
Dynamic Multi-Objective Optimization using Charged Vector
Evaluated Particle Swarm Optimization

Kyle Robert Harrison
Department of Computer Science

Brock University
St. Catharines, ON, Canada

kh08uh@brocku.ca

Beatrice M. Ombuki-Berman
Department of Computer Science

Brock University
St. Catharines, ON, Canada

bombuki@brocku.ca

Andries P. Engelbrecht
Department of Computer Science

University of Pretoria
Pretoria, South Africa

engel@cs.up.ac.za

Abstract—The vector evaluated particle swarm optimization
(VEPSO) algorithm is a multi-swarm variation of the traditional
particle swarm optimization (PSO) used to solve static multi-
objective optimization problems (MOOPs). Recently, the dynamic
VEPSO (DVEPSO) algorithm was proposed as an extension
to VEPSO enabling the algorithm to handle dynamic MOOPs
(DMOOPs). While DVEPSO has been successful at handling
DMOOPs, the change detection mechanism relied on observing
changes in objective space. An alternative strategy is proposed
by using charged PSO (CPSO) sub-swarms with decision space
change detection to address the outdated memory issue observed
in vanilla PSO. This dynamic PSO variant allows for (implicit)
decision space tracking not seen in DVEPSO while implicitly
handling the diversity issue seen in dynamic environments. The
proposed charged VEPSO is compared to DVEPSO on a wide
variety of dynamic environment types. Results indicated that,
in general, the proposed charged VEPSO outperformed the
existing DVEPSO. Further, charged VEPSO exhibited better
front-tracking abilities, while DVEPSO was superior with regards
to locating the Pareto front.

I. INTRODUCTION

Many real-world problems exhibit some dynamic behavior
such that the desired solution changes as time progresses. It
is also common for there to be multiple goals which are to
be concurrently optimized. These goals are often in direct
competition; an improvement in one goal causes a detrimental
effect in another. For such problems, a set of optimal trade-
offs is desired. However, the dynamic behavior may cause the
optimal set of trade-offs to change or may cause the decision
variables leading to optimal solutions to be altered. Problems
with such characteristics are known as dynamic multi-objective
optimization problems (DMOOPs) [1].

Multi-objective optimization problems (MOOPs) are intu-
itively harder than single objective problems as they have a
number of conflicting sub-objectives [1]. Further, MOOPs may
have an infinite number of optimal solutions representing trade-
offs among different sub-objectives. When a sub-objective
cannot be improved further without worsening another sub-
objective, the solution is referred to as non-dominated or Pareto
optimal. The set of Pareto optimal solutions is called the Pareto
optimal front (POF), while the corresponding set of decision
variables is referred to as the Pareto optimal set (POS). Thus,
the goal of multi-objective optimization is to find a well-
distributed set of such Pareto optimal solutions [2].

An additional level of difficulty is added to MOOPs,
forming DMOOPs. This difficulty comes in the form of

environmental changes to the decision space, objective space,
or both. A change in decision space occurs when the set
of decision variables which correspond to the optimal set of
solutions changes over time. Similarly, a change in objective
space occurs when the fitness values of the optimal solutions
vary over time. Farina et al. [1] provided a classification of
DMOOP environments as follows:

• Type I – the Pareto optimal front does not change,
but the Pareto optimal set does.

• Type II – both the Pareto optimal front and set change.

• Type III – the Pareto optimal front changes, while the
Pareto optimal set remains unchanged.

• Type IV – both the Pareto optimal front and set remain
unchanged but the problem still changes over time.

The vector evaluated particle swarm optimization (VEPSO)
algorithm was introduced by Parsopoulos and Vrahatis [3]
as a multi-swarm variant of the original particle swarm op-
timization (PSO) [4] algorithms, used to optimize MOOPs.
VEPSO works by assigning each sub-swarm a dedicated sub-
objective as its only optimization task. However, in order to
optimize the MOOP as a whole, knowledge transfer strategies
(KTSs) [3], [5], [6] are used to propagate information between
the sub-swarms. Recently, DVEPSO [7] was proposed as a
dynamic variant of VEPSO used to handle the optimization
of DMOOPs. DVEPSO was shown to be successful at solving
DMOOPs [7], [8] but only tracked changes in objective space.
Proposed is a VEPSO variant that uses charged PSO [9] sub-
swarms, which use change detection at the decision space level
to address the issue of outdated memory [10]. Decision space
tracking allows each sub-swarm to manage their own change
detection and response mechanisms.

The remainder of the paper is structured as follows. Section
II introduces the charged PSO and DVEPSO algorithms,
while the charged VEPSO algorithm is given in Section III.
The experimental details are outlined in Section IV with a
discussion of the results in Section V, followed by concluding
remarks in Section VI.

II. BACKGROUND

Section II-A provides definitions required for the remainder
of the paper, while Sections II-B, II-C, and II-D present PSO,
CPSO, and DVEPSO, respectively.

1929

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

A. Definitions

Let ~f and ~f∗ be two objective vectors with no sub-
objectives, respectively.

Definition 1 (Dominance). A dominance relation, ≺,
is given by ~f∗ ≺ ~f := ∀k : f∗k ≤ fk ∧ ∃k : f∗k < fk, where
k ∈ {1, 2, ..., no}. An objective vector which is not dominated
by any other objective vector is said to be non-dominated.

Definition 2 (Pareto Optimal Front). The Pareto optimal
front, POF (t)∗, is the solution set of a DMOOP, at time
t, and is defined as the set of all non-dominated objec-
tive vectors. This definition can be stated more formally as
POF (t)∗ = {~f∗ ∈ S|@~f ∈ S : ~f ≺ ~f∗}, where S denotes the
objective space corresponding to feasible solutions.

