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Abstract— Web services are network-accessible modules that
perform specific tasks and can be integrated into Web service
compositions to accomplish more complex objectives. Due
to the fast-growing number of Web services and the well-
defined nature of their interfaces, the field of automated Web
service composition is quickly expanding. The use of Particle
Swarm Optimisation composition techniques that take Quality
of Service (QoS) properties into account is well-established
in the field. However, the commonly utilised approach is to
optimise a preselected Web service composition workflow, which
requires domain expertise and prior knowledge and thus may
lead to the loss of better solutions that require different
workflow configurations. This paper presents a graph-based
PSO technique which simultaneously determines an optimal
workflow and near-optimal Web services to be included in
the composition based on their QoS properties, as well as
a greedy-based PSO technique which follows the commonly
utilised approach. The comparison of the two techniques shows
that despite requiring more execution time, the graph-based
approach provides equivalent or better solutions than the
greedy-based approach, depending on the workflow preselected
by the greedy-based PSO. These results demonstrate that under
certain circumstances, the graph-based approach is capable of
producing solutions whose fitness surpasses that of the solutions
obtained by employing the greedy-based approach.

I. INTRODUCTION

Web services are applications that perform specific tasks
and are accessible via the network through a communication
protocol [1]. One of the main advantages of Web services
is that they offer well-defined functionality modules, which
can be combined to achieve more complex tasks in a process
known as Web service composition [2]. Service composition
enables the reuse of Web services for solving different
problems, leading to faster and intuitive development of
service-oriented solutions. Due to the fast-growing number of
Web services and the well-defined nature of their interfaces,
the field of automated Web service composition has been
in expansion as researchers seek techniques for construct-
ing compositions efficiently and preserving good quality in
results.

Automated Web service composition is a complex problem
that involves searching for composition candidates within
large Web service repositories and handling non-standardised
service descriptions. Automated composition typically relies
on the use of workflow techniques and/or Artificial Intel-
ligence (AI) approaches [3]. In the context of Artificial
Intelligence, identifying a suitable composition is challenging
due to the sheer size of search space and because there are
multiple acceptable solutions. Another difficulty surrounding
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service compositions is that they must take into account the
features that indicate the quality of a selected Web service
— its Quality of Service (QoS) properties [4].

Al Planning is an approach that describes the composition
problem as a current state, a goal state, a set of actions,
and a set of preconditions and effects for those actions.
The limitation of this approach is that it follows a closed
world assumption, which means that it is difficult to model
communication between services that is triggered by state
changes [3]. Genetic Algorithms (GA), in which the idea
of natural selection is applied to a population of solution
candidates, is another set of approaches employed as a
solution to this problem. In this case, the limitation is that
evolving the solution generally requires high execution times
[5].

Particle Swarm Optimisation (PSO) [6] for Web service
composition has also been attempted [7], [8], [9], [10].
It does not present any major difficulties in problem rep-
resentation and has been shown to typically have faster
convergence rates than GA approaches [11]. However, it has
the limitation of requiring the selection of an initial service
composition to be optimised, which may lead to QoS Web
service compositions which are not optimal.

The goal of this work is to present and evaluate an
approach based on PSO that overcomes this limitation and
enables Web service composition and selection with regards
to functional correctness and Quality of Service properties.
In this work, a graph-based Web service composition ap-
proach that addresses the limitation of existing PSO-based
approaches is presented. Unlike the other approaches, the
one shown here does not require the selection of an initial
configuration, and thus does not depend on users with domain
expertise. To achieve the goal outlined above, this work
accomplishes the following objectives:

o To propose a graph-based PSO approach for Web ser-
vice composition,

o To propose a greedy-based PSO approach for Web
service composition, and

« To compare both approaches through an experimental
evaluation, analysing the results.

The remainder of this paper is organised as follows: sec-
tion II presents a brief overview of the work accomplished by
others in this area; section III discusses the graph-based PSO
approach; section IV discusses the greedy-based approach;
section V presents the details of the comparative evaluation;
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section VI analyses the evaluation results; section VII con-
cludes this paper and discusses future work possibilities.

