 3 pixels. Feature vectors of
subregions will be produced. Anomaly detector can generate
classes according to these data. A vote count is also adopted
to record the number of positive and negative votes for
each pixel. Once a frame has been retrieved by all sliding
windows, each pixel of this frame will be colored red if it
has more positive than negative votes. Parts of the visible
results are presented in Fig.7. The red regions contain the
detected abnormal objects or events.

C. Performance Evaluation

In order to evaluate the performance of the anomaly
detector generated by GP, two criteria called Frame −
Level Criterion and Pixel − Level Criterion are em-
ploied [4].

• Frame − Level Criterion, an abnormal frame is
considered correctly detected if at least one abnormal
pixel of the frame is detected as anomalous, which is
compared to the corresponding frame-level ground-truth
anomaly annotations.

• Pixel − Level Criterion, an abnormal frame is con-
sidered correctly detected if at least the 40 percent of
its anomalous pixels are detected correctly, which is
compared to the corresponding pixel-level ground-truth
anomaly annotation.

However, a lucky phenomenon happens when a region
different from the one that generated the anomaly is detected
as anomalous in the same frame. The frame-level detection
evaluation does not takes this phenomenon into account.
The pixel-level criterion is much stricter and more rigor-
ous. By evaluating both the temporal and spatial accuracy
of the anomaly predictions, it rules out these lucky co-
occurrences. Performance is also summarized by the equal
error rate(EER), the ratio of misclassified frames for the
frame-level criterion, or rate of detection(RD) for the pixel-
level criterion. A method with lower EER and higher RD is
desired.

We compare our method with other traditional state-of-
the-art approaches on the same dataset, whose results are
reported in [27]: Kim et al. [28], Adam et al. [29], Mehran et
al. [30], Mahadevan et al. [3] and Bertini et al. [27]. The per-
formance of the different descriptors, under both the frame-
level (EER) and pixel-level (RD) criteria is summarized in
Table IV.

As seen from the Table IV, the performance of our method
at the frame-level is close to the Mehadevan et al. and is
better than the others. However, it is noted that the approach

of Mehadevan et al. includes complex preprocessing steps.
Moreover, it is not appropriate for real-time detection be-
cause it takes almost 25 seconds to process a single frame,
while our approach can deal with unseen videos in real-time
with the simple feature extraction method based on MFLD
and the pre-generated anomaly detector. Our method is far
superior in the anomaly localization task to all other methods
including the Mehadevan et al. The good results in anomaly
localization imply that we are not taking advantage of lucky
guesses, but that we accurately localize the abnormal objects
in videos.

Furthermore, from the Fig.7 which presents the visual
results of anomaly detection in unseen videos, we can see
that our approach can not only detect the abnormal frames
but also localize the majority pixels of abnormal regions in
real-time.

TABLE IV
ANOMALY DETECTION PERFORMANCE COMPARISON WITH

STATE-OF-THE-ART ON PED2 DATASETS. EER IS REPORTED FOR

FRAME-LEVEL ANOMALY DETECTION. RD IS PRESENTED FOR THE

PIXEL-LEVEL CRITERION.

Approach EER RD

Kim et al. 30 % 18 %

Mehran et al. 42 % 21 %

Adam et al. 42 % 24 %

Bertini et al. 30 % 29 %

Mehadevan et al. 25 % 45 %

Proposed Method 28 % 65 %

V. CONCLUSION

In this paper, we have proposed a new method for anomaly
detection in crowded scenes based on genetic programming.
Firstly, without often-needed traditional preprocessing such
as noise removal, optical flow and background subtraction,
we use our proposed method MFLD, which is based on LBP,
to extract features containing spatial-temporal information
from videos. Then, GP is employed to automatically con-
struct anomaly detection programs with the data in MFLD
representation. Finally, the best performing program can be
directly applied on unseen video to detect abnormal objects
or events and show them in video.

In our approach, manual algorithm development process
and traditional preprocessing steps for videos can be avoided
or at least significantly reduced. It is less dependent on
hypotheses and models from traditional vision and image
processing methods. Instead a search process is performed
to find the best possible program. The experimental results
compared with methods under traditional video anomaly de-
tection framework indicate that our approach is comparable
with the traditional methods, even better than most of them.
Moreover, due to the simple proposed feature extraction
method based on MFLD, we can detect abnormalities on
new-coming videos in real-time.
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In short, the proposed GP-based anomaly detection method
in crowded scenes is easy to use, fast in development, and
can produce reliable detection outcomes at the same time. In
future, we will test the method on more different scenarios
and study other methods of feature extration for anomaly
detection.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Anomaly prediction results on unseen videos by our approach.
Objects in red regions are abnormal ones.
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