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Abstract— Differential evolution (DE) is an effective and
efficient evolutionary algorithm in continuous space. The setting
of control parameters is highly relevant with the convergence
efficiency, and varies with different optimization problems
even at different stages of evolution. Self-adapting control
parameters for finding global optima is a long-term target
in evolutionary field. This paper proposes a two-layered DE
(TLDE) with self-adaptive control parameters combined with
niching method based mutation strategy. The TLDE consists
of two DE layers: a bottom DE layer for the basic evolution
procedure, and a top DE layer for control parameter adap-
tation. Both layers follow the procedure of DE. Moreover, to
mitigate the common phenomenon of premature convergence in
DE, a clearing niching method is brought out in finding efficient
mutation individuals to maintain diversity during the evolution
and stabilize the evolution system. The performance is validated
by a comprehensive set of twenty benchmark functions in
parameter optimization and competitive results are presented.

I. INTRODUCTION

Differential evolution (DE), is a well-known simple
yet powerful population-based stochastic search technique,
which is an efficient and effective global optimizer in the
continuous searching domain[1][2]. Since it has presented
good convergence and easy modeling features in many real-
world cases, DE has been widely studied on its performance
improvements and its applications to complicated problems
in recent years.

Although DE is a stochastic population based evolution al-
gorithm, appropriate control parameters—amplification fac-
tor F and crossover rate CR, will bring good evolution effi-
ciency and result in better solution[3]. Therefore, choosing
suitable control parameter values is, commonly, a problem
dependent task. In the conventional DE algorithm, the control
parameters F and CR are constants during the evolution,
while the setting for control parameters depends on problems.
The trail-error method applied in tuning control parameters
requires multiple optimization runs, which is obviously time
consuming. Moreover, during the evolution of iteration, dif-
ferent population coupled with different parameter settings
may be required in order to achieve the best performance[4],
especially dealing with multimodal functions.

Therefore, researchers have developed several techniques
to avoid manual tuning of the control parameters. For ex-
ample, Janex Brest in [5] summarizes a Self-adaptive DE
algorithm with self-adaptive control parameters, in which
each individual of generation is extended with parameters
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F and CR. Sarker R et al. proposed a DE-DPS method
in [6], where population size NP is dynamically generated
during evolution as well as control parameters F, CR. Most
of existing methods for parameter control concentrate on
the probability to choose random parameters. But Qin et al.
proposed a Strategy adaptation DE (SaDE) algorithm in [4],
in the SaDE both mutation strategies and control parameters
can be gradually self-adapted according to their previous
experiences of generating promising solutions.

In order to eliminate the time consuming task in fine-
tuning control parameters in DE, and to avoid adding too
many parameters, we propose a two-layered DE (TLDE)
with self-adaptive control parameters based on the previous
performance. The TLDE composes of two DE layers: a
top DE layer and a bottom DE layer. The top DE layer
is a simplified DE without crossover operation, for control
parameter adaptation. The bottom DE layer is a doubled,
parallel DE with two set control parameters, for the basic
evolution task.

There is a natural assumption that in a DE, better control
parameters are more likely to generate better offspring to
survive, which will also change with different regions during
iteration process. However, due to the stochastic character-
istics of DE, it is hard to evaluate and then select better
control parameters in only one generation. Differ from other
greedy strategies which self-adapting parameters by every
generation, in this paper a new scheme is introduced, which
is designed to evaluate and select good control parameters
over a learning period consisting of Lp generations.

On the other hand, although self-learning DE eliminates
time for finding appropriate control parameters, it still faces
the problem of premature convergence during evolution.
A simple yet popular explanation for the occurrence of
premature convergence is the loss of diversity[7], which also
influences the system stability.

In the literature, a self-adaptive DE known as JADE was
proposed by J. Zhang in [8] which implemented a mutation
strategy “DE/current-to-p-best” diversifies the population but
guarantee the fast convergence property at the same time.
Similarly, a dynamic self-adapting parameter F and CR called
jDE described in [9], combined with a multi-population
method to increase diversity and stabilize the searching
procedure. Followed the idea to combine parameter control
adaptation and diversity maintenance[10], in this paper we
introduce a clearing niching method[11][12]to improve the
performance of the TLDE.