II. BACKGROUND
A. Problem Description

Often, to meet users’ service requirements, several existing
services are combined into a composition that provides the
required functionality. A natural way of representing a Web
service composition is to display it as a Direct Acyclic Graph
(DAG) [12], where one node represents the start point of the
composition, one node represents the end point, all other
nodes represent Web services, and the edges represent the
output of one service feeding into the input of another. This
is the representation chosen for this work, with an example
shown in Figure 3. This representation also encompasses the
notions of concrete and abstract services: a concrete service
refers to a specific functional service in the repository, while
an abstract service refers to a slot with input and output
requirements that can be filled by a number of concrete
services.

However, it is not enough to simply create compositions
whose component services are purely selected based on their
inputs and outputs. If a service takes too long to produce a
response, for example, then it should not be selected for the
composition if there is an equivalent service that is faster.
This means that it is necessary to pay attention to the quality
properties of each service selected as part of the composition,
i.e. a QoS-aware composition approach is needed. There exist
many Web service quality properties, from security levels
to service throughput [4]. In previous works [13], [14] four
of them are considered: the probability of a service being
available (A), the probability of a service finishing execution
within the the expected time limits (R), the expected service
time limit between sending a request to the service and
receiving a response (7'), and the execution cost to be paid
by the service requestor (C). The higher the probabilities of a
service being available and of it being responsive, the higher
its quality with regard to A and R; conversely, the services
with the lowest response time and execution cost have the
highest quality with regard to 7" and C. Even though the
focus was on these four QoS properties, others could just as
easily have been considered.

Web service composition languages such as OWL-S and
BPELAWS recognise the four basic flow constructs for repre-
senting the way in which services interact: sequence, choice,
parallel and loop [14]. There exist approaches in which
the DAG representation includes all four constructs, which
means that the composition is in fact a critical path within
the graph [12]. In this work, however, only the sequence
and parallel constructs are considered, and as a result the
entire graph represents a composition. These two constructs
are described as follows [14], [15]:

1) Sequence construct: The component services of a
sequence construct are executed in order, according to the
edge flow. This makes the total time (7") and cost (C) of the
sequence the sum of the value of those properties in each
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Fig. 1. Sequence construct and calculation of its QoS properties [14].
T = MAX{t,ln € {1,...,m}}
m m m
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n=1 n=1 n=1

Fig. 2. Parallel construct and calculation of its QoS properties [14].

component service. As the availability (A) and reliability
(R) of the sequence represent probabilities, they can be
obtained by multiplying the value of those properties in each
component service. This construct is shown in Figure 1.

2) Parallel construct: The components of a parallel con-
struct provide different services that are all executed simul-
taneously, since their incoming edges originate in a common
node and their outgoing edges also converge to a common
node. Note that this is different from the choice construct, in
which all components provide identical services but only one
is chosen to be executed. All QoS properties are calculated
as for the sequence construct, except for the total time (7),
which corresponds to that of the component service with the
highest time. This construct is shown in Figure 2.

B. Particle Swarm Optimisation

Particle Swarm Optimisation is a technique that evolved
from modelling the behaviour of groups of social animals,
such as flocking birds and schooling fish [6]. The intuition
behind this technique is that particles independently explore
the search space and communicate with each other to identify
the best possible solution — that is, the best possible search
space location. PSO is a relatively simple technique to
implement and does not require expensive computations.
Additionally, the cooperation of particles leads to typically
faster convergence rates [11].

The basic PSO algorithm treats all particles in the swarm
(i.e. the population) as candidate solutions. Each particle has
a position vector z; = (1, Zi2,...,2;p) and a velocity
vector v; = (v;1,V42,...,V;p), where D represents the
dimensionality of the search space [16]. All particles are
initialised to random positions in the search space, with ran-
dom velocities. Each particle keeps track of the personal best
location found so far (pbest), and all particles collaboratively
keep track of the global best location found by the swarm
so far (gbest).

After initialisation, the PSO algorithm enters a process of
iterations, where each iteration corresponds to a population
generation. In each iteration, the fitness of each particle is
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calculated. If the fitness of a given particle in its current
location is better than its pbest, the pbest is updated to reflect
that improvement. Likewise, if the current location is superior
to the gbest, the gbest is also updated.

Once the pbest and gbest have been updated as necessary,
those values are used to update the current position and
velocity of each particle. This is done using the following
formulae [16]:

t+1 ot t+1
Tig = Tig T Vg ey

t+1 t t
Vg =W X Vg4 c1 X i X (Pig — Tig)

+co X 132 X (Pga — xﬁd)

2

where t is the current iteration number; d is the dimension
number; w is the inertia weight; c¢; and ¢y are acceleration
constants; r;; and r;5 are uniformly distributed random
constants in the range [0, 1]; p;q and pyq are the values
of pbest and gbest in dimension d. The inertia weight and
acceleration constants are used to control the exploratory
behaviour of the swarm.

