
Memetic Algorithm for Sorting Unsigned
Permutations by Reversals

José Luis Soncco-Álvarez
Department of Computer Science

University of Brasilia
70910-900 Brasilia, D.F., Brazil
Email: josesoal@hotmail.com

Mauricio Ayala-Rincón
Departments of Computer Science and Mathematics

University of Brasilia
70910-900 Brasilia, D.F., Brazil

Email: ayala@unb.br

Abstract—Sorting by reversals unsigned permutations is a
problem exhaustively studied in the fields of combinatorics of
permutations and bioinformatics with crucial applications in
the analysis of evolutionary distance between organisms. This
problem was shown to be NP-hard, which gave rise to the
development of a series of approximation and heuristic algo-
rithms. Among these approaches, evolutionary algorithms were
also proposed, from which to the best of our knowledge a parallel
version of the first proposed genetic algorithm computes the
highest quality results. These solutions were not optimized for
the case when the population reaches a degenerate state, that
is when individuals of the population remain very similar, and
the procedure still continues consuming computational resources,
but without improving the individuals. In this paper, a memetic
algorithm is proposed for sorting unsigned permutations by
reversals, using the local search as a way to improve the fitness
function image of the individuals. Also, the entropy of the
population is controlled, such that, when a degenerate state is
reached the population is restarted. Several experiments were
performed using permutations generated from biological data
as well as hundreds of randomly generated permutations of
different size, from which some ones were chosen and used as
benchmark permutations. Experiments have shown that the pro-
posed memetic algorithm uses more adequately the computational
resources and gives competitive results in comparison with the
parallel genetic algorithm and outperforms the results of the
standard genetic algorithm.

I. INTRODUCTION

Computing the minimum number of reversals to transform
one permutation into another is motivated in molecular biology
by the evolutionary process of some organisms whose genomes
differ in just a few number of reversals of its genes [1].
On the one hand, when the genes in the genome sequence
of an organism are abstracted without any orientation in the
sequence, the representation of the genome corresponds to
an unsigned permutation in which each symbol is associated
with a gene. On the other hand, if the orientation (positive
or negative) of the genes inside the genome is considered,
the genome is modeled as a signed permutation in which each
gene has a positive or negative sign according to its orientation
within the genome.

Calculating the minimum number of reversals to trans-
form a permutation into another is known as the problem
of sorting by reversals and is equivalent to the problem of
transforming a permutation into the identity permutation that
is the permutation sorted in increasing order for the case

of unsigned permutations, and to the same permutation with
positive orientation, for the signed case.

In the earliest stages of research of solutions for this prob-
lem, for the case of sorting signed permutations by reversals,
approximation algorithms were proposed in [2] and in [3],
before discovering that the problem is of polynomial complex-
ity. The first polynomial time algorithm was proposed in [4]
and further improved obtaining a linear time algorithm in [5],
when restricted to computing only the reversal distance, and
of running time O(n2) for explicitly computing the minimal
sequence of necessary reversals.

For the case of sorting unsigned permutations, the problem
was shown to be NP-hard [6] and many approximation
algorithms were proposed (e.g., [2], [3], [7]) until the better
known approximation ratio of 1.375 was reached in [8]. The
1.375 approximation algorithm is of great theoretical interest,
but its implementation of great difficulty and for this reason
adaptations of the 1.5 approximation algorithm proposed in [7]
was referenced as control mechanism for heuristic approaches
and approximate algorithms. These approximation algorithms
are based on the analysis of the graph structure of permu-
tations in which breakpoints are contiguous elements in the
permutations that are not relatively well-ordered. Thus, the
central idea of these approximation algorithms is to eliminate
breakpoints through applications of reversals, giving priority to
the application of reversals that simultaneously can eliminate
two breakpoints: one in each limit of the subsequence being
reversed in the permutation (cf. [3]).

For the case of unsigned permutations, evolutionary algo-
rithms were proposed. The first Genetic Algorithm (GA) was
proposed by Auyeung and Abraham [9] and is based on the
exploration of the space of solutions of signed permutations
built from the given unsigned permutations, taking advantage
of the fact that the reversal distance of signed permutations
can be computed in linear time. Using as fitness function the
reversal distance of signed versions of the unsigned permu-
tation is adequate since any sequence of reversals that sorts
a signed permutation also sorts the permutation without the
orientations, including redundancies when reversals are applied
to change the orientation of a unique gene. Subsequently,
other genetic methods were proposed in [10], [11] and [12].
In particular, in the last paper a fixed implementation of
the 1.5 approximation algorithm was implemented as control
mechanism, that presented fairer and better results that the
approximation algorithms used in the previous references. With

2770

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

this implementation of the 1.5 approximation algorithm a more
accurate analysis of the results provided by GAs was possible
making evident that these genetic techniques, as implemented,
did not provided better results than the fixed 1.5 approximation
algorithm. Further, a hybrid GA which combines the GA
approach by Auyeung and Abrabaham with an initial phase
of elimination of two breakpoints, which can be seen as an
initial phase of local optimizations, was proposed in [13]
and its parallel version was also reported in [14]. Both these
approaches gave better results than the fixed 1.5 approximation
algorithm and to the best of our knowledge the latter parallel
GA provided the best known results.

