
 
 

 

  

Abstract—Many-objective optimization deals with problems 
with more than three objectives. The rapid growth of 
non-dominated solutions with the increase of the number of 
objectives weakens the search ability of Pareto-dominance- 
based multiobjective evolutionary algorithms. MO-NSGA-II 
strengthens its dominance-based predecessor, NSGA-II, by 
guiding the search process with reference points. In this paper, 
we further improve MO-NSGA-II by enhancing its mating 
selection mechanism with a hierarchical selection and a 
neighborhood concept based on the reference points. 
Experimental results confirm that the proposed ideas lead to 
better solution quality. 

I. INTRODUCTION 
ULTIOBJECTIVE optimization deals with optimization 
problems with more than one objective. A simple 

formulation of a multiobjective minimization problem is as 
follows: 

   Minimize F(x) = {f1(x), f2(x), … fM(x)} x ∈ Ω,                 (1) 

where Ω denotes the solution space, x denotes a solution,  fi(x) 
denotes the ith objective function, and M denotes the number 
of objectives. In most cases these objectives are conflicting, 
which means that improvement of one objective causes 
deterioration of some other objectives. The concept of Pareto 
optimality for multiobjective optimization is based on the 
Pareto dominance relationship. Assuming all objective 
functions are to be minimized, a solution x is said to dominate 
a solution y iff ∀ i ∈ {1, …, M}, fi(x) ≤ fi(y) and ∃ i ∈ {1, …, 
M} fi(x) < fi(y). A solution x* is Pareto optimal iff it is not 
dominated by any solution in the solution space. We call the 
set of all Pareto optimal solutions the Pareto (optimal) set and 
the set of the corresponding objective vectors the Pareto front. 
The goal of solving multiobjective optimization problems 
(MOPs) to Pareto optimality is to find (or approximate) the 
Pareto optimal set. 

Evolutionary algorithms (EAs) are a kind of approximation 
algorithms for optimization problems. It relies on a 
population to search for the optimal solution(s) through 
selection and variation. The population-based nature makes it 
fit the goal of finding the Pareto optimal set, and hence many 
multiobjective evolutionary algorithms (MOEA) such as 
NSGA-II [1], SPEA2 [2], IBEA [3], SMS-EMOA [4], and 
MOEA/D [5][6] have been proposed in the last decade. 
Evolutionary multiobjective optimization (EMO) has also 
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been recognized as one of the three fastest growing fields of 
research among all computational intelligence topics in IEEE 
World Congress on Computational Intelligence (WCCI) in 
2006 [7]. As more and more researchers join the field of EMO, 
design of MOEAs for two- and three-objective optimization 
problems has become well-established, which encourages 
researchers to tackle problems with many objectives. 

Several pioneer studies [8][9] indicated that dealing with 
many-objective optimization problems (M ≥ 4) poses 
additional challenges compared to problems with M < 4     
objectives. Ishibuchi et al. [10] summarized three difficulties 
in many-objective optimization: (1) deterioration of the 
search ability of traditional MOEAs, (2) exponential growth 
of dimensionality of the Pareto set, and (3) visualization of 
the Pareto front. These difficulties have been tackled through 
several directions. The first direction is to change the problem 
or to make the goal clearer. Since the difficulty is caused by 
the large number of objectives, researchers have tried to 
reduce the number of objectives [11]−[14] or to incorporate 
user preferences to guide the search process [15]−[19]. The 
second direction is to improve the weak selective pressure of 
dominance-based selection when facing the large number of 
non-dominated solutions in the population. The techniques 
may modify Pareto dominance or assign different ranks to 
non-dominated solutions [20]−[26]. The third direction is to 
try selection mechanisms other than dominance-based ones, 
such as adopting performance indicators (e.g. hypervolume) 
[3][4][28]−[31] or scalarizing functions (e.g. weighted sum or 
Tchebycheff approach) [32]−[35]. 

NSGA-II played an important role in the field of EMO in 
the last decade. It served as the basis of many dominance- 
based MOEAs. However, researchers also noticed its 
weakness in solving many-objective problems. Recently the 
authors proposed a new version of the algorithm, called 
MO-NSGA-II [19]. It generates a set of reference points and 
associates individuals with the reference points. A reference 
point associated with fewer individuals is regarded as 
less-crowded. The selection mechanism favors the 
individuals that are associated with a less-crowded reference 
point and are closer to the associated reference point. In this 
paper, we consider the convergence degree of individuals 
toward the reference points and concentrate the search on the 
regions with less convergence. We also construct 
neighborhood between reference points and enforce 
individuals to mate with others inside the neighborhood to 
enhance the quality of the offspring. The rest of this paper is 
organized as follows. Section II will review the literature. 
Brief descriptions of MO-NSGA-II will be given in Section 
III. We will elaborate our algorithm in Section IV. 
Experiments and results are presented in Section V. 
Conclusions will be provided in Section VI. 
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II. LITERATURE REVIEW 
Much research has been done for many-objective 

optimization. In this section we follow the categorization in 
Ishibuchi et al. [10] and report the recent progress.  

