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Abstract—The evolutionary algorithms are usually criticized
for their slow convergence. To address this weakness, a variety
of strategies have been proposed. Among them, the metamodel
or surrogate based approaches are promising since they replace
the original optimization objective by a metamodel. However,
the metamodel building itself is expensive and therefore the
metamodel based evolutionary algorithms are commonly applied
to expensive optimization. In this paper, we propose an alternative
metamodel, named locally weighted metamodel (LWM), for the
pre-selection in evolutionary optimization. The basic idea is to
estimate the objective values of candidate offspring solutions for
an individual, and choose the most promising one as the offspring
solution. Instead of building a global model as many other algo-
rithms do, a LWM is built for each candidate offspring solution
in our approach. The LWM based pre-selection is implemented
in a multi-operator based evolutionary algorithm, and applied to
a set of test instances with different characteristics. Experimental
results show that the proposed approach is promising.

I. INTRODUCTION

Many real world applications involve optimizing an objec-
tive or a function. In this paper, we consider the following
box-constrained continuous optimization problem.

min f(x)
s.t. x ∈ Ω,

(1)

where x = (x1, x2, · · · , xd)T is a decision variable vector,
Ω = [ai, bi]d is the feasible region of the decision space, where
ai < bi, ai ∈ R and bi ∈ R are the lower and upper boundaries
of the decision space in the ith dimension, respectively. f(x) :
Ω → R is a continuous mapping from the decision space to
the objective space, and R is the objective space.

According to the properties of the problems to tackle, a va-
riety of methods, such as linear programming, least square op-
timization, convex optimization, etc., have been proposed [1].
However in practice, the properties of the problems are un-
known or even there do not exist mathematical formulations of
the problems.Thus physical experiments or computational sim-
ulations are applied to calculate the objective values instead.
In such cases, the traditional methods may not be applicable
and many researchers resort to heuristic optimization methods.
Evolutionary Algorithms (EAs) are such kind of methods [2].
The major differences between EAs and conventional methods
include (a) EAs use a population of candidate solutions to

search for the optimal solution, and (b) EAs rely on the
objective function values to guide the search. Furthermore,
EAs are easy to implement and are able to converge close
to the global optimum. For these reasons, EAs have been
successfully applied to different fields.

However, EAs do not work without any cost. They are
usually criticized for their slow convergence. A major reason is
that EAs usually require a large number of objective function
evaluations. To deal with this problem, a variety of strate-
gies have been proposed in the last decades. Among them,
the metamodel or surrogate based approaches are promising
ones [3], [4], [5], [6], [7]. The basic idea behind a metamodel
based EA is that it builds a metamodel or a surrogate model
based on the obtained solutions and their objective values,
and replaces the original objective function by the metamodel
sometimes in the running process. To use a metamodel based
EA, some issues should be considered, such as which kind
of metamodel to use, and how to combine the metamodel
with an EA more efficiently. A comprehensive survey of
the metamodel based evolutionary optimization can be found
in [8], [9], [10].

In the metamodel based evolutionary optimization, it is
usually assumed that modeling is much cheaper compared
to the objective function evaluation. For this reason, the
metamodel based approaches are usually applied to expensive
optimization. It is arguable that the metamodel can be also
utilized to handle general optimization problems if some
cheap models could be found. Following this idea, some
models based on nonparametric density estimation techniques
have been proposed [11], [12]. In this paper, an alternative
metamodel, named locally weighted metamodel (LWM) is
proposed, for the pre-selection in evolutionary optimization.
Instead of building a global model as many metamodel based
evolutionary algorithms do, a LWM is built for each candidate
offspring solution in this approach. In the reproduction pro-
cess, a set of candidate offspring solutions are generated for
each parent individual, and only the best one according to the
LWM is chosen as the offspring solution.

The rest of this paper is organized as follows. Section II
briefly reviews some widely used metamodels used in evo-
lutionary optimization. Section III presents a new metamodel
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based method for optimization. The algorithm framework, the
reproduction operator, and the new metamodel are introduced
in detail. The experimental results are reported in Section IV.
Finally, this paper is concluded in Section V.