Definition 3 (Pareto Optimal Set). The Pareto optimal set,
POS(t)∗, is the decision-space analogue to the Pareto optimal
front. That is, the Pareto optimal set contains decision vectors
which correspond to solutions in the Pareto optimal front,
given by POS(t)∗ = {~x∗ ∈ D|f(~x∗) ∈ POF (t)∗} where D
denotes the decision space of the DMOOP.

B. Particle Swarm Optimization

PSO was introduced by Kennedy and Eberhart [4] as a
model of the social dynamics of a flock of birds. Further
examination lead to the discovery of a complex behavior
exhibited by the agents, i.e., convergence to a single point.
As such, PSO was developed as a population based, stochastic
optimization technique initially meant for real-valued, continu-
ous space optimization problems. Particles are “flown” through
the search space using an iterative process of calculating and
applying a velocity vector. The velocity update equation used
by vanilla PSO is given as

~vi(t+ 1) = ω~vi(t) + c1~r1(t)(~pbest − ~xi(t))
+ c2~r2(t)(~gbest − ~xi(t)) .

(1)

In Equation (1), ~vi is the velocity of particle i, ~xi is the
position of the particle, ~pbest is the personal best position of the
particle, and ~gbest is the swarm’s best-found position, assuming
a star neighborhood topology. The constants ω ∈ [0, 1], c1 ≥
0, and c2 ≥ 0 are the inertia, cognitive, and social weights, re-
spectively, which are user-supplied parameters. Inertia applies
a portion of the previous velocity to the current velocity in
an attempt to keep the particles direction from changing. The
cognitive and social components determine the influence taken
from the personal best and global best positions, respectively.
Finally, ~r1(t) and ~r2(t) are vectors sampled from a uniform
distribution in the range [0,1], giving the PSO algorithm its
stochastic element.

PSO is known to have two major drawbacks in dynamic
environments, namely outdated memory and diversity loss
[10]. Outdated memory occurs when an environmental change
invalidates a particle’s personal best and/or fitness values.
Outdated memory may lead to attractors which are no longer in
promising areas of the search space. The other major issue for
PSO in dynamic environments, i.e., diversity loss, occurs when
the swarm has exhibited convergence and little to no variation
exists in the attractors. The small velocities later in a run

coupled with a drastic shift in the optimum can cause particles
to stagnate and oscillate along a linear path, a phenomenon
known as linear collapse. Variants of PSO have been proposed
to alleviate these two major drawbacks [11], [12], [9].

C. Charged Particle Swarm Optimization

Charged PSO (CPSO), introduced by Blackwell and Bent-
ley [9], is based on the orbit model of an atom where electrons
orbit a nucleus. In CPSO, some proportion of the population is
given a charge which repels other charged particles. Particles
given a charge are referred to as charged particles, while the
remainder are referred to as neutral particles. Particle velocities
are updated using the vanilla update equation (Equation (1))
with an additional term (acceleration) based on their proximity
to other particles. The CPSO velocity update equation is given
as

~vi(t+ 1) = ω~vi(t) + c1~r1(t)(~pbest − ~xi(t))
+ c2~r2(t)(~gbest − ~xi(t)) +

∑
∀j 6=i

aij . (2)

The acceleration between particles i and j is given by

aij =

{
QiQj

||~xi−~xj ||3 (~xi − ~xj) if pcore < ||~xi − ~xj || ≤ p
0 otherwise

(3)

where Qi refers to the charge of particle i, while p and
pcore control the acceleration term’s radius of effect.

Neutral particles behave as they would in vanilla PSO,
causing convergence of the neutral particles around the global
best to be exhibited by CPSO. However, the acceleration term
addresses the issue of diversity loss during convergence by
the repulsion of charged particles, which causes enhanced
exploration. Thus, CPSO is designed to maintain a higher level
of diversity throughout the run, thereby eliminating the issue of
linear collapse noted with vanilla PSO. Although the diversity
issue is implicitly handled by CPSO, an external strategy is
needed to address outdated memory.

D. Dynamic Vector Evaluated Particle Swarm Optimization

VEPSO [3] was introduced as a multi-swarm variant of
PSO used to handle MOOPs. Due to the multi-swarm nature
of VEPSO, a mechanism is needed to transfer information
between sub-swarms allowing the algorithm to optimize the
MOOP as a while. VEPSO employs a mechanism known as a
knowledge transfer strategy (KTS) to facilitate the transfer of
knowledge between sub-swarms. Currently, there are only two
such KTSs in use, although various others have been recently
proposed [6]. The original ring KTS [3] selects the global best
position of the neighboring sub-swarm, using a ring topology,
as the global guide, while the random global best KTS selects
the global guide of a randomly selected sub-swarm (including
itself). This study used the random global best KTS, which
has been shown to outperform the original ring KTS in both
static and dynamic environments [6], [13].

The DVEPSO algorithm was introduced by Greeff and
Engelbrecht [7] as a dynamic variant of VEPSO [3]. The main

1930

contribution to the original VEPSO algorithm was the addition
of sentry particles in the archive, which monitored the objective
space to determine if an environmental change occurred. If
such a change was detected, the archive was cleared and the
sub-swarm which observed the change had a portion of its
particles reinitialized while all other particles were reevaluated.
These two response mechanisms handled both the diversity
and outdated memory issues. DVEPSO was observed to be
suited for both locating and tracking the Pareto front in various
dynamic environments [7], [8]. The DVEPSO algorithm is
depicted in Algorithm 1.