A. Objective Reduction 
An intuitive attempt to address the difficulties caused by 

the large number of objectives is to reduce the number of 
objectives. Brockhoff and Zitzler [11] proposed an error 
metric for a reduced set of objectives based on the concept of 
ε-dominance. Then, they defined two problems: the δ-MOSS 
problem aims at finding the minimum set of objectives within 
a given error, and the k-EMOSS problem aims at minimizing 
the error under a limited number of objectives. Jaimes et al. 
[12] proposed a reduction method based on a feature selection 
technique. They calculated the distance between objectives 
based on the correlation. Then, the objectives were clustered 
based on their distances. Following their previous research, 
Jaimes et al. [13] integrated their objective reduction method 
into an MOEA and proposed two algorithms. Saxena et al. 
[14] proposed a reduction method based on principal 
component analysis (PCA) and maximum variance unfolding 
(MVU). 

B. Preference Points 
In addition to reducing the number of objectives, another 

way to “change” the many-objective nature to make the 
problem easier is through the incorporation of user 
preferences. With user preferences, the MOEAs can focus on 
searching smaller and more specific region(s) to find 
solutions that users would be interested in. In R-NSGA-II 
[15], a preference operator replaced the crowding distance 
operator in the original NSGA-II. The preference distance of 
a solution was calculated by the minimum weighted 
normalized Euclidean distance to the reference points. 
Solutions with smaller preference distance were preferred 
during mating and environmental selection. Thiele et al. [16] 
proposed PBEA by introducing reference point(s) and 
achievement scalarization function (ASF) into IBEA. The 
fitness value in PBEA was that in IBEA divided by a 
normalized ASF value with respect to the reference point(s). 
The PIE algorithm by Sindhya et al. [17] also relied on 
reference points and ASF. It searches for the single optimal 
solution with respect to the ASF value rather than a set of 
solutions considering proximity and diversity simultaneously. 
Based on the concept of coevolving a family of 
decision-maker preferences together with a population of 
candidate solutions, Wang et al. [18] proposed the PICEA-g 
algorithm. PICEA-g does not ask users to provide reference 
points; instead, it evolves these reference points (called goals 
in the algorithm) by preferring those dominated by fewer 
solutions. On the other hand, solutions are regarded as better 
if they dominate more goals, especially when the goals are 
dominated by few solutions. MO-NSGA-II [19] generates 
structured set of reference points and aims at distributing 
solutions evenly to the reference points and moving solutions 
toward their corresponding reference points. In DI-EMOA 
[20], decision makers specified region of interests of the 

objectives and defined the desirability functions (DF) 
accordingly. A desirability index (DI) was then defined as a 
scalarization operator to map multiple DF values to a single 
value. The DI was used as the secondary criterion of the 
non-dominated sorting procedure. A DI-based archiving 
mechanism was also proposed. 

C. Ranking and Modified Pareto Dominance 
Noticing the low selective pressure of Pareto dominance in 

many-objective optimization, the other way is to improve the 
algorithm. Dreschsler et al. [21] proposed the favour 
relationship: an individual x is favored over an individual y iff 
the number of objectives in which x is better than y is larger 
than the number of objectives in which y is better than x. The 
favour relationship is identical to the dominance relationship 
when the number of objectives is two. In G-MOEA [22], 
users decided the linear trade-off between two objectives. The 
trade-off specified the minimal required improvement (resp. 
maximal allowed deterioration) of one objective for a unit of 
deterioration (resp. improvement) of the other objective. A 
modified dominance relationship can then be defined 
accordingly. Sato et al. [23] proposed a method to control the 
degree of expansion or contraction of the dominance area. 
Expanding the dominance area increases the number of fronts 
and the selective pressure. Their experiments showed that 
expansion of the dominance area improved algorithm 
performance when the problem dimension, search space, and 
problem difficulty increase. Corne and Knowles [24] tested 
seven ranking methods including average ranking [25] and 
favour relation [21] by two sets of combinatorial optimization 
problems. The experimental results showed that average 
ranking is a good method. Garza-Fabre et al. [26] proposed 
three ranking methods, two based on the difference of 
objective values between individuals and one based on the 
distance to the ideal point.  