II. RELATED WORK

The metamodels are actually the regression or interpolation
models. Therefore, the regression or interpolation methods
from the community of statistical and machine learning can
be naturally applied as metamodels and used in evolutionary
optimization [13], [14].

Let {xi, f(xi)}, i = 1, · · · , N be a set of N training data
points where xi ∈ Rd , f(xi) ∈ R. The target of metamodeling
is to find f̂(x) which can fit f(x) well for all the given training
points. Some widely used models are summarized as follows.

• Polynomial Regression (PR) [9]: It is a form of linear
regression which fits a linear or non-linear model to a
training set. A PR model that is linear in β can be
expressed as follows

f̂(x) = x̂Tβ, (2)

where x̂ is a basis vector based on the decision variable
vector x, and β is the coefficient vector, defining the
complexity of the model. The least square method can
be used to fit this model.

• Gaussian Processes (GP) [15], [16]: It is also known as
Kriging regression. It assumes that the function value is
from a Gaussian distribution as follows

f̂(x) ∼ N(µ, σ2), (3)

where µ denotes the mean value, and σ2 is the variance.
Both µ and σ2 are estimated based on the given training
data set. A major advantage of GP over other regression
methods is that it offers not only the estimated objective
value but also the error of the estimation. To have a
high quality estimation, it may need to optimize some
parameters which might be time-consuming.

• Artificial Neural Network (ANN) [17]: An ANN consists
of a system of interconnected nodes, called neurons. Each
neuron is a computational model that computes values
from inputs. When fixing the form of the neurons and
the connection structure of the ANN, the target is to fit
the following model by the given training data set.

f̂(x) = ANN(x,w), (4)

where w denotes the weights between the neurons. The
multilayer perceptron (MLP) is widely used and the
activation function or neuron is often defined by a logistic
sigmoid function fa(a) = 1/(1 + exp(−a)).

• Radial Basis Function (RBF) [18]: RBF is a special case
of ANN. It usually builds up an approximation function
in the form of

f̂(x) =

NRBF∑
i=1

wiφ(||x− yi||), (5)

where NRBF denotes the number of radial basis func-
tions, and each basis function is with a center yi and a
weight wi. The centers are learned from the training data
set, and the weights wi can be estimated using the least
square method.

• Support Vector Regression (SVR) [19]. The SVR is an
extension of support vector machine. A general form of
SVR can be defined as follows

f̂(x) =
N∑
i=1

wik(xi, x)) + b, (6)

where wi are the coefficients, b is the basis, and k(·, ·) is
a kernel function. A major advantage with SVR is that
the parameters can be optimized by solving a quadratic
problem.

• Nonparametric Density Estimation: It is proved that min-
imizing an objective function is equal to maximizing
a corresponding density function [12]. Therefore, we
can replace the objective function values by estimating
the density of the solutions. A nonparametric density
estimation method was thus introduced as follows [11].

f̂(x) =
1

N

N∑
i=1

(
1/f̄(xi)∑N
j=1 1/f̄(xj)

1

w
ϕ

(
||x− xi||

w

))
,

(7)
where

– w is the window width and it is estimated as

w =

1

d

d∑
j=1

(
āj − bj

)21/2

,

where āj = arg max
i=1,···,n

xji and bj = arg min
i=1,···,n

xji ;

– f̄(xi) = f(xi) + H where H is a positive number
making f̄(xi) > 0;

– ϕ(u) is a window function which is defined as

ϕ(u) =
1√
2π
e−u

2/2.

The major advantage of nonparametric density estimation
is that the density function has no need to be chosen
beforehand.

III. A NEW METAMODEL BASED EVOLUTIONARY
ALGORITHM

Most of the above mentioned models are directly borrowed
from statistical and machine learning community and do not
consider the properties of evolutionary algorithms. Further-
more, it is time-consuming to train those models. Considering
these two issues, a locally weighted metamodel (LWM) is
proposed in this paper for evolutionary optimization. Based
on the LWM, a pre-selection strategy is applied to filter ’bad’
solutions prior to real function evaluations.