Algorithm 1 Dynamic VEPSO Algorithm

function DVEPSO
initialize PSO for each sub-objective
while stopping criteria not met do

if change occured then
clear archive
reinitialize some particles
reevaluate all particles

end if
perform VEPSO iteration
for all candidate solutions do

if non-dominated then
if archive full then

prune archive
end if
add new solution to archive

end if
end for

end while
end function

III. CHARGED VECTOR EVALUATED PARTICLE SWARM
OPTIMIZATION

While the DVEPSO algorithm has been shown to be effec-
tive at solving DMOOPs [7], [8], it suffered from two draw-
backs: change detection mechanisms resided only in objective
space while diversity loss was addressed via reinitialization of
particles, which cause drastic changes. The exclusive tracking
in objective space was alleviated by replacing each vanilla
PSO sub-swarm in the DVEPSO algorithm with CPSO, an
inherently dynamic PSO variant. CPSO sub-swarms, equipped
with sentry particles [12], allowed for implicit change detection
in decision space. Futher, CPSO sub-swarms eliminated the
need for diversity injection via reinitialization. The proposed
charged VEPSO algorithm replaced each of the vanilla PSO
sub-swarms in VEPSO with CPSO sub-swarms. Algorithm 2
shows the general approach to the proposed charged VEPSO.

The charged VEPSO algorithm uses sentry points in both
the archive as well as each sub-swarm to track changes in ob-
jective and decision space, respectively. Each sub-swarm con-
tains sentry particles, allowing changes in each sub-objective
to be tracked separately. When a change is detected in decision
space, particles are reevaluated to address outdated memory.
Similar to DVEPSO, when the archive sentries report changes
in objective space, archive solutions are cleared to prevent
invalid solutions from being maintained.

Different settings for the charge and core radius were tested

Algorithm 2 Charged VEPSO Algorithm

function CHARGED VEPSO
initialize CPSO for each sub-objective
while stopping criteria not met do

if change occured then
clear archive

end if
perform VEPSO iteration using CPSO sub-swarms

. CPSO uses sentries and particle reevaluation
for all candidate solutions do

if non-dominated then
if archive full then

prune archive
end if
add new solution to archive

end if
end for

end while
end function

for the CPSO sub-swarms of the charged VEPSO algorithm.
The charge was selected from {8, 16, 32}, while the core radius
(pcore) was selected from {0.5, 1, 2}.

IV. EXPERIMENTAL SETUP

This section describes the experimental parameters se-
lected, the benchmark functions examined, the performance
measures employed, and finally provides the statistical analysis
methodology employed in this paper.

A. Parameterization

All experiments were executed using the Computational
Intelligence library (CIlib) [14]. Each algorithm was run for
a total of 1000 iterations and kept an archive with maximum
size of 100. When a solution was needed to be removed from
the archive, the solution with the smallest nearest neighbor
distance was chosen for removal. PSO parameters were chosen
as values shown to lead to convergent behavior [15], namely
ω = 0.729844 and c1 = c2 = 1.496180. A clamping boundary
condition was enforced, preventing particles from exiting the
feasible region. Personal best positions were updated if the
new solution dominated the old solution. However, if both
solutions were non-dominated with respect to each other, one
was randomly selected as the personal best. Each sub-swarm
had 20 particles, with CPSO sub-swarms having 10 (50%)
charged particles.

A major difference between DVEPSO and charged VEPSO
was the change detection mechanisms. DVEPSO used ran-
domly selected archive solutions which reported a change if
any component of their fitness vector differed by more than a
threshold. Thus the monitoring was done in objective space.
When a change occurred, the archive solutions were cleared
and 30% of particles were reinitialized. Furthermore, parti-
cles were reevaluated when a change was detected. Charged
VEPSO also made use of archive sentries, which triggered the
archive to be cleared when a change was detected. However,
the CPSO sub-swarms also had decision-level change detection

1931

which triggered particle reevaluation. Further, CPSO sub-
swarms did not need reinitialization as diversity is implicitly
maintained.

B. Benchmark Functions

Five benchmark functions of varying environment types
were used, namely dMOP1 [16], dMOP2 [16], dMOP3 [16],
FDA1 [1], and FDA3Camara [17]. dMOP1 is a Type III envi-
ronment, dMOP2 and FDA3Camara are Type II environments,
while FDA1 and dMOP3 are Type I environments. The true
POFs of each examined benchmark function are shown in
Figure 1. Note that Type IV environments, which arise only
in special cases [1], were not considered. Besides, in Type IV
environments, both the POF and POS remain static over time.

Several temporal and spatial severity settings were used
to determine the effects of varying the degree of dynamism
on performance. Temporal severity (τt) refers to the num-
ber of iterations between environmental changes while spa-
tial severity (nt) refers to the magnitude of environmental
changes. Although previous classification systems exist [18],
[19], Duhain’s [20] behavioral classes, depicted in Figure 2,
are used in this work. The settings for temporal and spatial
severities used in this study are presented in Table I.

TABLE I: Temporal and Spatial Severity Settings

nt τt Environment Type
1 50 Infrequent, small changes (quasi-static)
1 5 Frequent, small changes (progressive)
20 50 Infrequent, large changes (abrupt)
20 5 Frequent, large changes (chaotic)

Abrupt

S
p

a
ti
a

l
S

e
v
e

ri
ty

Chaotic

Quasi-Static Progressive

Temporal Severity

Fig. 2: Duhain’s Dynamic Behavioral Classes [20]

C. Performance Measures

The goal of a DMOOP optimizer is two-fold: the optimizer
must be able to locate the Pareto optimal front, while also
being able to adapt to environmental changes and track the
Pareto front over time. As such, the performance measures
described below are calculated at each iteration before a
change occurs.