D. Indicator Function 
In addition to algorithm design, performance assessment is 

also an important topic in the field of EMO [27]. Since we 
evaluate the performance of MOEAs by these indicators, it is 
natural to use them to select individuals. IBEA [3] was among 
the earliest studies on this direction. It evaluated individuals 
based on how they contribute to the indicator. While IBEA 
allowed the use of different indicators, SMS-EMOA [4] 
focused on the use of hypervolume. When all individuals are 
not dominated by each other, the worst individual is the one 
having the lowest contribution to the hypervolume. Wagner et 
al. [28] compared seven MOEAs belonging to Pareto-, 
aggregation-, and indicator-based methods, and the 
experimental results showed that SMS-EMOA had very good 
performance. Although SMS-EMOA performs well, 
expensive computational effort required by hypervolume 
leads to the use of other indicators. Díaz-Manríquez et al. [29]  
utilizes the contribution of individuals to the R2 indicator [30] 
to rank individuals. Phan and Suzuki [31] extended IBEA to 
R2-IBEA. They used a binary R2 indicator and also proposed 
an adaptive adjustment method for the reference point to 
correct the inherent bias of the R2 indicator toward the center 
of a Pareto front. 
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E. Scalarizing Function 
The essential idea in the category of MOEAs based on 

scalarizing functions is to use multiple weight vectors and 
solve corresponding single-objective optimization 
sub-problems in parallel. In his MSOPS-II, Huges [32] 
proposed two scalarizing functions and a method to 
automatically generate weight vectors. Zhang and Li [5][6] 
developed MOEA/D and incorporated the concept of 
neighborhood of sub-problems to do mating restriction. 
Ishibuchi et al. [33] hybridized NSGA-II and linear weighted 
sum in the selection mechanism. Ishibuchi et al. [34] 
indicated that the large population made NSGA-II slow and 
inefficient but MOEA/D still worked very well. Ishibuchi et 
al. [35] compared linear weighted sum and weighted 
Tchebycheff. They found that linear weighted sum had faster 
convergence speed for high-dimensional problems but could 
not find good solutions for non-convex problems. Thus, they 
tried to detect the front shape (convex or non-convex) by the 
number of identical objective vectors in a neighborhood and 
chosen between the two scalarizing functions accordingly.  

III. REVIEW OF MO-NSGA-II 
In this paper we propose a many-objective evolutionary 

algorithm by improving the mating selection mechanism in 
MO-NSGA-II [19]. We will review MO-NSGA-II briefly in 
this section. Algorithm I presents the main flow of 
MO-NSGA-II. Comparing with the flow of classical EAs, 
there are three additional procedures: generation of 
hyper-plane, generation of reference points, and association 
of reference points. They will be explained in subsections A 
and B. After association of population members with 
reference points, a convergence measure and a diversity 
measure will be defined. Mating selection and environmental 
selection are carried out based on the non-domination level 
and these two new measures. 

ALGORITHM I: MO-NSGA-II 
P1 ← GenerateInitialPopulation() 
t ← 1 
R ← GenerateReferencePoints()      // Section III-B 
while stopping criterion is not satisfied 
   H ← GenerateHyperplane(Pt)      // III-A 
   AssociateIndividualsWithReferencePoints(Pt, H, R)    // III-B 
   Qt ← ∅ 
  NonDominatedSorting(Pt)    // [1] 
 for i = 1 to |Pt|/2 

   p1 ← MatingSelection(Pt, R)    // III-C 
   p2 ← MatingSelection(Pt, R)    // III-C 

        {c1, c2} ← CrossoverAndMutation(p1, p2) 
        Qt ← Qt ∪ {c1, c2} 
   end for 
   Pt+1 ← EnvironmentalSelection(Pt, Qt, H, R)    // III-D 
   t ← t + 1 
end while 

A. Generation of Hyper-plane 
The key innovation in MO-NSGA-II is that it uses 

reference points on a hyper-plane to guide the search process 
and maintain population diversity. In this subsection we 
describe how MO-NSGA-II generates the hyper-plane. 

Given a set Pt of individuals, MO-NSGA-II first identifies 

the minimum value of each of the M objective functions by fi
* 

= min {fi(x) | x ∈ Pt}, i = 1 … M. The ideal point z* is defined 
by z* = (f1

*, f2
*, …, fM

*). Then, for each individual x in Pt, it 
calculates the translated objective fi

′(x) = fi(x) – fi
*. Now, the 

ideal point becomes the zero point in the translated coordinate 
system with M axes (objectives). 

In the coordinate system, the extreme point along each 
objective axis is identified by minimizing the achievement 
scalarizing function (ASF), defined by 

ASF(x, w) = iiMj
wxf /)(max '

...1=
, for x ∈ Pt.                               (1) 

The weight vector w is the axis direction, and in the 
implementation a small positive value 10-6 replaces the zero 
value of wi. When M = 3, for example, the weight vector w for 
axis f1 is (1, 10-6, 10-6). Finally, M extreme points are found 
and are used to create a hyper-plane. The hyper-plane will be 
extended to reach the translated objective axes. 

B. Reference Points and Clustering 
MO-NSGA-II follows Das and Dennis’ method [36] to 

generate a set of reference points. For each element ri (i = 1 … 
M) of a reference point r, ri ∈ {0, 1/p, 2/p, …, 1} and the sum 
of ri is 1. The total number H of reference points is 
determined by M and p: 

H = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
p
pM 1

.                                                               (2) 

In MO-NSGA-II, the population size is set roughly equal to 
the number of reference points. Users can set the value of p 
based on how many non-dominated solutions they want to 
obtain. 