Iterations continue until a previously set criterion is met,
usually consisting of achieving a certain number of gener-
ations or reaching a certain fitness threshold [17], at which
point the location recorded as the latest global best is selected
as the optimisation solution.

C. Existing PSO-based Composition Approaches

QoS-aware PSO approaches to the problem of Web service
composition have been proposed by researchers in the field.
Amiri and Serajzadeh [7], for instance, have employed PSO
using a fitness function that takes into account the response
and execution times, availability, reputation and successful
execution rate of each candidate Web service. In this ap-
proach, each particle is a vector (b) and each element in it
represents a Web service for performing the required tasks
in the composition. This method assumes that an abstract
workflow (a) in which to place each particle element has
already been provided and that all potential services for each
workflow slot have already been discovered and divided into
pools of candidates (c), as shown in Figure 3.

Chen and Wang [8] present a Discrete Particle Swarm
Optimisation (DPSO) approach for QoS-aware composition.
For simplicity, the composition is always assumed to be
sequential and thus does not include other composition
patterns. Interestingly, since in DPSO the particles can easily
become stagnant [8], the researchers have included variation
operators into the algorithm to guarantee that particle diver-
sity will be maintained in the swarm.

Xia et al. [9] follow the basic problem representation
used by Amiri and Serajzadeh [7], assuming a fixed abstract
workflow which has a pool of candidate services associated
with each workflow slot. However, their work points out that
the QoS features sought to be optimised by PSO may at
times contradict each other. For example, the optimisation
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Fig. 3. Common representation of Web service composition problem in
PSO [10].

parameters might require the highest possible service avail-
ability as well as the highest possible reliability, despite the
fact that increased availability may incur decreased reliability
and vice versa. Conflicting optimisation objectives are the
fundamental characteristics of a multi-objective problem.
Given this realisation, a multi-objective fitness function is
proposed and evaluated to prove the validity and feasibility
of this conceptualisation. It is important to note that in-
stead of producing a single optimal solution, as customary
in single-objective approaches, this composition technique
produces a set of Pareto-optimal solutions. This means that
the solutions in the set are equivalent overall, even if certain
solutions are better than others from the perspective of a
single optimisation objective [18]. While clearly promising,
a multi-objective function is not considered in this paper,
since the focus of this work is to propose a different PSO
representation to the problem of Web service composition.

The strategy of choosing an abstract workflow to be opti-
mised according to a pool of concrete service candidates is
also adopted by Ludwig [10]. What is unique in this method
is the way in which particle positions are updated. Instead
of relying on the traditional position computation, which de-
pends on a numerical calculation involving a velocity vector,
in this work velocities are thought of as lists of changes that
are to be applied to a particle in order to move it — transform
it — into a new workflow configuration. To diminish the risk
of particles becoming stagnant, a guaranteed convergence
technique is also implemented. This guarantees that the best
particle will search within a predetermined radius instead of
immediately settling on a local optima.

Even though the approaches discussed above propose
novel ways in which the PSO algorithm can be customised
and improved for the task of QoS-aware Web service compo-
sition, it is evident that a common problem representation is
employed by all of them, as described earlier in this section
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Ilustration of the limitation of preselecting an abstract workflow.

and illustrated by Figure 3. A significant limitation of this
representation is that domain expertise or prior knowledge
is necessary to preselect an appropriate abstract workflow to
be optimised, since the configuration of the workflow also
influences the composition’s overall QoS.

For example, consider a simple sequential abstract work-
flow with two slots (a), as in Figure 4, and assume that
the workflow is to be optimised on execution time only.
In this case, the PSO can find the shortest possible total
time using exactly two Web services (c) from the set of
available candidates (b). Now suppose that the candidate set
also offers services that could be combined to form a solution
with three Web services (c). If, despite using more services,
this alternative solution has an even shorter total time, the
implication is that the abstract workflow preselected for this
task cannot lead to the best possible solution available in
the set of candidate services. In other words, the abstract
workflow is not optimal for this task. Since it is not possible
to select an optimal abstract workflow without resorting to
an expensive deterministic algorithm, it becomes necessary
to establish a different representation that addresses this
problem.