In this paper it is proposed a Memetic Algorithm (MA)
for the problem of sorting unsigned permutations by reversals
which is also based on the GA approach proposed by Auyeung
and Abraham, but without the initial phase of elimination
of two breakpoints as in the hybrid approach. The main
feature of the new method is that it embeds the local search
in some stages, and implements a specialized control over
the convergence of the population. Several experiments were
performed for finding adequate parameter settings, which
provided competitive results. The quality of the results was
compared with other approaches computing reversal distances
for hundred of randomly generated permutations and for single
permutations proposed as benchmarks, that will be also used
for future comparisons. Also, unsigned permutations were
generated from the mitochondrial genome of some organisms
taken from GeneBank and their reversal distance was calcu-
lated using the MA. In particular, despite the local searching in
the proposed mechanism is much simpler to implement than
the two breakpoints elimination in the hybrid approach, the
MA also provides better results than Auyeung and Abraham
GA as implemented in [13], but with adjusted parameters,
and is slightly outperformed only by the parallel GA as
implemented in [14]. It’s important to stress that this parallel
GA does not take advantage of the computational resources
when a degenerate state is reached, unlike the proposed MA.

The rest of the paper is organized as follows: Section II
presents the necessary definitions and terminology. Then, Sec-
tion III introduces the pseudo-code of the proposed memetic
algorithm and Section IV gives all the performed experiments.
After that, Section V discusses the results of the experiments,
and finally Section VI concludes and presents future work.

II. DEFINITIONS AND TERMINOLOGY

Most of the notations and definitions related to unsigned
permutations that are given in this section were taken from [3]
or [2].

The order of the genes in a genome is represented as a
permutation π = π1, π2, . . . , πn that is a bijection of the set
{1...n} into itself, being n the number of elements of the
permutation.

A reversal ρi..j over a permutation π is an operation that
reverses all the elements of a permutation at positions in the
interval from position i to position j.

The problem of determining the minimum number of
reversals to transform a permutation into the identity per-
mutation ı, defined as ı(k) = k for all k = 1, . . . , n,

2 5 6 7 1 4 3

2 5 6 7 1 43

2 3 1 7 6 5 4

3 2 1 7 6 5 4

3 2 1 4 5 6 7

1 2 3 4 5 6 7

Permutation 1

Permutation 2

Fig. 1. Application of a sequence of reversals to transform one permutation
into the identity permutation

is known as the problem of sorting permutations by re-
versals. In Fig. 1 it can be seen how the sequence of
reversals: (ρ6..7, ρ2..6, ρ1..2, ρ4..7, ρ1..3) sorts the permutation
2, 5, 6, 7, 1, 4, 3.

Let i ∼ j denote the property |i − j| = 1 and extend the
permutation with the initial and final pivots 0 and n+1. Given
two consecutive elements πi and πj of π, for 0 < i < n+ 1,
such that either j = i− 1 or j = i+ 1, one says that:

• they are adjacent if πi ∼ πj .

• they form a breakpoint if πi � πi.

For instance, in the the permutation 1 of Fig. 1 the
consecutive elements 5 and 6, 6 and 7 and 4 and 3 are adjacent
and the consecutive elements 2 and 5, 7 and 1 and 1 and 4
form breakpoints.

Observe that the identity permutation is the unique permu-
tation without breakpoints. The number of breakpoints in π is
denoted by b(π).

Let ρ be a reversal that transforms π into π′, then it is easy
to observe that b(π)− b(π′) ∈ {−2,−1, 0, 1, 2}. We define an
i-reversal as a reversal that reduces the number of breakpoints
by i. Approximate algorithms give preference to the inclusion
of 2-reversals in a sorting sequence (cf. [2], [3], [7]). This is
also used as an heuristic in the hybrid GA introduced by the
authors in [13].

In a signed permutation π its elements are either positive
(+πi) or negative (−πi). A standard manner to transform π
into an unsigned permutation is by replacing each positive
element +πi by the pair (2πi − 1, 2πi), and each negative
element−πi by the pair (2πi, 2πi−1). In this way a signed per-
mutation of length n becomes an unsigned permutation of con-
tiguous inseparable pairs of sorted elements of length 2n. For
instance, the permutation−2,−5,+6,−7,+1,+4,−3 is trans-
formed into (4, 3), (10, 9)(11, 12), (14, 13), (1, 2), (7, 8), (6, 5)
and the identity +1,+2,+3,+4,+5,+6,+7 corresponds to
(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14). Also, an
initial and a final pivot 0 and 2n+ 1, respectively, are added.
This construction or similar ones are used by running time
polynomial algorithms for solving the problem of sorting
signed permutations by reversals such as the ones proposed
in [4] and [5].