MO-NSGA-II uses reference points to assess the 
distribution of individuals in the objective space and to guide 
the search process. All individuals being considered are 
projected onto the constructed hyper-plane. Then, each 
projected counterpart is associated with the closest reference 
point. In other words, each reference point has a cluster of 
associated solutions. With H reference points, ideally each 
reference point should have ρideal = N/H solutions in its cluster 
for even distribution, where N is the population size. For each 
reference point r, we denote its associated cluster of solutions 
by C(r), and its deficient count d(r) is defined by 

d(r) = ρideal − |C(r)|.                                                             (3) 

If d(r) is positive, it means that the number of individuals 
around r is not enough. (It also means that too many 
individuals are around some other reference points.) The 
selection mechanism will favor individuals associated with 
the reference points having large d(r) to distribute individuals 
evenly. 

C. Mating Selection 
Mating selection chooses the individuals from the current 

population as the parents for producing the offspring. 
MO-NSGA-II uses binary tournament to select the parents: 
two individuals are picked up randomly, and the better one is 
selected as a parent. 
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In MO-NSGA-II, two individuals are compared by three 
criteria hierarchically. First, an individual is better if it has a 
smaller non-domination level. If they have the same level, an 
individual x is better if its associated reference point r(x) has a 
larger deficient count d(r(x)). Finally, if the above two criteria 
cannot determine the winner, the individual x with a smaller 
ASF(x, r(x)) value is selected. 

D. Environmental Selection 
After generating offspring, environmental selection 

determines which individuals will survive to the next 
generation. Like NSGA-II, MO-NSGA-II first puts the 
individuals in the first non-domination level F1 into the 
survival population, then F2, F3, until adding the individuals 
in Fl exceeds the population size. Individuals in F1 to F(l-1) 
survive, and the deficiency count of their reference points are 
calculated accordingly. Among the reference points, the one 
r* with the largest deficient count is identified. Then, the 
individual x in Fl that has the minimal ASF(x, r*) is selected to 
survive. The deficient count of r* is reduced by one. The 
above process is repeated until the size of the survival 
population reaches N. 

IV. EMS-MO-NSGA-II 
We enhance mating selection of MO-NSGA-II in two ways: 

one uses a reference point-based selection procedure to put 
more focus on the regions with fewer individuals and lower 
convergence; the other applies the neighborhood concept to 
encourage mating of individuals with similar objective 
tendency. The proposed algorithm is named 
EMS-MO-NSGA-II, which stands for Enhanced-Mating- 
Selection-MO-NSGA-II. Details will be given in the 
following two sub-sections, respectively. 

A. Reference Point-based Selection 

 
Fig. 1.  Motivation of reference point-based selection 

The binary tournament selection in MO-NSGA-II picks up 
two individuals randomly and then selects the one in a 
less-crowded region (i.e. the one whose reference point has a 
larger deficient count) when the two individuals have the 
same non-domination level. However, a region with more 
individuals is tried more frequently, and this may contradict 
the intention of preferring searching the less-crowded region. 
Take Fig. 1 as an example. Black circles and white circles 
refer to reference points and projected solutions, respectively. 
The cluster size of the central reference point A is five, and the 
size of the clusters of other three references points B, C, and D, 

is one. The binary tournament will select individuals in the 
cluster of A as parents in probability (5/8)2 = 39%, but will 
select individuals in each of the other three clusters in 
probability at most 1 – (7/8)2 = 23%. 

We modify the (individual-based) selection in 
MO-NSGA-II to the reference point-based selection, which 
chooses a reference point r first and then chooses an 
individual in its cluster C(r). A similar concept was 
mentioned in PESA2 [37]. According to how we choose the 
reference point, we have three strategies, RP-U, RP-P, and 
RP-W. 

1) Uniform selection (RP-U): This strategy chooses a 
reference point r with the same probability, regardless of how 
many individuals are associated with it. Then, an individual in 
its cluster C(r) is chosen randomly as a candidate in 
tournament. 

2) Proportionate selection (RP-P): This strategy chooses a 
reference point r with a probability in proportion to P(r): 

P(r) = 
0)( if 
0)( if  

,
,

0
1)(

=
>

⎩
⎨
⎧ +

rC
rCrCMCS-

,                                   (4) 

where MCS is the maximum of |C(r)| among all reference 
points. RP-U gives the equal chance to clusters with different 
sizes, and RP-P gives more chance to clusters with smaller 
sizes. An individual in the cluster of the chosen reference 
point is chosen randomly as a candidate. 