III. GRAPH-BASED PSO APPROACH

As mentioned in section II, previous PSO-based ap-
proaches to Web service composition assume that an optimal
composition solution, represented as a workflow of abstract
services, has already been provided and focus only on
selecting services for the workflow to achieve optimised
global QoS properties. In this section, a PSO-based approach
is proposed which generates service composition solutions
and performs concrete service selection at the same time.
This approach makes use of the DAG representation, thus
it is named graph-based approach. The remainder of this
section is organised as follows: firstly, a greedy algorithm
used to discover all the services that are relevant to a given

service task is presented; subsequently, the particle represen-
tation used in this approach, along with a fundamental data
structure, is introduced; The algorithm used to identify the
proposed composition workflow held by a particle is then
shown; finally, the fitness function used in the optimisation
is introduced.

A. Discovery of Relevant Services

The first step is to discover all services that could possibly
be part of the composition based on the required input and
output of the task. This was accomplished by using a search
algorithm based on the work of Wang et al. [19], shown in
Algorithm 1. This algorithm requires the composition task in-
put 7, the task output O and the repository of candidate Web
services R. It then uses Cyeqrcn to keep track of all available
inputs so far (initialised to I), and proceeds to discover all
possible services using the available inputs. As new possible
services are found, their outputs are added to Cyeqrep, Since
now these services can be used in a composition to feed
the input of other services. The algorithm continues until no
new service can be found. Finally, it verifies whether the
composition task output O can be achieved using the service
repository provided.

Imput : 7, O, R

Output: a list of services Sy;q

Csearch <~ I;

Slist — {}’

Stound < DiscoverService();

while |Sfuna| > 0 do
Siist < Spist U SfoundQ
Csearch — Csearch U Ooutput of Sfound;
Stound + DiscoverSeruvice();

end

if Csearch 2 O then

| return Sj;;

. else

‘ Report no solution;

: end

R A

—
W N = O

Algorithm 1. Discovering relevant services for composition [19].

B. Creation of Master Graph and Particle Representation

Once a list of all relevant composition services is pro-
duced, a master graph must be created. A master graph is
a graph that contains all possible output-input connections
between all candidate services. For example, a service with
output A must have edges in the master graph that connect
it to any services with input A. Because a master graph is
a DAG, as explained in section II, it must have a start node
and an end node. These contain the composition input and
output, respectively. This means that a different master graph
must be created anew for each individual composition task.

The graph-based PSO representation is created based on
the master graph, so that each element in the position vector

3130



Master graph

Input: a
Output: b
Time: 7

Input: b
Output: ¢
Time: 5

Input: a Input: b
Output: b Qutput: ¢
Time: 3 Time: 9

Finding workflow
0.67

Input: Input: b
Output: b Output: ¢

Time: 7 Time: 5

0.74
Input: a Input: b
Output: b Output: ¢
Time: 3 Time: 9

Fig. 5. Intuition behind graph-based PSO approach for service composition.

of a particle corresponds to an edge of the master graph,
and the velocity vector has the same length as the position
vector. Each position element in the particle holds a value
that in the range [0,1], where 1 is the most desirable score.
These values function as edge scores. The objective of the
PSO is to optimise these scores, which determine the edges
— and consequently the services — that should be included
in the composition workflow. With this representation, the
PSO formulae introduced in subsection II-B can be applied
for optimisation without any changes.

C. Graph-Based Service Composition Algorithm for Particle

Before calculating the fitness of a particle it is necessary
to extract the workflow represented by it from the master
graph according to the edge scores contained in its position
vector. Figure 5 illustrates the intuition behind this approach,
assuming the optimisation seeks to reduce the total execution
time. The edge scores are used to determine the workflow of
service composition. This algorithm starts from the end of
the master graph and works towards its start, satisfying the
inputs of each node with the edges that contain the highest
scores. The red edges in the figure represent an example of a
composition performed by the algorithm and guided by edge
scores.

Algorithm 2 presents the extraction steps in detail. It re-
quires a list Sy;5; of compatible services for the composition,
a start mock service which provides the composition input
task as its output, and an end mock service which requires
the composition output as its input. A graph W is defined
to represent the resulting workflow, as well as a queue to
aid in the workflow construction, initially containing the
end service, and a set to keep track of visited nodes (i.e.
services). Note that the algorithm should also have a way to
prevent cycles from forming in the composition (not included
in this pseudocode).