2771

Note that, it can be built signed permutations based on
an unsigned permutation π by assigning positive or negative
signs to each of its elements. This signed permutations form
the search space of evolutionary algorithms such as [9].

III. MEMETIC ALGORITHM

The Memetic Algorithms (MA) are the combination of
Evolutionary Algorithms (EA) with Local Search (LS) heuris-
tics [15]. Additionally, this class of algorithms may include
exact methods and approximation algorithms.

The main idea of this metaheuristic is the individual
improvement of the elements of a population and also the
population-cooperation to find better solutions by imitating the
evolutionary process [16]. The proposed memetic algorithm is
based on the standard GA approach introduced by Auyeung
and Abraham in [9] in which for each unsigned permutation
of length n, the search space consists of the 2n signed permu-
tations obtained by assigning either a positive or negative sign
to each element of the unsigned permutation. The population
is a subset of the 2n signed permutations’ search space. The
fitness of an individual is calculated as the reversal distance of
a signed permutation using Bader et al.’s linear time algorithm
[5], being the desired best result the smallest reversal distance
found in the population. This approach of using a subset of
the search space of signed permutations for each individual as
well as the fitness calculation is also used by the proposed MA.
The main steps of the standard GA are sketched in Algorithm.
1.

Algorithm 1 Sorting by Reversals’ standard GA
Input: An unsigned permutation π
Output: Number of reversals to sort the permutation π

1: generate initial population of signed permutations for π
2: evaluate fitness for each individual of the initial population
3: for i = 2 to number of generations do
4: selection
5: crossover
6: mutation
7: evaluate fitness of offspring
8: replacement
9: end for

The correctness of the standard GA approach is justified
by three facts:

• the problem of sorting signed permutations can be
solved using a linear time algorithm [5];

• a sorting solution for a signed permutation is also a
feasible solution for its unsigned version;

• the solution of one of the 2n signed permutations
generated from an unsigned permutation is an optimal
solution for the unsigned permutation.

So there is a search space of 2n signed permutations that
makes the problem of finding the optimal sorting reversal of
an unsigned much too difficult than the difficult of searching
solutions for a sole signed permutation (namely, NP-hard as
previously mentioned). Using just the standard GA approach
gives good results, but since this approach does not consider
the local searching, here local searching was included at certain

stages of the GA mechanism to improve the fitness of the
individuals and thus the quality of the results.

Algorithm 2 Sorting by Reversals’ MA
Input: An unsigned permutation π
Output: Number of reversals to sort the permutation π

1: generate initial population of signed permutations for π
improved with local search

2: evaluate fitness for each individual of the initial population
3: for i = 2 to number of generations do
4: selection
5: crossover
6: mutation
7: evaluate fitness of offspring
8: replacement
9: apply local search to the current population

10: if entropy threshold is reached then
11: restart population and improve with local search
12: end if
13: end for

The proposed memetic algorithm is the combination of the
standard GA mentioned before with the mechanism of local
search, which is applied in following stages of the standard
GA:

• Generation of the initial population.

• Restarting the population.

Also, a new stage is added after the breeding cycle, that
consists in applying the local search operator over the new
population.

The pseudo-code of the memetic algorithm is shown in
Algorithm 2. Let n be the length of the input permutation.
Then, the number of individuals of the population is fixed as
n log n. The number of generation is set to n. The stages of the
lines 1, 5, 6, 7, 8, 9 and 11 have complexity of O(n2 log n).
So the overall time complexity is O(n3 log n).

The entropy threshold is a parameter that must be opti-
mized to give the best results, and it was done that way as
mentioned in the Sec. IV of experiments. After the entropy
threshold is reached a percentage of the population is restarted
and improved with local searching. This percentage is also
another parameter that must be optimized.

Algorithm 3 applies local searching over a single signed
permutation.

Because of the use of local searching, the converge of the
population to a degenerate state must also be controlled, so
that a better use of the computational resources is obtained
[15]. To do it, the Shannon Entropy was used as a measure
of the diversity of the population. A degenerate state happens
whenever all elements of a population have high similarity.

The shannon entropy [17] is defined as follows:

H(S) = −
∑
i

pi log2 pi

where S is a set of different elements taken from the population
of the MA. Let i be an element of S, then pi is the value
obtained from dividing the number of occurrences of i in the
population by the number of elements of the population.