The rest of this paper is organized as follows: Section
II briefly describes conventional DE and clearing nich-
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ing method. Section III describes in detail the proposed
TLDE enhanced with niching method. Section IV carries
out numerical simulations to show the effectiveness of the
proposed approach. Finally, SectionV gives discussions and
conclusions.

II. RELATED ALGORITHMS

A. Differential Evolution

DE is a population based iterative optimization
algorithm[1]. Offspring are generated by perturbing
the solutions with a scaled difference of selected population
vectors, and update population by greedy strategy to remain
better individuals.

1) Initialization Classic DE begins by randomly ini-
tializing a population of NP , D-dimensional vectors
Xg
i , i = 1, 2, . . . , NP . We denote generations g ∈
{0, 1, . . . FESmax} in DE and the ith vector of the pop-
ulation at the current generation as

Xg
i = [Xg

i,2, X
g
i,2, . . . X

g
i,D] (1)

where i ∈ [1, N ]. Population size NP should be at least four
and unchanged during the searching process[1].

2)Mutation For each target vector Xg
i , a mutation vector

V gi is generated by the basic ”rand/1/bin” strategy

V gi = Xg
r1 + F (Xg

r2 −X
g
r3), r1 6= r2 6= r3 6= i (2)

where ri is randomly chosen integers from [1, NP ].
3) Crossover In order to increase the diversity of the

perturbed parameter vectors, trail vectors generated by

Ugi,j =

{
V gi,j if randi,j(0, 1) ≤ CRi,j or j = jrand
Xg
i,j otherwise.

(3)
randi,j is the jth evaluation of a uniform random number
generator with outcome within the range [0, 1]. jrand is a
randomly chosen index ∈ 1, 2, . . . , D, which ensures that
Ugi gets at least one dimension from V gi
4) Selection Choosing the survive one between target

vector Xg
i and trail vector Ugi , greedy criterion is used as

follow equation:

Xg+1
i =

{
Ugi if f(Ugi ) < f(Xg

i )
Xg
i otherwise. (4)

B. Niching Method

Niching method is designed to overcome the premature
convergence problem due to the loss of diversity. The mech-
anism of maintain diversity in niching method is keeping sev-
eral sub-populations within search space during iteration[13].
Since niching method was proposed from 1995[10], various
niching techniques derived from it[14][15][16]. This paper
gives a short introduce of clearing niching method which is
nearly as others.
1) Principles A clearing niche is characterized by a

limited amount of resources available for living individu-
als which share commonalities[11]. Instead of sharing the
available resources among all individuals of a subpopulation,
which is widely used, the clearing niching means only few

best members in each subpopulation possess the limited
resources.

Algorithm 1 Clearing Procedure
Input: clearing radius δ, population {Xg

1,2,...,NP }
Output: winners set {Xg

c }, number of winners n
1: function CLEARING(δ, Xg

i )
2: Sort fitness f(Xg

1,2,...,NP )
3: for i = 1→ NP do
4: if fitness f(Xg

i ) > 0 then
5: {Xg

c } ← Xg
i

6: /*Save the winner of this niche*/
7: for j = i+ 1→ NP do
8: if distance (XG

i , X
g
j ) ≤ δ then

9: fitness f(Xg
j )← 0

10: /*Clear others of this niche*/
11: end if
12: end for
13: end if
14: end for
15: end function

2) Procedure For better understanding, a brief pseudo
code of clearing procedure is presented (Algorithm 1). Take
population {Xg

1,2,...,NP } in gth generation and radius δ as
input, we can get the winner set{Xg

c } of this iteration.

III. THE NICHING TWO-LAYERED DE

As shown in Fig.1, the TLDE consists of two layers: a top
DE layer and a bottom DE layer. The bottom DE layer is
a doubled basic DE for normal evolution procedure, while
the top DE layer is a simplified DE for self-adapting control
parameters.

Fig. 1. Structure of the two-layered DE

A. The doubled basic DE

The doubled basic DE is a conventional DE described
in Section II.A, evolving parallel with two sets of control
parameters. The evolution is divided into multiple evolution
periods called learning periods used by the simplified DE in
the top layer for control parameter evolution. Each learning
period consists of Lp generations with two set of fixed
control parameters from the simplified DE in the top layer.
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Fig. 2. Evolution of the simplified DE for control parameter adaptation

B. The simplified DE

As shown in Fig.2, the simplified DE is a conventional
DE without crossover operation, for control parameter adap-
tation. The control parameters are evaluated over the learning
period by the basic DE in the bottom layer.