Accuracy: Accuracy (acc) [21] measures the closeness of
an approximation front to the true front. The accuracy measure
is calculated as

acc(t) = |HV (POF (t)∗)−HV (POF (t))| (4)

where HV (POF ∗(t)) denotes the hypervolume [22] of the
true Pareto front at time t. To approximate the true front, 1000
equidistant points were used. For hypervolume calculations,
the reference vector was set as the worst observed objective
values. A low acc value indicates good performance.

Stability: Stability (stab) [21] measures the effect of en-
vironmental changes on the accuracy. This measure is given
as

stab(t) = max{0, acc(t− 1)− acc(t)} (5)

where a low stab value indicates good performance.

Number of Solutions: Number of solutions (NS) refers to
the number of non-dominated solutions in the archive.

D. Statistical Analysis

Each experiment consisted of 30 independent runs. The
normalized wins and losses approach by Helbig and En-
gelbrecht [23] was used to analyze the performance of the
optimizers. All statistical tests were performed at the 95%
confidence level.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section discusses the results of the examined opti-
mizers. The overall, aggregated performance is presented in
Section V-A, while Sections V-B and V-C examine the results
with regards to various dynamic environment and DMOOP
types, respectively. For the tables presented in this section,
PM refers to the performance measure, C refers to a standard
charged VEPSO optimizer, with charge of 16 and a core radius
of 1, D refers to the DVEPSO optimizer, while C-x-y refers to
various configurations of the charged VEPSO optimizer, with
a charge of x and a core radius of y.

A. Overall Performance

The results aggregated over all functions, performance
measures, and environment types, presented in Table II demon-
strate that the standard charged VEPSO (i.e., the charged
VEPSO with charge of 16 and core radius of 1) had the
smallest difference between the number of wins and losses,
and attained 113.49 more wins than losses. Relatively close in
performance to the standard charged VEPSO was the DVEPSO
optimizer which scored a difference of 101.32 more wins than
losses, 10.72% less than that of the standard charged VEPSO.
The worst overall optimizer was the charged VEPSO using a
charge of 16 and a core radius of 0.5, with 125.70 more losses
than wins.

Examining the performance of charged VEPSO using
various parameters, as shown in Table II, a trend was quite
apparent with respect to core radius and performance. The
three variants of charged VEPSO (i.e., including the standard
one) which obtained the best performance had a core radius
of 1, while the three worst performing variants used a radius
of 0.5. Note that only three optimizers obtained more losses
than wins – all three being charged VEPSO with a core radius
of 0.5. This poor performance can be explained by explosive
acceleration attributed to the inverse square law. Conversely,

1932

(a) dMOP1 and dMOP2 (b) dMOP3 and FDA1 (c) FDA3Camara

Fig. 1: True POFs using τt = 5 and nt = 20 for 1000 iterations

TABLE II: Overall Wins and Losses

nt τt PM Result C D C-8-1 C-32-1 C-8-0.5 C-16-0.5 C-32-0.5 C-8-2 C-16-2 C-32-2
all all all Wins 185.27 191.01 113.82 109.03 53.26 36.46 41.55 96.44 93.23 90.28
all all all Losses 71.78 89.69 62.41 66.57 161.19 162.16 161.23 84.72 76.33 74.27
all all all Diff 113.49 101.32 51.41 42.46 -107.94 -125.70 -119.68 11.72 16.91 16.01
all all all Rank 1 2 3 4 8 10 9 7 5 6

the performance of charged VEPSO also degraded when using
a core radius of 2.

The performance of the optimizers for various performance
measures is summarized in Table III. With respect to the
accuracy measure, DVEPSO obtained the highest overall dif-
ference score, at 69.61. However, the difference score of the
standard charged VEPSO was only 4.05 (5.82%) less than
that of DVEPSO, which indicated relatively close performance
between the two optimizers. Other variants of charged VEPSO
demonstrated significantly worse performance than the variant
with standard parameters; the next closest in performance used
charge of 32 and a core radius of 1, had obtained only 15.94
more wins than losses, i.e., 77.10% less than that of DVEPSO.
The worst overall performance when the acc measure was
considered was depicted by charged VEPSO with a charge
of 32 and a core radius of 0.5. The results for the acc measure
indicate that DVEPSO would, in general, find approximation
fronts which were closer to the true front than those found by
charged VEPSO.

When examining the results in Table III with respect the
stab measure, an opposite trend was observed than with the acc
measure. Namely, DVEPSO was outperformed by six variants
of charged VEPSO when stability was considered. Overall
best performance with respect to stability was observed by
charged VEPSO using a charge of 8 and a core radius of 1.
Interestingly, the standard charged VEPSO was outperformed
by the variants which used a core radius of 2. The worst overall
performance was obtained when charged VEPSO used a charge
of 16 and a core radius of 0.5, with similarly poor performance
demonstrated by the other two variants which used a core
radius of 0.5. The results for the stab measure indicate that, in
general, the performance of charged VEPSO was more stable
than DVEPSO when tracking the changing Pareto front.