The following is an example of the probability of selecting 
an individual as a candidate in binary tournament. Assume 
that there are three reference points r1, r2, and r3. The 
population size is 30, and the cluster sizes are 15, 10, and 5, 
respectively. The probability of selecting an individual in 
each cluster as a candidate in tournament is given in Table I. 
Since MO-NSGA-II selects each individual randomly, the 
probability is always 1/30. RP-U selects each cluster in equal 
probability and then selects an individual randomly, and thus 
the probability is (1/3)×(1/|C(r)|). In RP-P, P(ri) = 1, 6, and 11, 
respectively, for i = 1, 2, and 3. We can see that individuals in 
the cluster with a smaller size are selected as candidates in 
higher probability. Note that although RP-U selects each 
cluster in equal probability, the “reference-point-first- 
individual-second” selection mechanism already increases 
the probability of selecting each individual in r3 as a 
candidate in tournament from 1/30 to 1/15. 

TABLE I 
EXAMPLE OF SELECTION PROBABILITY OF INDIVIDUALS IN CLUSTERS AS 

CANDIDATES IN TOURNAMENT 
 r1  

(C(r1) = 15) 
r2  

(C(r2) = 10) 
r3  

(C(r3) = 5) 
MO-NSGA-II 1/30 1/30 1/30 
RP-U (1/3)×(1/15) (1/3)×(1/10) (1/3)×(1/5) 
RP-P (1/18)×(1/15) (6/18)×(1/10) (11/18)×(1/5) 

3) Weak region selection (RP-W): When the cluster sizes 
of reference points are close, RP-U and RP-P turn to be the 
same as the selection mechanism in MO-NSGA-II. In 
addition to the cluster size, we can assess the convergence by 
the ASF values of individuals. We calculate ASF(r) for each 

f2 
f1 

f3 

D 

C B 

A 
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reference point r by 

ASF(r) = 
0)( if 
0)( if  

,
,

0
)}(|),(min{

=
>

⎩
⎨
⎧ ∈

rC
rCrCxrxASF

        (5) 

Then, we calculate the average value ASF over all ASF(r). 
We think that individuals in the clusters of reference points r 
with ASF(r) > ASF  are not positioned along the direction 
well. Therefore, we give mating chances only to these 
individuals. The RP-W strategy randomly chooses a reference 
point r from those with ASF(r) > ASF , and then randomly 
chooses an individual in C(r) as a candidate in tournament. 

We test three variants of this strategy. They are different in 
the timing of applying RP-W. 

RP-W-a: It applies RP-W during the whole evolution. 
RP-W-d: It starts to apply RP-W after each reference point is 

associated with at least one individual. 
RP-W-g: It starts to apply RP-W after g% of generations. 

B. Neighborhood-based Selection (NB) 
The second way of enhancing mating selection in 

MO-NSGA-II is to introduce the neighborhood concept. It 
has been observed that mating of individuals that are close in 
the objective space helps to produce better offspring 
effectively [5][39]. In our EMS-MO-NSGA-II, the first 
parent p1 can be chosen by the original MO-NSGA-II method 
or any of our three reference point-based methods. Then, the 
second parent p2 must be chosen from the clusters of nT 
reference points closest to r(p1) in terms of the Euclidean 
distance in the objective space. If all the nT neighbor reference 
points have an empty cluster, p2 is chosen in the same way in 
which p1 is chosen. The value of parameter nT will be 
investigated in Section V-E. Algorithm II summarizes the 
flow of EMS-MO-NSGA-II. 
 

ALGORITHM II: EMS-MO-NSGA-II 
W: a set of weight vectors 
 
P1 ← GenerateInitialPopulation() 
t ← 1 
R ← GenerateReferencePoints()      // Section III-B 
while stopping criterion is not satisfied 
   H ← GenerateHyperplane(Pt)      // III-A 
   AssociateIndividualsWithReferencePoints(Pt, H, R)    // III-B 
   Qt ← ∅ 
 NonDominatedSorting(Pt)    // [1] 

   for i = 1 to |Pt|/2 
   p1 ← MatingSelection(Pt, R)    // IV-A 
  if neighborhood-based selection is activated 
       B ← CollectNeighborIndividuals(Pt, R, r(p1), nT)   // IV-B 
  else  
       B ← Pt 
 p2 ← MatingSelection(B, R)    // IV-A 

        end if 
        {c1, c2} ← CrossoverAndMutation(p1, p2) 
        Qt ← Qt ∪ {c1, c2} 
   end for 
   Pt+1 ← EnvironmentalSelection(Pt, Qt, H, R)    // III-D 
   t ← t + 1 
end while 

 

V. EXPERIMENTS AND RESULTS 

A. Benchmarks and Performance Metric 
To verify the performance of the proposed 

EMS-MO-NSGA-II, we compared it with MO-NSGA-II on 
four well-known problems DTLZ1-4 [40]. Definitions of 
these problems are given in Table II. In these problems, 
function g(XM) requires |XM| = k variables. The total number 
of decision variables n is k + (M – 1). We set k by 5 for 
DTLZ1 and DTLZ3 and by 10 for DTLZ2 and DTLZ 4. We 
followed the experiments in [19] and tested M = {3, 5, 8, 10} 
for DTLZ1-3 and M = {3, 5, 8} for DTLZ4. DTLZ4 with 10 
objectives was not considered in [19] and is not included here. 
In total, there were 15 problem instances.  