2772

Algorithm 3 Local Search over a signed permutation
Input: A signed permutation π

1: number of iterations = 2
2: best fitness = calculate fitness of π
3: for i = 1 to number of iterations do
4: generate a random position j in π
5: modify the sign of element in position j
6: fitness = calculate fitness of π
7: if fitness < best fitness then
8: update new fitness in π
9: break

10: end if
11: end for

IV. EXPERIMENTS AND RESULTS

A. Setting the parameters of the memetic algorithm

Since there are many parameters to be established op-
timally, we have to test all the possibilities, that is, all
combinations of parameters to get the best possible result (in
terms of number of reversals) and therefore the best possible
configuration of parameters.

For example, the crossover probability has values in the
interval [0, 1], and for sake of tractability one can be consider
the discrete interval {0.1, 0.2, . . . , 0.9}. But, even with this
restriction we would have a great amount of combinations of
parameters. So, first we have to refine this discrete interval for
each parameter.

The following procedure was applied for setting the pa-
rameters:

1) All the parameters were divided into three groups
• Group 1:
◦ p1: Crossover probability
◦ p2: Mutation probability
◦ p3: Number of points of crossover

• Group 2:
◦ p4: Percentage of population for selec-

tion
◦ p5: Percentage of population to be re-

placed
• Group 3:
◦ p6: Percentage of population on which

local searching is applied
◦ p7: Percentage of population that will be

preserved after restarting the population
◦ p8: Maximum entropy threshold

2) For each group the following was done:
a) For each parameter in a group, a discrete

interval was generated (e.g. discrete interval
for crossover probability {0.1, 0.2, . . . , 0.9});

b) Each discrete interval was reduced based on
the results of experiments (see third column
of Table I);

c) For each group all possible permutations of
parameters of their discrete reduced intervals
were generated;

d) The best configuration (best values, i.e. a
permutation of parameters) was chosen based

on the results of experiments (see fourth
column of Table I).

The parameters of the groups 1 and 2 are related with the
standard GA as well as with the MA, being the standard GA
used in this case for the experiments. For the group 3 the MA
was used since the parameters of this group are related only
with this algorithm.

TABLE I. REDUCED INTERVALS AND CORRESPONDING BEST VALUES
FOR EACH PARAMETER

Parameter Reduced Interval Best
Value

p1 Crossover probability {0.96, 0.98} 0.98
p2 Mutation probability {0.01,0.02,0.03,0.04,0.05} 0.01
p3 Num. crossover points {1, 2, 3, 4, 5} 1
p4 % for selection {0, 94, 0.96, 0.98} 0.96
p5 % for replacement {0.6, 0.65, 0.7} 0.6
p6 % for local search {0.94, 0.96, 0.98} 0.94
p7 % of preservation {0.94, 0.96, 0.98} 0.98
p8 Max. entropy threshold {0.1, 0.2, 0.3, 0.4} 0.2

The experiments pointed out in step 2.b) for reducing a
discrete interval for one parameter p, were performed in the
following way:

• First, a set of hundred unsigned permutations was
generated for each length i ∈ {10, 50, 100, 150}.

• Then, a value for p was taken from its discrete interval
and the standard GA (or MA in case of group 3) was
executed 10 times for each unsigned permutation of
length i. This was done for each value of p in its
discrete interval.

• After that, the average of the results of these 10
executions was calculated. This represents the result
(in terms of the number of reversals) for one unsigned
permutation of length i for a given value of the
parameter p;

• Next, the average of the results of hundred permuta-
tions of length i for a given value of p was calculated.
This represents the result for a set of hundred permu-
tation of length i for a given value of p.

• Finally, the results of each set of hundred permutations
of length i with the same value of p were averaged.
The values of p that correspond to the best averages
represent the reduced discrete interval.

It is important to stress that the remaining parameters that
were not varying were fixed with an estimate value.

The experiments in step 2.d) to choose the best configura-
tion of parameters, were performed in the following way:

• First, a set of hundred unsigned permutations was
generated for each length i ∈ {10, 50, 100, 150}.

• Then, all possible permutations of parameters from the
reduced discrete intervals was generated.

• Next, for each unsigned permutation of length i with
a given permutation of parameters, the standard GA
(or MA in case of group 3) was executed 10 times.

• The average of the results of these 10 executions
was calculated. This represents the result (in terms

2773

TABLE II. AVERAGE OF NUMBER OF REVERSALS FOR HUNDRED UNSIGNED PERMUTATIONS

Perm. AA PGA GA MA GA - MA
Length (from [13]) (from [14])

10 5.84 5.81 5.848 5, 762 0.086
20 13.69 12.94 13.176 13.042 0.134
30 21.88 20, 589 20.965 20.735 0.23
40 30.27 28.254 28.768 28.426 0.342
50 39.64 36.291 37.14 36.647 0.493
60 48.45 44.633 45.422 44.748 0.674
70 57.56 52.949 53.713 53.016 0.697
80 66.66 60.887 62.467 61.662 0.805
90 75.86 69.555 71.188 70.359 0.829

100 85.93 78.096 80.046 79.221 0.825
110 94.03 86.702 88.155 87.332 0.823
120 104.37 95.258 97.293 96.508 0.785
130 113.38 104.582 105.872 105.098 0.774
140 123.15 113.539 114.869 114.341 0.528
150 132.76 122.671 123.554 123.116 0.438

of number of reversals) for one unsigned permutation
for a given permutation of parameters.