The workflow is generated from the end to the start, so the
queue holds services which are part of the composition but
still need to have their input satisfied. As long as the queue is
not empty, the matching process must continue. A service to
is polled from the queue, and from services are determined
by using the pickNextNode() function, which selects the
service whose edge has the highest score and connects to
to, until the input of to is fully satisfied by the combination
of the outputs of all from services. Edges from each from
service to to are then added to the workflow W. All from
services are added to the queue for input matching (with
exception of the start mock service, which does not require
any input). The final result is a fully functional concrete
composition workflow whose representation assumes that the
two possible workflow patterns are sequential execution and
parallel execution. This means that during execution, the full
input set for a node must be produced before that Web service
can be executed.

Input : S, start, end

Output: workflow graph W

W {h

queue <+ {end};

visisted < {};

while |queue| > 0 do

to + dequeue(queue);

visited < visited U {to};

input < to.input;

while |input| > 0 do

from < pickNextNode(to);

input < input — {input N from.output};

W« W U{(from,to)};

if from # start A\ from & visited then
‘ enqueue( from, queue);

end

R A A ol S

_ = e =
w2

—
£

—_
wn

end
end
: return W;

—- =
A

Algorithm 2. Service composition algorithm for graph-based PSO.

D. Fitness Function

The fitness function developed for QoS optimisation takes
into account the four properties introduced in subsection II-
A. It shares common elements with the work of Zeng et al.
[20], for example, but is fundamentally different in which it
does not maximise or minimise values by placing them as
numerators or denominators of a fraction. The QoS properties
are combined into the following function for a particle ¢:

fitness; = w1 A; + woR; + ’LU3(1 — Ti) + w4(1 — Cl) 3)

4
where >, w; =1

A, C, and R are determined using all services in the
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particle according to the formulae presented in Figures 1
and 2. T is determined by adding the times of the longest
path in the workflow, from start to end. By identifying the
longest path it is possible to correctly calculate time both in
the case of parallel constructs and of sequence constructs.

The output of the fitness function is within the range
[0, 1], with 1 representing the best possible fitness and 0
representing the worst. The fitness function weights add to
1, so the values of A, C, R and T must all be between 0 and
1 to ensure that the function produces results in the required
range. A and R are calculated by multiplying probabilities, so
their values already meet this requirement; C' is normalised
by dividing the particle composition cost by the sum of the
costs of all services that could possibly be in the composition
— those in the list that was discovered earlier using the
algorithm in III-A; T is normalised in the same way as
C. Because 0 represents the best possible T" and C' values,
the adjustments (1 — 7") and (1 — C) are performed in the
function.

IV. GREEDY-BASED PSO APPROACH

Existing works consider Web service composition a two-
step process, first producing a workflow of abstract services
and then selecting concrete services for each abstract service
task [10]. However, it remains unclear how these workflows
are generated. In this section, a greedy-based PSO approach
is proposed. Its problem representation is exactly like the one
described in subsection II-C, which means that the focus
is on the initial composition of a workflow upon which
optimisation through service selection is performed. Unlike
the works discussed in subsection II-C, however, it is not
assumed that a workflow and a list of relevant services for
the composition has already been provided. The first step
then is to discover the relevant services for the composition,
and this is done using the same approach as in subsection
III-A. The remaining steps are discussed below.

A. Workflow Generation and Preselection

The generation of an abstract workflow is performed by
using an adaptation of the algorithm presented in subsection
MI-C. In this version, a pickRandomNode() function is
used instead of the pickNextNode() function. This function
selects any candidate service that fulfills part of the required
input of to, which means that a random but functional
workflow is created.

This algorithm is executed n times to generate n workflow
candidates, and the candidate with the least number of Web
services is selected to be transformed into the final abstract
workflow. This process consists of using the workflow with
concrete Web services to produce an workflow with abstract
services in their places. In practice, this simply means that
each slot in the abstract workflow is configured to only accept
services that produce at least the same output set and require
at most the same input set as the corresponding original
service in the concrete workflow. Once the abstract workflow
has been obtained, candidate pools are determined using the
services from S;;5; and the PSO is executed.