In the following, we firstly present the algorithm framework,
then introduce the reproduction operator, and finally propose
the new metamodel in detail.
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yj1 =

{
xjr1 + F · (xjr2 − x

j
r3) if rand < Cr or j = jrnd

xj otherwise

yj2 =

{
xjr1 + F · (xjr2 − x

j
r3) + F · (xjr4 − x

j
r5) if rand < Cr or j = jrnd

xj otherwise

yj3 =

{
xj + rand · (xjr1 − xj) + F · (xr2)j − xjr3) if rand < Cr or j = jrnd
xj otherwise

Fig. 1. Multiple reproduction operators

A. Algorithm Framework

Denote the locally weighted metamodel based evolutionary
algorithm as LWM-EA. In each generation, the LWM-EA
maintains
• a set of N solutions {x1, x2, · · · , xN},
• their objective values {f(x1), f(x2), · · · , f(xN )}.

The framework of LWM-EA is shown as follows.

Algorithm 1: Procedure of LWM-EA

1 Initialize the population {x1, · · · , xN} and evaluate them;
2 while not terminate do
3 foreach x ∈ {x1, · · · , xN} do
4 Generate M trial points y1, · · · , yM ;
5 For each yi, build a LWM f̂ and estimate its

value f̂(yi), i = 1, · · · ,M ;
6 Let y∗ = arg min

y∈{y1,y2,···,yM}
f̂(y) be the offspring

solution of x;
7 Evaluate y∗;
8 if f(y∗) < f(x) then
9 Replace x by y∗;

10 end
11 end
12 end

We would like to explain the algorithm as follows.
• Initialization: The initial population is uniformly random-

ly sampled from the search space in Line 1.
• Termination Condition: The algorithm terminates when

a given maximum number of generations is reached in
Line 2.

• Reproduction Procedure: For each solution, M trial off-
spring solutions are generated in Line 4 and the details
will be discussed in the following section.

• Selection Procedure: It should be noted that the selection
procedure is performed in Lines 5-10. Firstly, the M trial
solutions are evaluated by a metamodel in Line 5, the
most promising one is chosen in Line 6, and finally it
will replace the parent solution x if it has better quality

according to the original objective function in Line 9.
The details of the metamodel building will be discussed
shortly in the following section.

B. Offspring Reproduction

Since a pre-selection strategy is used to filter ’bad’ offspring
solutions, a multiple candidate offspring solutions need to be
generated for each parent solution. In our previous work [11],
multiple solutions are sampled from the probability distri-
bution model. In this paper, we use a multi-operator search
strategy. The reproduction operator introduced in CoDE [20]
is used for this purpose.

For a parent solution x, we generate M = 9 trial offspring
solutions y1, · · ·, y9 by the three reproduction operators in
Fig. 1. Each operator uses three types of control parameters:
[F = 1.0, Cr = 0.1], [F = 1.0, Cr = 0.9], and [F =
0.8, Cr = 0.2].

It has been shown that the multi-operator search strategy in
CoDE is promising for dealing with continuous optimization
problems and more details are referred to [20]. It should be
noted that (a) all the trial offspring solutions are evaluated
by the objective functions in CoDE while only one in our
approach, and (b) any multi-operator search strategies can be
applied here in our framework.

C. Locally Weighted Metamodel

It is reasonable to assume that the adjacent individuals have
similar fitness values for continuous optimization problems.
The fitness values of a new individual can thus be estimated
by the objective values of the nearby points. Following this
idea, we propose a locally weighted metamodel (LWM) in
this section.