1) Initialization
In order to realize a self-adaptation of control parameters

by DE, we create a population of control parameters by
assigning a set of control parameters to each individual of the
basic DE in the bottom layer, which are randomly initialized.
As shown in Fig.3, Xg

i denotes the i individual in the gth
generation, while F gi and CRgi the corresponding control
parameters.

Fig. 3. Individuals and the corresponding control parameters

2) Mutation
The mutation is performed for generating new control

parameters.{
υF gi = oF gi + ωi · (F gr1 − F

g
r2),

υCRgi = oCRgi + ωi · (CRgr1 − CR
g
r2).

(5)

where (oF gi , oCR
g
i ) are control parameters updated from last

learning period. r1, r2 (r1 6= r2) and ωi are random values
uniformly distributed in a range of (0,1).

By this step, we have got two sets of control parameters
[oF gi , oCR

g
i ] and [υF gi , υCR

g
i ] assigned to each individual,

see Fig.4. These two sets of control parameters are used

by the basic DE during a learning period, and which set
to be chosen for the next learning period depends on their
performance.

Fig. 4. Two sets of control parameters generated by mutation

3) Selection
It is a natural assumption that better control parameters

are more likely to generate better offspring to survive, which
inverse, good individuals are more likely generated by indi-
viduals with good parameters from last iteration. However,
because of the stochastic characteristics of DE it is hard to
evaluate a better control parameter in just one generation, as
done in many existing self-adaptive DE algorithms. To solve
this problem, instead of generating new control parameters
in each generation, we introduce a learning period with
Lp generations (Lp = 15 in the simulation), the control
parameters remain fixed till the next learning period, and
the one with better rate that evolves minimum outcomes will
survive.

Moreover, previous parameter selection procedure apply
greedy strategy and remain parameters of best individuals.
Somewhat differently, we apply a probability P as success
rate to evaluate the parameters. Only when the success rate
P is higher than a threshold τ , can the parameters be saved.
The reason we omit parameters generate better individuals
with success rate under τ is that, a “spark” of good control
parameters is unstable and has high probability lead to a local
optimal.

According this scheme, we intend to keep both local and
global search ability to generate potentially good mutation
vectors throughout the evolution process. oP ki and υP ki
represent the probability of generating ith individual as
optimal value in the kth learning period, which are calculated
as follows:

oP ki =
∑Lp∗k
g=Lp∗(k−1){f(oU

g
i ) ≤Mingi }/Lp

υP ki =
∑Lp∗k
g=Lp∗(k−1){f(υU

g
i ) ≤Mingi }/Lp

(6)

where oP ki is the success evolve rate for (oF ki , oCR
k
i ), and

υP ki is for (υF ki , υCR
k
i ).

By comparing the success evolve rate, the better one with
probability higher than τ (τ = 0.3) will be selected to
replace (oF k+1

i , oCRk+1
i ). For each individual, the pair of

parameters (oF ki , oCR
k
i ) in the kth learning period updates

at the same time, according to following equations:

(oF k+1
i , oCRk+1

i ) =

 (oF ki , oCR
k
i ) if oP ki ≥Maxki

(υF ki , υCR
k
i ) if υP ki ≥Maxki

(F kτ , CR
k
τ ) otherwise

(7)
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Maxki defines as max{oP ki , υP ki , τ} to find the parameters
with highest probability to generate good individuals. Since
a certain success rate of parameters are required to ensure
individual quality, as similar referred in [8], those control
parameters with success rate less than τ will be regenerated
: {

F kτ = randci(µF
k, randn)

CRkτ = randni(µCR
k, randn)

(8)

where randci is Cauchy distribution and randni is normal
distribution. Parameters µF and µCR represent the location
parameter of distribution.{

µF k = (1− c)× µF 0 + c×meanL(SkF )
µCRk = (1− c)× µCR0 + c×meanA(SkCR)

(9)

where parameters µF 0 and µCR0 are initialized location
as 0.5. c is a positive constant between 0 and 1, which we
set to 0.5. Eq.9 and Eq.10 are similar equations were used
in [8]. meanA() is the usual arithmetic mean, SkCR is the
set of successful crossover probabilities in current learning
period. SkF is the set collect for the F of success evolved
population during the learning period, and meanL() is the
Lehmer mean:

meanLSF =

∑
F∈SF

F 2∑
F∈SF

F
(10)

In this way the control parameter (oF k+1
i , CRk+1

i ) are
self-learning and updating after every learning period by
choosing better success rate between (oF ki , oCR

k
i ) and

(υF ki , υCR
k
i ). The kth learning period is shown in Algo-

rithm 2.