Regarding the results for the number of solutions, as seen
in Table III, the overall best performance was obtained by
the standard charged VEPSO, which demonstrated 43.59 more

wins than losses. As with the stability measure, the worst per-
formance was observed when charged VEPSO with a charge
of 16 and core radius of 0.5 was used. Although the standard
charged VEPSO was the overall winner, DVEPSO consistently
found more solutions than most variants of charged VEPSO.

B. Performance on Various Dynamic Environment Types

This section discusses the results obtained when consider-
ing the dynamic behavioral classes defined by Duhain [20].
Table IV presents the performance of the optimizers using
various temporal and spatial severity settings.

When considering the quasi-static environments (nt = 1,
τt = 50), only two optimizers showed more wins than losses,
i.e., DVEPSO and standard charged VEPSO, with DVEPSO
obtaining the highest rank. DVEPSO obtained a difference of
29.70, while the standard charged VEPSO scored 20.60. All
other optimizers showed significantly worse performance, with
the third ranking optimizer having only 2.50 more losses than
wins. The lowest ranking optimizer was the charged VEPSO
when a charge of 32 and core radius of 1 was used.

Similar trends, as observed with the quasi-static envi-
ronments, were demonstrated when considering the abrupt
environments (nt = 20, τt = 50). DVEPSO and the standard
charged VEPSO were, again, the two highest ranked optimizers
but had switched ranks when the larger environmental changes
were present. As with quasi-static environments, a majority of
charged VEPSO optimizers showed more losses than wins.
However, when a charge of 8 and core radius of 0.5 were
used, charged VEPSO scored 5.30 more wins than losses in
the abrupt environments. The lowest ranked optimizer in the
abrupt environments was charged VEPSO when the charge was
8 and core radius was 2.

When considering the progressive environments (nt = 1,
τt = 5) charged VEPSO with a charge of 32 and core radius
of 1 obtained the highest rank and scored 31.96 more wins

1933

TABLE III: Overall Wins and Losses for Various Performance Measures

nt τt PM Result C D C-8-1 C-32-1 C-8-0.5 C-16-0.5 C-32-0.5 C-8-2 C-16-2 C-32-2
all all acc Wins 94.28 97.31 44.37 41.97 15.52 13.18 12.44 31.57 34.77 33.62
all all acc Losses 28.72 27.70 29.64 26.03 65.49 66.83 67.56 40.43 36.24 30.39
all all acc Diff 65.56 69.61 14.73 15.94 -49.97 -53.65 -55.12 -8.86 -1.47 3.23
all all acc Rank 2 1 4 3 8 9 10 7 6 5
all all stab Wins 22.74 21.54 20.32 19.56 11.63 9.68 11.26 18.64 18.83 18.01
all all stab Losses 18.39 26.76 5.67 7.71 29.74 29.88 29.23 7.53 8.89 8.41
all all stab Diff 4.35 -5.23 14.65 11.86 -18.11 -20.21 -17.97 11.11 9.95 9.60
all all stab Rank 6 7 1 2 9 10 8 3 4 5
all all NS Wins 68.26 72.17 49.13 47.50 26.11 13.61 17.85 46.24 39.64 38.66
all all NS Losses 24.67 35.24 27.10 32.84 65.97 65.45 64.44 36.77 31.21 35.48
all all NS Diff 43.59 36.94 22.03 14.66 -39.86 -51.84 -46.60 9.47 8.43 3.18
all all NS Rank 1 2 3 4 8 10 9 5 6 7

than losses. The other two charged VEPSO variants with core
radii of 1 obtained second and third ranks, respectively. The
performance of charged VEPSO indicated that the optimizer
performed well in the faster-paced, progressive environments.
For the progressive environments, the DVEPSO optimizer
obtained a rank of 4 over all performance measures. The three
worst performing optimizers were all charged VEPSO variants
with a core radius of 0.5.

Similar to the progressive environments, chaotic environ-
ments (nt = 20, τt = 5) were optimized best by charged VEPSO
with a core radius of 1. All three of the top optimizers were
charged VEPSO with a core radius of 1, where each obtained
the same rank as they had in the progressive environments.
A charge of 32 and core radius of 1 lead to the highest
difference score while a core radius of 0.5 and charge of 8
lead to the worst performance on the chaotic environments.
DVEPSO ranked sixth for the chaotic environments, show-
ing degraded performance from the progressive environments,
where DVEPSO had ranked fourth.

C. Performance on Various Dynamic Multi-Objective Opti-
mization Problem Types

This section presents the results obtained for the various
DMOOP types defined by Farina et al. [1] as shown in Tables
V to VII.

When considering the performance on Type I DMOOPs,
as shown in Table V, DVEPSO significantly outperformed
all charged VEPSO variants with respect to the acc and NS
measures, while the standard charged VEPSO ranked second
in both these measures. The difference between the number
of wins and losses for DVEPSO was more than double that
of the standard charged VEPSO with respect to both acc and
NS. However, when considering the stab measure, DVEPSO
was outperformed by all variants of charged VEPSO. The
worst performance with regards to the accuracy and number
of solutions were charged VEPSO with a charge of 8 and
core radius of 2 and charged VEPSO with a charge of 32 and
core radius of 1, respectively. Interestingly, charged VEPSO
performed better when using a core radius of 0.5 than with a
core radius of 2, a behavior which is reversed from the overall
results presented in Table II.