• The average of the results of hundred unsigned per-
mutations for each length i for a given permutation
of parameters represents the result for this set of
hundred unsigned permutations of length i and the
given configuration of parameters.

• Finally, the results of each set of hundred unsigned
permutations of length i with the same permutations
of parameters were averaged. The configuration of pa-
rameters (permutations of parameters) that has the best
average is chosen as the best setting of parameters.

B. Experiments with hundred unsigned permutations for com-
parison with other algorithms

In order to carry out an accurate comparison of the MA
with the standard GA, several experiments using hundred
unsigned permutations were performed in the following way:

• First, hundred unsigned permutations were generated
for each length of 10, 20, . . . , 150

• For each permutation the MA and the standard GA
were executed 10 times with the same set of random
seeds.

• The average of the results of these 10 executions
for both algorithms were calculated. These averages
represent the result (in terms of number of reversals)
for each unsigned permutation of a given length.

• Finally, for each length the average of the results
of the hundred permutation of the same length was
calculated.

The results of these experiments are shown in the Table
II. The fourth column represents the difference between the
standard GA and the MA.

C. Experiments with specific unsigned permutations for com-
parison with other algorithms

To compare the results of different evolutionary algorithms
fairly it is desirable to use benchmarks. Previous EA ap-
proaches for sorting permutations by reversals reported just
experiments with a benchmark permutation of length 36 in

[2] [10] that was generated by considering the mitochondrial
genomes of mammals and the flatworm Ascaris suum main-
taining only genes in the intersection. Besides, we generated
other permutations based on the mitochodrial genomes of
Homo sapiens (37 genes), Drosophila melanogaster (fruit fly,
37 genes), Crocodylus mindorensis (Philippine crocodile, 35
genes), Sibon nebulatus (clouded snake, 37 genes), Caretta
caretta (loggerhead sea turtle, 36 genes). All these genomes
were taken from GeneBank a genetic sequence database of the
National Center for Biotechnology Information (NCBI). For
generating a permutation between a pair o genomes only genes
in the intersection were considered, the overall number of
deleted genes for each pair is shown in Table III. Additionally,
in table IV the results for the MA using these biologically-
based permutations are shown, where each cell represents the
result for the permutation generated from the organisms in the
respective row and column.

TABLE III. NUMBER OF DELETED GENES FOR BUILDING A
PERMUTATION BETWEEN TWO ORGANISMS

Hom. Dro. Cro. Sib. Car.
Homo sapiens 0 4 4 4 1

Drosophila melanogaster - 0 4 4 3
Crocodylus mindorensis - - 0 4 3

Sibon nebulatus - - - 0 3
Caretta caretta - - - - 0

TABLE IV. MA’ RESULTS USING BIOLOGICALLY-BASED
PERMUTATIONS

Hom. Dro. Cro. Sib. Car.
Homo sapiens 0 16 3 2 0

Drosophila melanogaster - 0 15 17 16
Crocodylus mindorensis - - 0 5 3

Sibon nebulatus - - - 0 2
Caretta caretta - - - - 0

Since these biologically-based permutations are relatively
short, additionally random permutations of different lengths
were generated and proposed as benchmarks.

For all these specific permutations the experiments were
performed in the following way:

• First, two random permutations were generated for
each length 10, 50, 100, 150. These permutations are
named iRPLn where i = 1, 2 for the first or second
permutation and n for its length, thus 2RPL100 is the
second permutation of length 100.

2774

• For each permutation the memetic algorithm and the
other related algorithms were executed 30 times with
the same set of random seeds.

• The best, the worst, the average and the median
results of these 30 executions were calculated for each
unsigned permutation and each different algorithm.

The results of these experiments are shown in the Table V.

V. DISCUSSION

In the known related works (i.e., [9], [11], [10], [12],
[13], and [14]) in which evolutionary algorithms were used to
solve the reversal distance problem, any specific methodology
applied to establish the parameter settings was reported and it
seems to be that just empirical observations without exhaustive
experiments support the selected settings. In Section IV a
procedure to establish the parameter settings guided by the
results of exhaustive experiments is proposed. Because of this,
the confidence on the selection of adequate parameter settings
is higher than in previous approaches.

From the experiments using hundred permutations one can
see that the MA overcomes the results of the standard GA (see
Table II). Also, a comparison with related work was done as
presented in Fig. 2 for permutations of length 150, 140, 100,
90, 50, 40, 20 and 10. From this figure it can be seen that the
proposed MA outperforms the results of all other algorithms
except those computed by the parallel version of the standard
GA, although they both compute very similar results that do
not differ so much. And it is relevant to mention that the
resources used by the parallel GA are higher than the ones of
the MA since the former works in parallel with a population
that is the same of the MA (n log(n)) times the number of
processors.