Algorithm 2 Selection of parameters
Input: control parameters(oF k

i , oCR
k
i )

Output: parameters for next period (oF k+1
i , oCRk+1

i )
1: success rateoP k

i ← (oF k
i , oCR

k
i ), υP

k
i ← [υF k

i , υCR
k
i ]

2: for i = 1→ NP do
3: if oP k

i > υP k
i > τ then

4: F k+1
i ← oF k

i , CRk+1
i ← oCRk

i

5: else if υP k
i > oP k

i > τ then
6: F k+1

i ← υF k
i , CRk+1

i ← υCRk
i

7: else
8: F k+1

i ← randni(µF, rand(0, 1))
9: CRk+1

i ← randni(µCR, rand(0, 1))
10: end if
11: end for
12: /*Update backup set {X̂g

b } and B ≤ NP*/
13: µF ← (1− c)× µF + c×meanL(S

k
F )

14: µCR← (1− c)× µCR+ c×meanA(S
k
CR)

4) Evolution of the basic DE
Fig.5 shows the evolution of the basic DE from Xg

i →
Xg+1
i . The basic DE is a doubled and parallel one, in which

each individual is assigned with two set of control parameters
described in Fig.4. The two sets of control parameters
(υF gi , υCRgi ) and (oF gi , oCR

g
i ) are fixed in Lp generations

of a learning period. After a learning period, the control
parameters of each individual are evaluated with a success

Fig. 5. Evolution of the basic DE

rate, which indicates whether and which set of the control
parameters are suitable for the next learning period.

Searching procedure with both mutation vectors are com-
puted by the mutation scheme “DE/rand/1/bin”[17]:{

oV gi = Xg
Cr

+ oF gi · (Xg
r1 − X̂

g−1
r2 )

υV gi = Xg
Cr

+ υF gi · (Xg
r1 − X̂

g−1
r2 )

(11)

where the index cr,r1,r2 are integers chosen among [1, NP ],
Xcr is randomly chosen from winner set {Xg

c } after clearing
procedure, which we will describe later in detail. Xr1 is a
random vector from current population {Xg

1,2,...,NP }, while
X̂g−1
r2 is chosen from vectors of backup set from last learning

period {Xg
b }, randomly.

As we have got a pair of trail vectors oV gi and υV gi , the
next step crossover with oCRi and υCRi is described as
follows:

oUgi,j =

{
oV gi,j if randi,j(0, 1) ≤ oCRki,j or j = jrand
Xg
i,j otherwise.

(12)

υUgi,j =

{
υV gi,j if randi,j(0, 1) ≤ υCRki,j or j = jrand
Xg
i,j otherwise.

(13)
After mutation, crossover procedure in the second layer,

those vectors get from equation (12)(13) supply a richer set
to select target vectors:

Xg+1
i =

 oUgi if f(oUgi ) ≤Mingi
υUgi if f(υUgi ) ≤Mingi
Xg
i otherwise.

(14)

where Mingi defines as min{f(oUgi ), f(υU
g
i ), f(X

g
i )} for

we need to find out the global minima. But if the trail vectors
oUgi or υUgi is not the best one but better than Xg

i , it will
be reserved to backup solution set {Xg

b } and participate
mutation in next generation by equation (11).

C. Niching mutation strategy

As we mentioned dominate individuals (target vectors
Xg
r1 ), are highly relevant with convergence efficiency. The
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target vector in each iteration of searching should cover
various niches and represent different niches.

Pseudo code of clearing procedure is shown in Algorithm
1. At the beginning of the gth iteration, rank the fitness
value of population in order, draw a circle Cg1 with center
at the best fitness individual Xg

1 and radius equal to δ
(“Hamming” distance in simulation). The circle Cg1 may
contain other individuals, but only remain the best individual
as “the winner”, then “clear” (delete) other individuals in this
circle. So far we have got a first niche Ng

1 with a winner
Xg

1 , the rest individuals are circling exactly the same as
the first one. When there are no other individuals except
winners, the clearing procedure completes and we get a
smaller population group {Xg

c }.
By finding the efficient individuals of niches in each gen-

eration, we intended to speed up the convergence. Although
we narrow down the domain of target individuals and in
each iteration generate as Xg

cr, the step vector Xg
r2 − X

g
r3

are still randomly chosen from population {Xg
i } to maintain

the variety of searching steps. This clearing procedure has no
relationship with following mutation, crossover and selection
procedures, it can be parallel executed with TLDE.