B. Farticle Representation and Fitness Function

The representation for the PSO particle in the greedy-
based approach corresponds to that shown in Figure 3.
Each element in the position vector contains an integer that
corresponds to the ID of a Web service present in the set
of candidates. IDs are assigned to each candidate service
using a continuous range of integers, and the elements in
the position vector must always be within this valid range.
Each element of the velocity vector contains a floating point
number. Since the formula used for calculating each position
element produces a floating point number, the results of that
calculation are rounded to the nearest integer, effectively
adjusting the continuous nature of the original PSO algorithm
to work within a discrete scale. The fitness function utilised
is the same as that presented in subsection III-D.

V. DESIGN OF EXPERIMENTS

Experiments were designed to compare the execution time
and best solution fitness of the graph-based and greedy-based
approaches. The hypothesis is that the graph-based approach
presents some improvement over the greedy-based approach,
since the service selection of the greedy-based approach is
influenced by the preselection of an abstract workflow while
the graph-based approach has no such influence, as explained
in subsection II-C. This comparison was done instead of
utilising any of the previous works discussed in subsection II-
C because those works do not explain the criteria and details
for selecting the abstract workflow and candidate services.
With that in mind, experiments were performed to test
whether the graph-based approach is capable of efficiently
finding candidate workflow solutions with greater fitness,
even though they are not necessarily the shortest in length.

A. Datasets and Tasks

The datasets used for the set of experiments were gener-
ated based on the QWS dataset [21]. The rationale behind
their creation is that currently there exist no benchmark
datasets available for the evaluation of QoS-aware Web ser-
vice composition [14]. The five datasets contain information
on real Web services collected online, including inputs, out-
puts, and the the four QoS attributes discussed in subsection
II-A. Five service composition tasks were employed for these
experiments, requiring both small and larger composite so-
lutions, to test the optimisation approaches against a variety
of complexities. These tasks are shown in table I.

The datasets were modified so that, for each service in
each dataset, two new services exist as an alternative that
presents the same functional properties but offers better QoS
properties. For example, consider the following service:

e MapService with input City, output Map, T = 8,

C=10,A=09,and R=0.9
Two alternative services are created:
e MapServicel with input Clity, output Xyz, T = 3,
C=4,A=0.95 and R =0.95
e MapService2 with input Xyz, output Map, T = 3,
C=4,A=10,and R=1.0
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Task Inputs Outputs Dataset (No.
services)
1 PhoneNumber Address 1 (20)
2 ZipCode, Date City, WeatherInfo 2 (30)
3 From, To, ArrivalDate, 3 (60)
DepartDate, Reservation
ReturnDate
4 &5 From, To, ArrivalDate, 4 (150),
DepartDate, Reservation, 5(450)
ReturnDate BusTicket, Map

TABLE I
EXPERIMENT TASKS.

By opting for MapServicel and MapService2 com-
bined in a sequence construct the resulting QoS properties
are better than those of MapService, even though one more
component service must be included into the composition.
Because two alternative services were created for each orig-
inal, the modified datasets have three times more services
than the corresponding original datasets.

B. Parameters

Experiments were conducted on a personal computer with
a 3.4 GHz CPU and 8 GB RAM. For both approaches, 50
independent runs were executed per dataset using a swarm of
size 30. Each run was set to a maximum of 100 iterations but
was terminated earlier if the global best fitness did not change
within 10 iterations. The fitness function was configured with
weights of 0.25 for all QoS properties, since they must add
to 1 and were deemed as having equivalent importance for
the purpose of these experiments. The PSO inertia weight
w was set to 1, since weights in the range [0.9, 1.2] have
been shown to result in better performance [22]. Acceleration
constants ¢; and co were both set to 1 because low values
for these coefficients allow particles to explore larger areas
before committing to smaller regions [17]. The greedy-based
PSO approach was set to choose the abstract workflow from
50 randomly generated candidates.

VI. ANALYSIS OF RESULTS

The results produced for the set of experiments are pre-
sented in table II, where the first column indicates the number
of services in the dataset, the second column indicates
average fitness for the best solution obtained in a run, and
the third column represents the average time required for
running the approach, including setup time (i.e. discovering
services, creating the master graph, etc). A Wilcoxon signed-
rank test at .95 confidence interval was performed to verify
whether there is a statistically significant difference between
the times or the fitness of the two approaches. Whenever
such a difference is present, it is indicated in the table as |
for significantly smaller and 1 for significantly larger values.