From the results using biologically-based permutations sev-
eral interpretations could arise. For instance, the mitochondrial
genome of the Homo sapiens is far from the Drosophila
melanogaster by 16 reversals and 4 deletions. Despite only
a specialist could propose a consistent interpretation based on
this data, at least can be concluded that reversals and deletions
represent in this case an evolutionary divergence between both
organisms.

From experiments using specific permutations proposed as
benchmarks, it can be observed that:

• With respect to the best values, the MA and GA have
almost the same results.

• With respect to the worst values the MA has the best
results.

• With respect to the mean values the MA overcomes
the results of the GA.

• With respect to the median values the MA has almost
all the best results.

In all cases the MA has at least the same values as the GA,
otherwise the MA always overcome the GA.

The Wilcoxon Signed Rank Test of the results in Table
V are presented in Table VI in which the standard GA and
the MA are compared for all the benchmark permutations.

TABLE VI. STATISTICAL COMPARISON BETWEEN THE STANDARD GA
AND THE MA USING THE WILCOXON SIGNED RANK TEST

Benchmark p h zval signedrank
1RPL10 1 0 − 0
2RPL10 1 0 − 0
1RPL50 0.0073 1 −2.6833 25.5
2RPL50 0.0122 1 −2.507 20.5

1RPL100 2.0588e− 04 1 −3.7117 18
2RPL100 0.0048 1 −2.8197 53.5
1RPL150 0.0303 1 −2.1664 68
2RPL150 0.3931 0 −0.8541 131.5

From this results it can be concluded that in the majority
of the cases, that is when h = 1, both algorithms have
different behavior at 5% of significance level. In the other cases
(for permutations 1RPL10, 2RPL10, and 2RPL150), when
h=0, the null hypothesis that there is no difference between
both algorithms can not be rejected. This statistical test was
performed using the statistical toolbox provided by Matlab.

VI. CONCLUSIONS

A memetic algorithm for sorting unsigned permutations
by reversals was proposed. The algorithm is based on the
approach firstly presented by Auyeung and Abraham, that
consists in generating an initial population of signed permuta-
tions built from the unsigned permutation by assigning either
positive or negative signs to its elements. Additionally, since
solutions for signed versions of the unsigned permutation are
also feasible solutions of this permutation and the reversal
distance of signed permutations can be computed in linear
time, the fitness of the unsigned permutation is efficiently
computed as the minimum reversal distance of its signed
versions. In addition to these characteristics, other relevant
feature of the proposed memetic algorithm is the application
of local search in the next cases:

• when generating the initial population of signed per-
mutations;

• when restarting the population after a entropy thresh-
old is reached;

• and, as a new stage, after the breeding cycle.

The local search consists in modifying the sign of an
element of a signed permutation at a random position and
verifying if the fitness is improved. Since the individuals of
the population are improved by local search, it was necessary
to control the converge of the population to a degenerate state
and to do so, it was used the Shannon entropy. The population
is restarted after it reaches a degenerate state, that is when
the individuals are very similar, and thus, using adequately the
computational resources with the aim of improving the results.

Exhaustive experiments were performed:

• to determine a parameter setting more adequate than
in previous works;

• for comparing the standard GA solution and the MA
using sets of hundred randomly generated permuta-
tions of different lengths;

• and, for comparing the standard GA and the MA using
single permutations proposed as benchmarks.

2775

TABLE V. BEST, WORST, MEAN AND MEDIAN NUMBER OF REVERSALS FOR SINGLE UNSIGNED PERMUTATIONS

Standard Genetic Algorithm Memetic Algorithm
Benchmark Best Worst Mean Median Best Worst Mean Median

1RPL10 5 5 5.000 5 5 5 5.000 5
2RPL10 7 8 7.033 7 7 7 7.000 7
1RPL50 37 39 37.567 38 37 38 37.167 37
2RPL50 36 39 37.333 37 36 38 36.733 37
1RPL100 79 84 81.867 82 79 82 80.700 81
2RPL100 77 81 79.600 80 77 80 78.767 79
1RPL150 122 126 124.200 124 121 125 123.533 123
2RPL150 123 129 125.767 126 122 128 125.500 126

Fig. 2. Comparison with related work for permutations of lengths 150,140,100,90,50,40,20,10

Also, promising experiments were performed with biolog-
ical data, namely mitochondrial DNA of different organisms,
in order to point out the real capabilities of the method to give
eventual support to the analysis of evolutionary diversity.

Results of the experiments with randomly generated sets of
hundred permutations and with single permutations shown that
the MA outperforms the standard GA, but not yet a parallel
version of the standard GA which uses a population higher that
the MA (number of processors times the size of the population
used by the MA, that is 24 O(n log(n))).