IV. NUMERICAL SIMULATIONS

A. Benchmark Functions

To assure a fair comparison, twenty complicate benchmark
functions from [18][19] are chose to test the performance
of our proposed method. The benchmarks we adopt include
several unimodal and multimodal functions, most of them
have some global optima and many local optima in high
dimension (30D) , which are difficult to find global minima
especially shifted and rotated functions f14−f20. Benchmark
functions are shown in Table I, for a intuitive result, the
global minima of all these functions are all set to 0.

B. Comparing with conventional DE

Table II testify the performance of DE is sensitive to the
choice of control parameters. For all those 20 benchmark
functions, the success rate by fixed control parameters varies
from different functions.

TABLE II
COMPARE TLDE AND CONVENTIONAL DE WITH FIXED F,CR

0101 0503 0505 0509 0909 TLDE
num of best 0 3 5 2 1 14
success rate 46.0% 69.5% 69.8% 60.0% 50.3% 72.3%

Considering the commonly used parameter settings, we
choose (F,CR) as (0.1,0.1), (0.5,0.3), (0.5,0.5), (0.5,0.9)and
(0.9,0.9) to investigate the influence of DE parameters. In
fairness, we compared to the proposed two-layer structured
parameter learning DE without niching procedure, due to
the parameters are the only part of adjustment. For conven-
tional DE, results are not surprisingly vary from different
parameters, while TLDE with self-learning parameters shows
a significant improvement.

C. Comparing with Self-adaptive DE

In order to confirm the proposed method is extensive
comparable, we compare the proposed method with some
improved DE algorithms that use adaptive or self-adaptive
parameter strategies. Specifically, the JADE algorithm pro-
posed by Zhang in 2009[8], the jDE algorithm proposed by
Brest in 2006[5], and the SDE algorithm proposed by Salman
in 2007[20]. Moreover, we use the same population size(NP)
as 100, also the same maximum function evolution(FEs)
(5000 for JADE, TLDE and NTLDE, 10000 for jDE and
SDE) for a fair comparison in solution quality.

Table III shows mean value and standard deviation of
benchmark functions calculated by JADE, jDE, SDE, TLDE
and NTLDE algorithm. Some results such as f1, f5, f9−f13,
f16, f17 are omitted from the table, which because the results
of these functions calculate by algorithms upon are similar to
each other. Even there exist difference, our proposed method
NTLDE is as good as the best result of other algorithms.

Since the population is randomly generated at the begin-
ning, all twenty benchmark functions runs over 50 times
by compared algorithms independently. In this table, we
put the best two algorithms with best results in bold font.
By observing the results table III listed, we can find out
that although the result of NTLDE is not as precise as
JADE algorithm for unimodal functions f1 − f6, but the
average outcomes are still within the acceptable range. For
multimodal function f8, the proposed method get the best
acceptable result. The advantages of proposed method are
obvious when calculate f14−f20, which are complex shifted
and rotated functions. Moreover, it’s worth noticed that the
two-layer structured DE has better performance when add
with clearing procedure, especially in f4, f15, f19 and f20.
This better performance shows smaller average outcomes and
smaller standard deviation, which confirms that the system
is more stable as expected.

D. Comparing the success rate

Besides, it is necessary to compare the success rate of best
result in several independent runs. For stable performance
functions with small standard deviation we run about 30
times, other functions we run 60 times for each algorithm
to ensure the probability. Different real world optimization
problems has different acceptable error, when an optimal
solution calculated by algorithms is within the acceptable
error range, we count it as success. Any value beyond the
error range in table I will be counted as a failure. In this
case, we keep the results of all twenty benchmark functions.