We measured performance by the inverted generational 
distance (IGD) because it is commonly adopted in the EMO 
literature [5][6][12][23][31] and can be computed efficiently. 
The definition is as follows: 

IGD = *||

1

2 /
*

Pd
P

i i ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∑ =
,                                                  (6) 

where P* is a reference set of Pareto optimal points and di is 
the Euclidean distance between the ith point in P* and the 
nearest solution in the approximated set of solutions obtained 
by a tested algorithm. The Pareto front of each test problem is 
known. We connect the zero point and the reference points 
(Section III-B) to form lines. The intersection of these lines 
and the Pareto front form the reference set P*.  For example, 
the Pareto front of the 3-objective (M = 3) DTLZ1 problem 
lies on the linear hyper-plane f1 + f2 + f3 = 0.5. If we set p = 2, 
we will generate C(3+2−1, 2) = 6 points in the reference set: 
{(0.5, 0, 0), (0.25, 0.25, 0), (0.25, 0, 0.25), …, (0, 0, 0.5)}. 
 

TABLE II 
PROBLEM INSTANCES: DTLZ1−4 [40] 

Problem Definition 

DTLZ1 Minimize f1ሺXሻ= 1
2

x1x2…xMି1൫1+gሺXMሻ൯, 

Minimize f2ሺXሻ= 1
2

x1x2…(1 െ xMି1)൫1+gሺXMሻ൯,  
… 
Minimize fMି1ሺXሻ= 1

2
x1ሺ1 െ x2ሻ൫1+gሺXMሻ൯,  

Minimize fMሺXሻ= 1
2

ሺ1 െ x1ሻ൫1+gሺXMሻ൯,  

subject to 0 ≤ xi ≤ 1, for i = 1, 2, …, n. 

gሺXMሻ=100ൣ|XM|+ ∑ (xi െ 0.5)2 െ cos (20π(xi െ 0.5))xiאXM ൧.  
DTLZ2 Minimize f1ሺXሻ=൫1+gሺXMሻ൯ cos(x1π/2)…cos(xMି1π/2),

Minimize f2ሺXሻ=൫1+gሺXMሻ൯ cos(x1π/2)…sin(xMି1π/2), 
… 
Minimize fMሺXሻ=൫1+gሺXMሻ൯ sin(x1π/2), 
subject to 0 ≤ xi ≤ 1, for i = 1, 2, …, n. 

gሺXMሻ= ∑ (xi െ 0.5)2
xiאXM .  

DTLZ3 Use the same definition as DTLZ2 but replace g function by 
that in DTLZ1. 

DTLZ4 Use the same definition as DTLZ2 but replace xi by xα in fk (k 
= 1 … M). (α = 100 in the experiments.) 
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B. Parameter Setting 
To compare our EMS-MO-NSGA-II with MO-NSGA-II 

and focus on the mating selection mechanism, we used the 
same crossover and mutation operators as those in 
MO-NSGA-II [19]. We also followed the same parameter 
setting: crossover rate was set by 1.0, and mutation rate was 
1/n, where n is the number of decision variables. Values of 
parameters ηc in the simulated binary crossover and ηm in 
polynomial mutation were both set by 20. The population size 
(N) and the maximum number of generations (G) were set 
identically to the values used in [19]. Both algorithms were 
run to solve each problem instance for 20 times. We recorded 
the IGD values of 20 runs and carried out Mann Whitney U 
test with a significance level 0.05. To save space, we will not 
report the IGD values. Instead, we provide the number of 
instances that the compared algorithms have significantly 
difference performance. In Tables IV to VII, the notation x+y- 
means that EMS-MO-NSGA-II outperforms MO-NSGA-II 
significantly for x out of 15 problems and is outperformed for 
y problems. 

TABLE III 
PARAMETER SETTING OF MO-NSGA-II AND EMS-MO-NSGA-II 

 Number of objectives (M) 
 3 5 8 10 
number of divisions (p) 12 5 4 3 
number of clusters 91 126 330 220 
population size (N) 92 128 332 220 
generation number (G) for DTLZ1 750 1500 2500 5000 
generation number (G) for DTLZ2 750 1500 3500 4000 
generation number (G) for DTLZ3 1000 3000 4500 6000 
generation number (G) for DTLZ4 1500 3000 4000  

 

C. Experiment 1: RP-U/RP-P 
In our first experiment, we checked the effects of the two 

selection strategies RP-U and RP-P. The difference between 
them and the mating selection mechanism in MO-NSGA-II is 
in that they select a reference point and then select an 
individual associated with that reference point. (Here the 
proposed NB strategy was not applied.) This aims at avoiding 
the high selection probability for a crowded region due to the 
original individual-based selection. Table IV shows the 
experimental results. 