Table VI outlines the performance of the various algorithms
on Type II DMOOPs. Contrary to the results on Type I
DMOOPs, the standard charged VEPSO attained the highest
rank on both the acc and NS measures, while DVEPSO
ranked second on both measures. However, the difference

in performance between the two algorithms was noticeably
smaller than with Type I DMOOPs. When considering the stab
measure, charged VEPSO with a charge of 8 and core radius
of 0.5 demonstrated the best performance, while DVEPSO
showed the worst performance as with Type I DMOOPs. The
optimizers which demonstrated the worst performance with
respect to the acc and NS measures were charged VEPSO with
a core radius of 0.5 and charges of 16 and 32, respectively.

Performance of the optimizers on a Type III DMOOP is
given in Table VII. For all three performance measures, the
best optimizer was a variant of charged VEPSO. For the acc
measure, the standard charged VEPSO ranked highest, while
the charged VEPSO which employed a charge of 8 and core
radius of 1 performed best with respect to the stab and NS
measures. As previously observed, variants of charged VEPSO
with a core radius of 0.5 were the only optimizers to obtain
more losses than wins, leading to a negative difference score
for all three performance measures. However, the charge value
which lead to the worst performance for each measure was not
consistent with each of the three charge values being ranked

D. Summary and Discussion of Results

In general, DVEPSO performed best with respect to the
accuracy measure. However, charged VEPSO demonstrated
better performance in terms of stability. The superior stability
and inferior accuracy of the charged VEPSO can be attributed
in part to characteristics of the charged VEPSO optimizer.
The repulsive behavior of the charged particles would cause
some particles to be “repelled” from the Pareto front once
located by other particles, leading to a lower accuracy score.
Charged VEPSO implicitly addressed diversity via the CPSO
sub-swarms and also reduced the drastic changes to parti-
cle topology from reinitializing particles, explaining the in-
creased stability. With the above observations, it is shown that
DVEPSO was better at locating the Pareto front while charged
VEPSO was less susceptible to environmental changes and was
better able to track the Pareto front over time. Further evidence
is provided when considering the performance on Farina et
al.’s DMOOP types [1]. DVEPSO demonstrated the highest
accuracy on Type I DMOOPs (POF does not change) while
on Type II and Type III DMOOPs (POF does change), the
standard charged VEPSO attained the best scores for accuracy.
This indicates that the accuracy of DVEPSO degrades when
the Pareto front is non-static.

When considering Duhain’s environmental behavior classes
[20], it was observed that charged VEPSO performed signif-
icantly better than DVEPSO in the faster-paced progressive

1934

TABLE IV: Overall Wins and Losses for Various Temporal and Spatial Severity Settings

nt τt PM Result C D C-8-1 C-32-1 C-8-0.5 C-16-0.5 C-32-0.5 C-8-2 C-16-2 C-32-2
1 50 all Wins 33.80 38.85 7.55 3.85 9.10 3.95 3.25 8.80 4.80 3.20
1 50 all Losses 13.20 9.15 10.55 14.30 11.60 10.75 10.80 13.55 13.40 9.85
1 50 all Diff 20.60 29.70 -3.00 -10.45 -2.50 -6.80 -7.55 -4.75 -8.60 -6.65
1 50 all Rank 2 1 4 10 3 7 8 5 9 6
1 5 all Wins 54.77 57.13 56.59 53.88 16.68 16.69 20.27 45.80 48.35 47.00
1 5 all Losses 24.33 33.92 25.48 21.92 71.41 70.45 71.35 36.48 28.79 33.03
1 5 all Diff 30.45 23.21 31.11 31.96 -54.74 -53.76 -51.08 9.32 19.57 13.97
1 5 all Rank 3 4 2 1 10 9 8 7 5 6

20 50 all Wins 60.20 53.65 12.10 10.95 21.65 10.65 11.10 8.15 5.35 8.10
20 50 all Losses 23.10 24.60 15.40 19.05 16.35 20.35 21.25 24.80 19.20 17.80
20 50 all Diff 37.10 29.05 -3.30 -8.10 5.30 -9.70 -10.15 -16.65 -13.85 -9.70
20 50 all Rank 1 2 4 5 3 6 8 10 9 6
20 5 all Wins 36.50 41.39 37.58 40.35 5.83 5.17 6.93 33.69 34.73 31.98
20 5 all Losses 11.16 22.02 10.98 11.30 61.83 60.61 57.83 9.89 14.94 13.59
20 5 all Diff 25.35 19.37 26.61 29.05 -56.00 -55.44 -50.91 23.80 19.79 18.39
20 5 all Rank 3 6 2 1 10 9 8 4 5 7

TABLE V: Overall Wins and Losses on FDA1 and dMOP3 (Type I DMOOPs)

nt τt PM Result C D C-8-1 C-32-1 C-8-0.5 C-16-0.5 C-32-0.5 C-8-2 C-16-2 C-32-2
all all acc Wins 23.42 31.62 14.48 13.97 12.24 8.56 8.32 5.47 7.14 7.81
all all acc Losses 15.58 10.39 11.53 9.03 10.77 11.44 13.69 21.53 15.87 13.20
all all acc Diff 7.84 21.23 2.95 4.94 1.47 -2.88 -5.37 -16.06 -8.73 -5.39
all all acc Rank 2 1 4 3 5 6 7 10 9 8
all all stab Wins 6.90 4.13 2.67 2.80 3.92 2.00 3.23 1.12 1.37 1.46
all all stab Losses 2.25 8.29 1.72 2.34 1.43 1.44 1.71 3.43 3.02 3.96
all all stab Diff 4.65 -4.17 0.95 0.46 2.49 0.56 1.52 -2.31 -1.66 -2.50
all all stab Rank 1 10 4 6 2 5 3 8 7 9
all all NS Wins 23.67 37.67 14.08 9.39 22.91 10.52 11.37 13.68 9.01 7.85
all all NS Losses 12.94 11.70 15.31 21.18 14.26 12.04 16.14 20.70 17.43 18.44
all all NS Diff 10.73 25.97 -1.23 -11.80 8.65 -1.52 -4.77 -7.02 -8.42 -10.59
all all NS Rank 2 1 4 10 3 5 6 7 8 9