The average success rate of TLDE is higher than jDE and
SDE but lower than JADE, while NTLDE shows the best
average success rate. For unimodal functions f1 − f6, it is
easy to calculate the acceptable result in 100% by JADE
and NTLDE . For multimodal functions f7 − f13 JADE
performs a little bit better than NTLDE, in function f7. When
dealing with high dimensional shifted and rotated functions
f14−f20, the proposed method shows a small improvement.
Both TLDE and NTLDE make it possible to calculate the
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TABLE I
THE TWENTY GLOBAL OPTIMIZATION BENCHMARK FUNCTIONS

Function Search Space Global Opt.x Global Min Accept Name
f1 [−100, 100]D {0}D 0 1× 10−6 Sphere[18]
f2 [−100, 100]D {0}D 0 1× 10−6 Schwefel’s2.21[18]
f3 [−10, 10]D {0}D 0 1× 10−6 Schwefel’s2.22[18]
f4 [−100, 100]D {0}D 0 1× 10−6 Quadric[18]
f5 [−100, 100]D {0}D 0 0 Step[18]
f6 [−1.28, 1.28]D {0}D 0 1× 10−2 Noise[18]
f7 [−10, 10]D {0}D 0 1× 10−6 Rosenbrock[18]
f8 [−500, 500]D {420.9687}D 0 1× 10−2 Schwefel[18]
f9 [−5.12, 5.12]D {0}D 0 1× 10−6 Rastrigin[18]

f10 [−32, 32]D {0}D 0 1× 10−6 Ackley[18]
f11 [−600, 600]D {0}D 0 1× 10−6 Griewank[18]
f12 [−50, 50]D {1}D 0 1× 10−6 Generalized Penalized1.1[18]
f13 [−50, 50]D {1}D 0 1× 10−6 Generalized Penalized1.2[18]
f14 [−100, 100]D o 390 1× 10−2 Shifted Rotated Rosenbrock[19]
f15 [−600, 600]D o -180 1× 10−2 Shifted Rotated Griewank[19]
f16 [−32, 32]D o 140 1× 10−2 Shifted Rotated Ackley[19]
f17 [−5, 5]D o -330 1× 10−2 Shifted Rastrigin[19]
f18 [−5, 5]D o -330 1× 10−2 Shifted Rotated Rastrigin[19]
f19 [−0.5, 0.5]D o 90 1× 10−2 Shifted RotatedWeierstrass[19]
f20 [−pi, pi]D o -460 1× 10−2 Schwefel’s2.13[19]

All the test functions are with dimension D-30. Search space cross a wide range from 1 to 1200. The f14 − f19 contains multiple individuals to the
minimum. Accept is the acceptable error within the predefined minima value in 50 independent runs.

TABLE III
SOME EXPERIMENTAL RESULTS OF NICHING TWO-LAYER DE WITH OTHER SELF-ADAPTIVE DE FOR SELECTED BENCHMARK FUNCTIONS

Function JADE jDE SDE TLDE NTLDE
f2 mean 2.04000E-39 2.93095E-41 1.53133E-38 1.54301E-48 6.86622E-56

std 7.38514E-39 1.21711E-41 3.57502E-38 1.04599E-48 7.7398E-56
f3 mean 6.60117E-70 1.30181E-07 7.37197E-09 6.04986E-08 2.12986E-17

std 1.3709E-69 5.02363E-07 1.18436E-08 4.24645E-08 2.99457E-17
f4 mean 1.91456E-90 0.001073383 9.276981772 1.123664137 1.26035E-07

std 6.44987E-90 0.001130412 15.19739945 0.731622424 1.31483E-07
f6 mean 0.000420116 0.002599212 0.003565094 0.007139964 0.001872842

std 0.00018554 0.000477625 0.000680896 0.001708176 0.000518219
f8 mean 7.896270801 0.000381827 0.000381827 0.000381827 0.000381827

std 30.5806465 4.08274E-13 3.82746E-12 1.12226E-19 0
f14 mean 17.70968785 0.669693725 0.009761017 0.000280592 0.002311603

std 37.08245913 1.414356385 0.000182752 0.000525148 0.007928373
f15 mean 0.000821399 0.001971457 0.000657152 0.000657152 1.33227E-16

std 0.003181266 0.004081304 0.00254514 0.00254514 3.30945E-16
f18 mean 22.11378903 35.76486345 139.2023223 47.11462041 44.79645601

std 5.948578981 10.41515826 16.89396392 8.516641994 10.93542304
f19 mean 25.07342387 12.87762592 33.53525092 23.03053569 9.688993264

std 1.51756617 5.200141785 1.476459176 2.013521791 3.972020795
f20 mean 3057.418347 2048.220986 3692.160258 1548.603555 997.1170613

std 2449.695545 1781.331182 2750.489196 1854.102311 1155.611716

Average over 50 independent runs, with 20 benchmark functions in total, this table shows 10 different results of NTLDE with other methods, while other
results of NTLDE are as good as the best results of JADE, jDE, SDE, TLDE.
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best result, although in a low probability 6.67%. By compare
the average success rate from table IV, clearing niching
procedure has been proved effective.