TABLE IV 
NUMBER OF INSTANCES WITH STATISTICALLY SIGNIFICANT DIFFERENCE 

BETWEEN MO-NSGA-II AND THE VARIANT USING RP-U AND RP-P 
 MO-NSGA-II RP-U RP-P 

MO-NSGA-II  0+0- 0+0- 
RP-U 0+0-  0+0- 
RP-P 0+0- 0+0-  

The results indicate that the RP-U and RP-P strategies do 
not have significant effect on the performance of 
MO-NSGA-II. After observing the search process, we found 
that MO-NSGA-II is able to distribute population members 
evenly to reference points. When setting the population size 
roughly equal to the number of reference points (please see 
Table III), we found that almost every reference point was 
ideally associated with one individual. Besides, this even 
distribution was achieved at very early stage (about 5%−10% 

of the maximum generation number). The even distribution 
makes individual-based selection and reference point-based 
selection behave identically, which explains the results in 
Table IV. 

D. Experiment 2: RP-W 
In the second experiment we analyzed the effect of the 

proposed RP-W strategy. (Again, the proposed NB strategy 
was not applied.) Like RP-U and RP-P, RP-W selects a 
reference point first and then an individual associated with the 
reference point. The difference is in that RP-U and RP-P aims 
at improving distribution by considering the number of 
individuals associated with the reference points but RP-W 
focuses on improving convergence by considering the ASF 
value. Only references points whose ASF values are higher 
than the average ASF can be selected in the RP-W strategy. 
We have three RP-W variants. They are different in the 
timing of activating the strategy. RP-W-a activates it at the 
first generation, RP-W-d activates it when each reference 
point is associated with at least one individual, and RP-W-g 
activates it when g% of maximum generations is reached. In 
the experiment, we tested three values of g: 50, 70, and 90. 
Table V shows the experimental results. 

TABLE V 
NUMBER OF INSTANCES WITH STATISTICALLY SIGNIFICANT DIFFERENCE 

BETWEEN MO-NSGA-II (MO-NS-II) AND THE VARIANT USING RP-W 

 MO-NS 
-II 

RP-W
-a 

RP-W-
d 

RP-W
-50 

RP-W-
70 

RP-W
-90 

MO-NS-II  13+1- 13+0- 7+2- 2+7- 0+11- 
RP-W-a 1+13-  0+9- 2+12- 1+14- 1+14- 
RP-W-d 0+13- 9+0-  1+13- 1+13- 1+13- 

RP-W-50 2+7- 12+2- 13+1-  0+10- 1+9- 
RP-W-70 7+2- 14+1- 13+1- 10+0-  1+1- 
RP-W-90 11+0- 14+1- 13+1- 9+1- 1+1-  

On one hand, the results indicate that RP-W is able to 
improve the performance. RP-W-70 is significantly better 
than MO-NSGA-II for 7 problem instances and is worse for 2 
instances. RP-W-90 is better for 11 instances and worse for 
none. On the other hand, RP-W-a and RP-W-d do not perform 
well. RP-W-a activated the strategy at the beginning. 
According to the finding in the first experiment, we can know 
that RP-W-d activated the strategy early when 5%-10% of 
maximum generations was reached. The result implies that 
RP-W should be activated at the later stage of the search 
process. One possible reason is that RP-W strategy puts focus 
on searching some certain regions. If we do it too early, the 
search direction may be biased and the approximation would 
also become bad.  

E. Experiment 3: NB 
In this experiment, we want to verify the effects of the NB 

strategy, which allows a selected individual x to mate only 
with individuals that are associated with one of the nT 
reference points closet to r(x). To focus on the NB strategy, 
we did not apply our reference point-based selection here. We 
tested four values of nT: N⋅{5%, 10%, 15%, 20%}, where N is 
the population size. Table VI presents the experimental 
results. 
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TABLE VI 
NUMBER OF INSTANCES WITH STATISTICALLY SIGNIFICANT DIFFERENCE 

BETWEEN MO-NSGA-II AND THE VARIANT USING NB 
 MO-NSGA-II NB-5 NB-10 NB-15 NB-20 

MO-NSGA-II  2+10- 0+13- 1+12- 1+13- 
NB-5 10+2-  2+6- 3+6- 5+5- 

NB-10 13+0- 6+2-  5+0- 6+0- 
NB-15 12+1- 6+3- 0+5-  7+0- 
NB-20 13+1- 5+5- 0+6- 0+7-  

The results show that the NB strategy can improve the 
performance of MO-NSGA-II and is not sensitive to the value 
of nT. The NB strategy leads to significantly better 
performance for at least 10 out of 15 problem instances. 