TABLE VI: Overall Wins and Losses on FDA3 and dMOP2 (Type II DMOOPs)

nt τt PM Result C D C-8-1 C-32-1 C-8-0.5 C-16-0.5 C-32-0.5 C-8-2 C-16-2 C-32-2
all all acc Wins 46.58 42.48 17.32 17.74 2.40 2.76 3.25 16.03 16.39 16.08
all all acc Losses 8.43 10.52 10.69 10.26 36.61 37.24 35.75 9.98 11.62 9.93
all all acc Diff 38.15 31.96 6.63 7.48 -34.21 -34.48 -32.50 6.05 4.77 6.15
all all acc Rank 1 2 4 3 9 10 8 6 7 5
all all stab Wins 8.10 5.33 4.27 4.40 5.52 3.60 4.83 2.72 2.97 3.06
all all stab Losses 8.65 14.69 2.02 2.64 1.73 1.74 2.01 3.73 3.32 4.26
all all stab Diff -0.55 -9.37 2.25 1.76 3.79 1.86 2.82 -1.01 -0.36 -1.20
all all stab Rank 7 10 3 5 1 4 2 8 6 9
all all NS Wins 32.91 34.88 17.78 18.06 12.47 5.44 5.81 18.61 11.18 12.33
all all NS Losses 8.90 14.42 12.06 8.87 24.34 25.19 25.95 18.04 15.26 16.45
all all NS Diff 24.02 20.47 5.73 9.19 -11.87 -19.75 -20.14 0.57 -4.08 -4.13
all all NS Rank 1 2 4 3 8 9 10 5 6 7

TABLE VII: Overall Wins and Losses on dMOP1 (Type III DMOOP)

nt τt PM Result C D C-8-1 C-32-1 C-8-0.5 C-16-0.5 C-32-0.5 C-8-2 C-16-2 C-32-2
all all acc Wins 24.29 23.21 12.58 10.26 0.89 1.86 0.88 10.08 11.25 9.74
all all acc Losses 4.72 6.79 7.43 6.74 18.12 18.15 18.13 8.93 8.76 7.27
all all acc Diff 19.57 16.42 5.15 3.52 -17.23 -16.29 -17.25 1.15 2.49 2.47
all all acc Rank 1 2 3 4 9 8 10 7 5 6
all all stab Wins 7.22 8.21 7.83 7.96 3.39 3.50 4.11 8.26 10.17 7.93
all all stab Losses 3.57 5.49 2.06 4.43 13.99 13.94 13.79 2.62 5.31 3.35
all all stab Diff 3.65 2.72 5.77 3.54 -10.61 -10.45 -9.69 5.64 4.86 4.58
all all stab Rank 5 7 1 6 10 9 8 2 3 4
all all NS Wins 11.66 8.56 14.44 12.35 0.68 0.62 2.65 10.87 11.32 11.06
all all NS Losses 6.08 8.22 2.39 4.49 15.90 15.95 15.90 5.96 4.53 4.78
all all NS Diff 5.58 0.34 12.05 7.87 -15.23 -15.33 -13.25 4.92 6.79 6.28
all all NS Rank 5 7 1 2 9 10 8 6 3 4

and chaotic environment types. However, when considering the
slower-paced quasi-static and abrupt environments, DVEPSO
and the standard charged VEPSO performed very similarly.
Another observation was made regarding the spatial severity
settings. DVEPSO degraded in performance on the environ-
ments with larger changes in the environment (i.e., nt = 20).

That is, DVEPSOs rank worsened when switching from quasi-
static to abrupt environments as well as when changing from
progressive to chaotic environments. Thus, charged VEPSO
was more adequate to handle both faster-paced as well as larger
changes in the environment.

1935

VI. CONCLUSION

This paper proposed a new variant of vector evaluated
particle swarm optimization (VEPSO) designed to optimize
dynamic multi-objective optimization problems (DMOOPs),
namely charged VEPSO. Charged VEPSO made use of
charged particle swarm optimization (CPSO) sub-swarms to
implicitly address decision-space tracking of environmental
changes. Various configurations of CPSO parameters were
examined to determine their effect on the algorithm’s per-
formance. Variants of charged VEPSO were compared to the
predecessor, dynamic VEPSO (DVEPSO) on a wide variety
of dynamic environments. Five benchmark functions, span-
ning three of Farina et al.’s DMOOP Types, were examined.
Each benchmark function was configured with four spatial
and temporal severity settings, representing each of Duhain’s
four dynamic environment behavioral classes. The accuracy,
stability, and number of solution measures calculated and
used to assign a relative ranking to each optimizer based on
normalized, per-iteration performance.

Results over all experiments indicated that, in general, the
charged VEPSO optimizer using the standard CPSO parame-
ters outperformed the existing DVEPSO optimizer. However,
DVEPSO outperformed all other, non-standard variants of
charged VEPSO. Results demonstrated that DVEPSO was
more well-suited to locate the Pareto optimal front, while
charged VEPSO was better equipped to track the changing
Pareto front. Further, DVEPSO was shown to perform better
on environments where the Pareto front does not change over
time. Charged VEPSO exhibited better performance on the
faster-paced, progressive and chaotic environments.