As a future work we plan to:

• combine the MA with the heuristic of elimination of
2-breakpoints as used in the hybrid GA introduced in
[13];

• combine the MA with the 1.5 approximation algo-
rithm;

• and, to include in the restarting population stage the

generation of opposite permutations, that is a permu-
tation with all their signs changed, for finding better
solutions in another part of the search space.

• to adapt the method to provide consistent support in
the construction of phylogenetic trees, that would be
based on the reversal distance as well as on other oper-
ations over permutations built from the mitochondrial
DNA of organisms.

APPENDIX

A. List of Benchmark Permutations
1RPL10 = {3, 2, 6, 5, 8, 1, 4, 9, 7, 10}

2RPL10 = {7, 1, 9, 2, 6, 8, 4, 5, 10, 3}

1RPL50 = {19, 37, 48, 17, 42, 15, 31, 27, 7, 50, 2, 43, 12, 36, 32, 35,
13, 29, 47, 18, 23, 10, 6, 34, 46, 38, 44, 33, 3, 26, 21, 39, 40, 41, 5, 14, 16,
20, 8, 22, 49, 9, 11, 4, 45, 25, 28, 30, 1, 24}

2RPL50 = {44, 48, 10, 32, 3, 25, 49, 27, 37, 7, 47, 5, 13, 17, 39, 16, 14,
46, 6, 8, 36, 42, 18, 33, 40, 26, 12, 23, 9, 19, 24, 28, 1, 4, 50, 35, 30, 34, 15,
31, 11, 41, 22, 2, 21, 20, 43, 38, 29, 45}

2776

1RPL100 = {57, 37, 38, 36, 34, 6, 42, 44, 40, 14, 82, 99, 3, 20, 16, 39,
9, 17, 86, 23, 54, 45, 92, 26, 35, 59, 22, 11, 70, 31, 73, 51, 46, 68, 33, 80,
53, 100, 66, 47, 43, 71, 8, 10, 97, 13, 96, 61, 94, 74, 27, 4, 24, 67, 25, 19,
48, 15, 65, 95, 98, 93, 7, 88, 12, 85, 91, 81, 5, 58, 79, 56, 83, 77, 18, 78, 76,
55, 87, 1, 49, 21, 75, 60, 84, 63, 29, 69, 50, 2, 64, 62, 72, 30, 32, 41, 28, 90,
52, 89}

2RPL100 = {100, 55, 61, 44, 59, 80, 31, 82, 28, 15, 33, 96, 97, 87, 73,
3, 75, 22, 40, 62, 45, 90, 99, 27, 21, 63, 52, 70, 58, 12, 13, 42, 7, 30, 17, 49,
34, 94, 4, 91, 18, 8, 5, 88, 11, 35, 66, 95, 25, 29, 71, 20, 83, 69, 57, 14, 53,
23, 74, 51, 6, 78, 48, 60, 41, 50, 64, 54, 67, 76, 32, 19, 86, 92, 89, 2, 24, 26,
85, 36, 1, 10, 16, 72, 38, 47, 81, 46, 65, 39, 43, 77, 93, 37, 84, 79, 68, 9, 98,
56}

1RPL150 = {149, 91, 114, 79, 54, 47, 42, 63, 124, 119, 72, 103, 80, 31,
95, 33, 32, 129, 24, 26, 67, 4, 60, 98, 105, 117, 59, 50, 18, 27, 65, 8, 88, 144,
125, 83, 74, 57, 82, 48, 138, 81, 131, 30, 118, 29, 109, 93, 128, 78, 120, 2,
3, 5, 10, 35, 61, 41, 102, 108, 139, 49, 20, 13, 116, 137, 73, 84, 44, 150, 70,
6, 90, 25, 1, 38, 142, 143, 7, 45, 17, 146, 46, 36, 121, 53, 122, 107, 145, 85,
134, 68, 37, 101, 77, 86, 132, 94, 106, 87, 11, 100, 43, 55, 66, 34, 40, 135,
104, 75, 136, 92, 110, 21, 113, 115, 23, 15, 89, 52, 130, 56, 141, 148, 147,
76, 96, 111, 51, 140, 12, 69, 71, 58, 9, 126, 133, 99, 16, 97, 123, 127, 62,
28, 112, 64, 14, 39, 19, 22}