F. Experiment 4: MO-NSGA-II vs. EMS-MO-NSGA-II 
In the last experiment, we integrated both RP-W and NB 

strategies into MO-NSGA-II, leading to EMS-MO-NSGA-II. 
We set the value of nT in the NB strategy by N⋅10%. Then, we 
tested several values of g for the RP-W strategy and finally set 
it by 80. The experimental results are given in Table VII. We 
can see that EMS-MO-NSGA-II significantly outperforms 
MO-NSGA-II for 12 problem instances and is outperformed 
by 1 instance. Although EMS-MO-NSGA-II looks slightly 
worse than NB-10 when both are compared with 
MO-NSGA-II, EMS-MO-NSGA-II is significantly better 
than NB-10 for five instances but worse for none. It shows 
that both of the proposed RP-W and NB strategies help to 
improve algorithm performance. 

TABLE VII 
NUMBER OF INSTANCES WITH STATISTICALLY SIGNIFICANT DIFFERENCE 

BETWEEN MO-NSGA-II AND PROPOSED EMS-MO-NSGA-II 
 MO-NSGA-II NB-10 EMS-MO-NSGA-II 

MO-NSGA-II  0+13- 1+12- 
NB-10 13+0-  0+5- 

EMS-MO-NSGA-II 12+1- 5+0-  
 
Table VIII gives the mean and standard deviation of the 

IGD and additive ε-indicator values [27] over 20 runs for 
MO-NSGA-II and EMS-MO-NSGA-II. The ε-indicator is 
calculated by 

},...,1,:,{inf * MixyPxPyI ii =−≥∈∃∈∀=+ εεε ,               (7) 

where P and P* denote the approximation set and the 
reference set. Better mean values between the two tested 
algorithms are marked in bold. We can see that 
EMS-MO-NSGA-II has better mean IGD and Iε+ for 14 and 
11 out of 15 problem instances, respectively. 

VI. CONCLUSIONS 
MO-NSGA-II is a recently proposed EA for 

many-objective optimization. The core idea is to guide the 
search process by reference points on the hyper-plane 
constructed based on obtained solutions. In this paper, we 
enhanced the mating selection mechanism in MO-NSGA-II 
by turning the original individual-based selection to a 
hierarchical selection and incorporating the neighborhood 
concept. Experimental results showed that both ideas help to 
improve algorithm performance. The proposed 
EMS-MO-NSGA-II outperformed MO-NSGA-II in terms of 

IGD and additive ε-indicator for most of DTLZ1-4 instances 
with 3 to 10 objectives. 

In our future work, an important topic is to study how to 
activate the proposed RP-W strategy automatically without 
setting a predefined parameter (g). In the experiments we 
found that MO-NSGA-II was able to distribute individuals to 
reference points evenly. We are also interested in 
investigating why the individual-based selection can achieve 
the even distribution. To have a deeper analysis of the 
performance of our algorithm, we will consider more 
problems such as the WFG problems [41]. Interaction effects 
between the reference point-based strategy and NB strategy 
are also worth more investigation.  

TABLE VIII 
MEAN AND STANDARD DEVIATION OF IGD AND ADDITIVE ε-INDICATOR OF 

MO-NSGA-II AND PROPOSED EMS-MO-NSGA-II (× 10-6) 
  IGD Iε+ 
 M EMS-MO- 

NSGA-II 
MO- 

NSGA-II 
EMS-MO- 
NSGA-II 

MO- 
NSGA-II 

DTLZ1 3 324 
(274) 

359 
(223) 

841 
(591) 

1275 
(824) 

5 43 
(40) 

284 
(149) 

132 
(74) 

1449 
(892) 

8 21 
(13) 

442 
(64) 

413 
(529) 

4530 
(4385) 

10 13 
(15) 

116 
(41) 

643 
(935) 

1365 
(1093) 

DTLZ2 3 730 
(208) 

948 
(179) 

1660 
(668) 

1431 
(426) 

5 369 
(83) 

1149 
(233) 

2401 
(2013) 

6970 
(4252) 

8 87 
(12) 

868 
(102) 

481 
(245) 

5972 
(5993) 

10 44 
(8) 

508 
(80) 

336 
(187) 

2945 
(2210) 

DTLZ3 3 871 
(457) 

1028 
(626) 

2388 
(1550) 

1860 
(729) 

5 98 
(28) 

381 
(50) 

486 
(323) 

2235 
(1293) 

8 160 
(343) 

653 
(69) 

5421 
(10280) 

4923 
(1622) 

10 248 
(354) 

243 
(52) 

6312 
(9434) 

2065 
(1402) 

DTLZ4 3 53451 
(193760) 

53649 
(163655) 

71423 
(217860) 

71736 
(217882) 

5 97 
(26) 

637 
(774) 

604 
(330) 

5743 
(6069) 

8 28 
(5) 

390 
(64) 

168 
(76) 

6365 
(3218) 
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