Future work includes further methods to improve the
performance of VEPSO in dynamic environments. A wider
set of benchmark functions and environmental configurations
is needed to further categorize the performance of optimizers.
An immediate extension to this research is to compare the
performance of charged VEPSO, and other dynamic sub-
swarm VEPSO variants, against state-of-the-art dynamic multi-
objective optimization algorithms.

ACKNOWLEDGMENT

The authors would like to thank Mardé Helbig of The
Council for Scientific and Industrial Research (CSIR), South
Africa, for her assistance in generating the true Pareto fronts.
Furthermore, the authors thank the anonymous reviewers for
their valuable insight and suggestions.

REFERENCES

[1] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective optimization
problems: test cases, approximations, and applications,” Evolutionary
Computation, IEEE Transactions on, vol. 8, no. 5, pp. 425–442, 2004.

[2] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Wiley, 2001.

[3] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization
method in multiobjective problems,” in Proc. of the 2002 ACM Sympo-
sium on Applied Computing. NY: ACM, 2002, pp. 603–607.

[4] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in IEEE
Int’l Conference on Neural Networks, vol. IV, 1995, pp. 1942–1948.

[5] J. Grobler, “Particle swarm optimization and differential evolution for
multi-objective multiple machine scheduling,” Master’s thesis, U. of
Pretoria, South Africa, 2008.

[6] K. R. Harrison, B. Ombuki-Berman, and A. P. Engelbrecht, “Knowledge
transfer strategies for vector evaluated particle swarm optimization,”
in Evolutionary Multi-Criterion Optimization, ser. Lecture Notes in
Computer Science. Springer, 2013, vol. 7811, pp. 171–184.

[7] M. Greeff and A. P. Engelbrecht, “Solving dynamic multi-objective
problems with vector evaluated particle swarm optimisation,” in IEEE
Congress on Evolutionary Computation (CEC 2008). IEEE, 2008, pp.
2917–2924.

[8] M. Greeff and A. Engelbrecht, “Dynamic multi-objective optimisation
using pso,” in Multi-Objective Swarm Intelligent Systems, ser. Studies
in Computational Intelligence. Springer, 2010, vol. 261, pp. 105–123.

[9] T. M. Blackwell, P. J. Bentley et al., “Dynamic search with charged
swarms,” in Proceedings of the genetic and evolutionary computation
conference. Citeseer, 2002, pp. 19–26.

[10] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” Evolutionary Computation,
IEEE Transactions on, vol. 10, no. 4, pp. 459–472, 2006.

[11] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimization: detec-
tion and response to dynamic systems,” in Evolutionary Computation,
2002. CEC’02. Proceedings of the 2002 Congress on, vol. 2. IEEE,
2002, pp. 1666–1670.

[12] A. J. Carlisle, “Applying the particle swarm optimizer to non-stationary
environments,” Ph.D. dissertation, Auburn University, Auburn, AL,
USA, 2002.

[13] M. Helbig and A. P. Engelbrecht, “Analyses of guide update approaches
for vector evaluated particle swarm optimisation on dynamic multi-
objective optimisation problems,” in Evolutionary Computation, ser.
CEC ’12. IEEE, 2012, pp. 1–8.

[14] G. Pampara, A. P. Engelbrecht, and T. Cloete, “Cilib: A collab-
orative framework for computational intelligence algorithms - part
i,” in Proc. of IEEE World Congress on Computational Intelli-
gence, Hong Kong, 2008, pp. 1750–1757, source code available at:
https://github.com/cilib/cilib.

[15] F. Van Den Bergh, “An analysis of particle swarm optimizers,” Ph.D.
dissertation, U. of Pretoria, South Africa, 2002.

[16] C.-K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” Evolutionary Com-
putation, IEEE Transactions on, vol. 13, no. 1, pp. 103–127, 2009.

[17] M. Cámara, J. Ortega, and F. de Toro, “Approaching dynamic multi-
objective optimization problems by using parallel evolutionary algo-
rithms,” in Advances in Multi-Objective Nature Inspired Computing.
Springer, 2010, pp. 63–86.

[18] K. De Jong, “Evolving in a changing world,” in Foundations of
Intelligent Systems, ser. Lecture Notes in Computer Science. Springer,
1999, vol. 1609, pp. 512–519.

[19] K. Weicker, “An analysis of dynamic severity and population size,”
in Parallel Problem Solving from Nature PPSN VI, ser. Lecture Notes
in Computer Science, M. Schoenauer, K. Deb, G. Rudolph, X. Yao,
E. Lutton, J. Merelo, and H.-P. Schwefel, Eds. Springer Berlin
Heidelberg, 2000, vol. 1917, pp. 159–168.

[20] J. Duhain and A. Engelbrecht, “Towards a more complete classifica-
tion system for dynamically changing environments,” in Evolutionary
Computation (CEC), 2012 IEEE Congress on, June 2012, pp. 1–8.

[21] M. Cámara, J. Ortega, and F. de Toro, “A single front genetic algorithm
for parallel multi-objective optimization in dynamic environments,”
Neurocomputing, vol. 72, no. 16, pp. 3570–3579, 2009.

[22] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength pareto approach,” Evolutionary
Computation, vol. 3, no. 4, pp. 257–271, 1999.

[23] M. Helbig and A. P. Engelbrecht, “Analysing the performance of dy-
namic multi-objective optimisation algorithms,” in Evolutionary Com-
putation (CEC), 2013 IEEE Congress on. IEEE, 2013, pp. 1531–1539.

1936