TABLE IV
ACCEPTABLE SUCCESS RATE IN ABOUT 30-60 INDEPENDENT RUNS

Function JADE jDE SDE TLDE NTLDE
f1 100.00% 100.00% 100.00% 100.00% 100.00%
f2 100.00% 100.00% 100.00% 100.00% 100.00%
f3 100.00% 100.00% 100.00% 100.00% 100.00%
f4 100.00% 0.00% 0.00% 0.00% 100.00%
f5 100.00% 100.00% 100.00% 100.00% 100.00%
f6 100.00% 100.00% 100.00% 100.00% 100.00%
f7 100.00% 0.00% 80.00% 40.00% 86.67%
f8 93.33% 100.00% 100.00% 100.00% 100.00%
f9 100.00% 100.00% 80.00% 100.00% 100.00%
f10 100.00% 100.00% 100.00% 100.00% 100.00%
f11 100.00% 100.00% 100.00% 100.00% 100.00%
f12 100.00% 100.00% 100.00% 100.00% 100.00%
f13 100.00% 100.00% 100.00% 100.00% 100.00%
f14 66.67% 100.00% 100.00% 100.00% 93.33%
f15 93.33% 100.00% 100.00% 100.00% 100.00%
f16 0.00% 0.00% 0.00% 0.00% 0.00%
f17 100.00% 100.00% 86.67% 100.00% 100.00%
f18 0.00% 0.00% 0.00% 0.00% 0.00%
f19 0.00% 0.00% 0.00% 0.00% 0.00%
f20 0.00% 0.00% 0.00% 6.67% 6.67%
average 77.67% 70.00% 73.00% 72.33% 79.33%

The f5 acceptable error is 0, while f6, f8 and f14 − f19 acceptable error
is 10e−2, others are all 10e−6.

E. Discussions

Our experiments are running on OS:Win7, 2 Inter Core i5
CPU: 2.5GHz, RAM: 4GB, Language: Matlab2012. Fig.6
shows the converge curves of algorithms above. Although
TLDE and NTLDE runs double basic DE in candidate layer,
i.e. 300 iterations of TLDE is actually 600 iterations of
SDE, it still converge faster than jDE, SDE and JADE. The
mutation strategy of JADE is “DE/Current-to-pbest” which
is differ from other algorithms with classic mutation strategy
“DE/rand/1/bin”, which costs more time in each iteration.

Fig. 6. Converge curves of function 8

Time consuming of each evolution iteration in converge

TABLE V
TIME CONSUMING OF EACH METHOD

F8 JADE jDE SDE TLDE NTLDE
time(s) 0.73 0.50 0.66 0.53 1.02

curves varies from different algorithms, table V shows time
consuming in function 8. The average time cost of TLDE
is good enough with other self-adaptive DEs, while niching
method calculating distance in each generation costs time,
almost as twice consuming time as TLDE. Therefore, in
general functions, the TLDE will be efficient enough to
compute an acceptable optimum and the niching method is
only required to optimize complex functions.

V. CONCLUSIONS

Parameter learning is beneficial for performance improve-
ment of complex real-world applications. This paper presents
an enhanced niching Two-Layered DE with self-adaptive
control parameters, which eliminates the time consuming
trial and error procedure for finding perfect parameters. A
clearing procedure of niching method is proposed to maintain
the diversity of the population, and prevent the premature
convergence to local optimal.

The proposed modification is tested on commonly used
benchmark problems for unconstrained optimization. Em-
pirical results indicates that the proposed niching mutation
strategy with two-layer DE structured parameter control is
competitive and very promising. It exhibits a robust and
stable behavior during the optimal-searching procedure.

Future target is to extend current work and improve this
system, the entry point may start from different mutation
strategies instead of the original “DE/rand/1/bin” we applied
in this paper.
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