2RPL150 = {124, 56, 123, 60, 18, 68, 46, 128, 28, 137, 8, 37, 84, 43,
36, 69, 41, 97, 119, 19, 14, 23, 31, 54, 35, 40, 117, 104, 94, 103, 99, 57, 79,
77, 49, 16, 126, 95, 135, 53, 1, 4, 55, 38, 122, 125, 39, 58, 116, 73, 44, 93,
80, 88, 107, 51, 136, 146, 120, 142, 143, 78, 25, 83, 129, 11, 139, 30, 45,
81, 17, 108, 112, 149, 7, 89, 92, 109, 132, 2, 47, 102, 63, 61, 144, 130, 150,
29, 141, 115, 33, 140, 131, 134, 15, 98, 22, 67, 106, 5, 10, 50, 105, 91, 62,
111, 133, 71, 82, 87, 24, 21, 147, 127, 20, 9, 13, 70, 65, 110, 72, 76, 113,
66, 101, 75, 52, 100, 90, 138, 6, 114, 74, 118, 148, 86, 42, 34, 27, 145, 59,
26, 48, 121, 96, 85, 32, 3, 12, 64}

ACKNOWLEDGMENT

This work was funded by CNPq universal and FAPDF
PRONEX grants. Authors are resp. fully and partially sup-
ported by CAPES and CNPq.

REFERENCES

[1] V. Bafna and P. A. Pevzner, “Sorting by reversals: Genome rearrange-
ments in plant organelles and evolutionary history of x chromosome,”
Mol. Biol. and Evol, vol. 12, pp. 239–246, 1995.

[2] J. Kececioglu and D. Sankoff, “Exact and approximation algorithms for
the inversion distance between two chromosomes,” in Combinatorial
Pattern Matching, ser. LNCS. Springer, 1993, vol. 684, pp. 87–105.

[3] V. Bafna and P. Pevzner, “Genome rearrangements and sorting by
reversals,” in Foundations of Computer Science, 1993. Proceedings.,
34th Annual Symposium on, 1993, pp. 148 –157.

[4] S. Hannenhalli and P. Pevzner, “Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals,” in
Proc. of the 27th annual ACM symposium on Theory of computing, ser.
STOC’95, 1995, pp. 178–189.

[5] D. A. Bader, B. M. E. Moret, and M. Yan, “A linear-time algorithm
for computing inversion distance between signed permutations with an
experimental study,” in WADS, ser. LNCS, vol. 2125. Springer, 2001,
pp. 365–376.

[6] A. Caprara, “Sorting by reversals is difficult,” in Proceedings of the first
annual international conference on Computational molecular biology,
ser. RECOMB’97. ACM, 1997, pp. 75–83.

[7] D. A. Christie, “A 3/2-approximation algorithm for sorting by rever-
sals,” in Proceedings of the ninth annual ACM-SIAM symposium on
Discrete algorithms, ser. SODA’98. Society for Industrial and Applied
Mathematics, 1998, pp. 244–252.

[8] P. Berman, S. Hannenhalli, and M. Karpinski, “1.375-approximation
algorithm for sorting by reversals,” in Proceedings of the 10th Annual
European Symposium on Algorithms, ser. ESA’02. Springer, 2002, pp.
200–210.

[9] A. Auyeung and A. Abraham, “Estimating genome reversal distance by
genetic algorithm,” in Evolutionary Computation, 2003. CEC ’03. The
2003 Congress on, vol. 2, 2003, pp. 1157 – 1161 Vol.2.

[10] M. Zhongxi and Z. Tao, “An improved genetic algorithm for problem of
genome rearrangement,” Wuhan University Journal of Natural Sciences,
vol. 11, pp. 498–502, 2006.

[11] A. Ghaffarizadeh, K. Ahmadi, and N. Flann, “Sorting unsigned permu-
tations by reversals using multi-objective evolutionary algorithms with
variable size individuals,” in Evolutionary Computation (CEC), 2011
IEEE Congress on, 2011, pp. 292 –295.

[12] J. L. Soncco-Álvarez and M. Ayala-Rincón, “A genetic approach with a
simple fitness function for sorting unsigned permutations by reversals,”
in Computing Congress (CCC), 7th Colombian. IEEE Xpress, 2012,
pp. 1–6.

[13] ——, “Sorting permutations by reversals through a hybrid genetic
algorithm based on breakpoint elimination and exact solutions for
signed permutations,” Electr. Notes Theor. Comput. Sci., vol. 292, pp.
119–133, 2013.

[14] J. Soncco-Alvarez, G. Marchesan Almeida, J. Becker, and M. Ayala-
Rincon, “Parallelization and virtualization of genetic algorithms for
sorting permutations by reversals,” in Nature and Biologically Inspired
Computing (NaBIC), 2013 World Congress on, 2013, pp. 29–35.

[15] P. Moscato, “On evolution, search, optimization, genetic algorithms and
martial arts - towards memetic algorithms,” 1989.

[16] ——, “A gentle introduction to memetic algorithms,” in Handbook of
Metaheuristics. Kluwer Academic Publishers, 2003, pp. 105–144.

[17] C. E. Shannon, “A mathematical theory of communication,”
The Bell System Technical Journal, vol. 27, pp. 379–423,
623–656, July, October 1948. [Online]. Available: http://cm.bell-
labs.com/cm/ms/what/shannonday/shannon1948.pdf

2777