The results show that the greedy-based approach has
significantly better execution times for all datasets. However,

No. Fitness Time (ms)
Servs.
Greedy Graph Greedy Graph
60 0.835£0 0.875£0 1 0.0+04 2.1£0.5
90 0.761 £ 0 0.818 £ 0.002 1 0.0+04 52+1.6
180 | 0.715£0.003 | 0.775+0.0101 | 0.2+05] | 6.7£1.9
450 | 0.571£0.002 | 0.675+0.016 1 | 2.3+ 1.1 | 19.9£5.7
1350 0.564 £ 0 0.6714+0.019 1 | 13.4+6.9] | 30.3£8.7

TABLE II
AVERAGE TIME AND FITNESS RESULTS FOR BOTH APPROACHES.

Greedy-based approach
Fitness: 0.761

Input: ZipCode
Output: City

Location

Input: City, Date
Output: WeatherInfo

Output: City,
Weatherinfo

Graph-based approach
Fitness: 0.819

Input:
ZipCode, Date,

Input: ZipCode Input: xyz35
Output: xyz35 Output: City

Location Location
ByZip0 ByZip1
USWeather 0]—»[ USWeather1

Input: City, Date Input: xyz25
Output: xyz25 Output: WeatherInfo

Output: City,
Weatherinfo,

Fig. 6. Example of solutions found by the two PSO approaches.

the fitness of the graph-based approach is significantly better
for all datasets. The fitness differs because the greedy-based
approach does not consider all alternative Web services, since
they do not fit the preselected abstract workflow. Figure
6 shows an example of the fittest compositions found by
each approach, both of them running on the dataset with
90 services and using task 2 shown in table 1. Based on
their fitness, it is clear that the graph-based approach yields
a superior solution to that of the greedy-based approach. In
fact, the greedy-based approach could never reach a similar
result to the graph-based approach, since it committed to a
shorter abstract workflow before the PSO was executed. In
terms of convergence behaviour, the greedy-based approach
uses the minimum number of iterations for all datasets,
while the graph-based approach shows a growing number
of iterations for the third, fourth and fifth datasets.

The experiments show that the greedy-based approach may
preclude composition solutions of higher fitness, depending
on the preselected abstract workflow. On the other hand, the
fact that the execution time is higher for the graph-based
approach may disadvantage it. Given these characteristics,

3133



deciding on a composition approach depends on the priorities
of the user: the greedy-based approach should be chosen if
it is enough to achieve a functional solution with reasonably
high fitness, yet the fastest possible execution is imperative;
the graph-based approach is preferable when the inverse is
true.

In comparison to the majority of the works discussed in
subsection II-C [7], [9], [10], it is theorised that the graph-
based technique is an advancement because it is not bound
by the limitations of preselecting an abstract workflow. The
greedy-based technique, on the other hand, is similar to their
work in this regard. It must be reiterated, however, that
there exist fundamental differences between the approaches
presented in this paper and those proposed in the other works.
Xia et al. [9], for instance, employ a multi-objective fitness
function while this work employs a single-objective one. As
another example, Ludwig [10] uses a novel way to represent
and update velocity, while in this paper a traditional approach
is used. In comparison to the approach presented by Chen
and Wang [8], both the graph-based and the greedy-based
techniques are a progression, since the representation used by
those authors allows only sequential compositions. Evidently,
experiments would need to be conducted before making any
conclusions. Since the graph based approach relies on some
kind of “weights” between nodes, Ant Colony Optimisation
(ACO) based approaches could be considered. However,
the problem described in this paper needs a workflow for
the solution instead of finding a single path, so a graph-
based PSO approach was used. Nonetheless, investigating the
application of ACO for this problem is a promising future
research area.

VII. CONCLUSIONS AND FUTURE WORK

This paper has introduced a graph-based PSO approach
for QoS-aware Web service composition which relies on
the creation of a master graph of candidate services, as
opposed to preselecting an abstract workflow for optimisa-
tion. A greedy-based PSO approach, which does preselect an
abstract workflow, was also presented. Both approaches were
compared through a set of experiments. The experiments
and results that the graph-based approach is capable of
producing solutions whose fitness values cannot be matched
by solutions obtained employing the greedy-based approach.

Future work possibilities include the comparison of the
graph-based PSO approach against others which use evolu-
tionary computation techniques (i.e. GP-based approaches),
the extension of the DAG representation for Web service
compositions to consider loop and choice constructs, and
further analysis of the scalability of this approach with
regards to memory usage.
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