Fig. 2. Illustration of the relationship between y, xi, xj , and z.
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TABLE I
THE 12 TEST INSTANCES USED IN COMPARISON STUDY

Test Instance Search Space

f1(x) =
d∑
i=1

(xi)2 [−100, 100]d

f2(x) =
d∑
i=1

|xi|+
d∏
i=1

|xi| [−10, 10]d

f3(x) =
d∑
i=1

(
i∑

j=1

xj

)2

[−100, 100]d

f4(x) = max
{
|xi|
}

[−100, 100]d

f5(x) =
d−1∑
i=1

[
100(xi+1 − (xi)2)2 + (xi − 1)2

]
[−30, 30]d

f6(x) =
d∑
i=1

⌊
xi + 0.5

⌋2
[−100, 100]d

f7(x) =
n∑
i=1

i(xi)4 + rand[0, 1) [−1.28, 1.28]d

f8(x) =
d∑
i=1

[
(xi)2 − 10 cos (2πxi) + 10

]
[−5.12, 5.12]d

f9(x) = −20 exp

(
−0.2

√
1
d

d∑
i=1

(xi)2

)
− exp

(
1
d

d∑
i=1

cos(2πxi)

)
+ 20 + e [−32, 32]d

f10(x) =
1

4000

d∑
i=1

(xi)2
d∏
i=1

cos
(
xi√
i

)
+ 1 [−600, 600]d

f11(x) =
π
d

{
10 sin2(πyi) +

d−1∑
i=1

(yi − 1)2[1 + 10sin2(πyi + 1)] + (yd − 1)2
}
+

d∑
i=1

u(xi, 10, 100, 4) [−50, 50]d

where yi = 1 + 1
4
(xi + 1), and

u(xi, a, k,m) =

 k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

f12(x) = 0.1

{
sin2(3πxi) +

d−1∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)] + (xd − 1)2[1 + sin2(2πxd)]

}
+

d∑
i=1

u(xi, 5, 100, 4) [−50, 50]d

where u(·) is the same as in f11.

For a new trial solution y, K nearest solutions in the current
population are chosen to estimate its objective value. Without
loss of generality, the K nearest solutions are denoted as
x1, x2, · · · , xK . Let xi and xj be any two nearest solutions,
and we can draw a line xixj between the two points. Let z
be the projection of x in line xixj . We can estimate the value
of z by a linear interpolation as follows.

f̄(z) = f(xi) + (f(xj)− f(xi))
(z − xi)T (xj − xi)
(xj − xi)T (xj − xi)

(8)

Fig. 2 illustrates the idea to project x in line xixj .

For the given K nearest solutions, we can find 1
2K(K− 1)

such lines and project points. Then we use these project points

to estimate the value of y in this equation.

f̂(y) =

∑
i,j,i6=j

w(z)f̄(z)∑
i,j,i6=j

w(z)
(9)

where w(z) denotes the weight of z.
To have a high quality estimation, the points y, xi, xj , and

z should be close to each other. To this end, the weight is
defined as follows.

w(z) =
1

‖xi − z‖+ ‖xj − z‖+ ‖x− z‖
(10)

We would make the following comments on the LWM.

• This model considers the property of the population of
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TABLE II
MEAN±STD. VALUES OF THE RESULTS OBTAINED BY THE TWO COMPARISON ALGORITHMS AFTER 1, 500 AND 3, 000 GENERATIONS OVER 50 RUNS FOR

ALL THE TEST INSTANCES.

generation = 1, 500 generation = 3, 000
instance LWM-EA nEDA LWM-EA nEDA
f1 2.762e-31±1.3668e-30 1.583e-71±1.2350e-71 7.219e-64±3.5726e-63 3.380e-89±3.3860e-89

f2 3.833e-18±1.8969e-17 1.563e-38±6.8690e-39 3.580e-36±1.7715e-35 8.816e-51±6.1250e-51

f3 1.154e-05±5.7127e-05 3.137e-19±8.7260e-19 1.759e-12±8.7050e-12 5.702e-41±1.5410e-40

f4 1.562e-08±7.7320e-08 2.147e-31±3.8790e-32 2.526e-16±1.2501e-15 3.004e-34±1.0180e-34

f5 6.964e-04±3.4465e-03 1.142e+01±2.7740e+01 4.440e-06±2.1970e-05 3.452e+00±8.0280e+00

f6 0.000e+00±0.0000e+00 0.000e+00±0.0000e+00 0.000e+00±0.0000e+00 0.000e+00±0.0000e+00

f7 9.751e-05±4.8255e-04 3.022e-04±2.8830e-04 5.803e-05±2.8716e-04 1.790e-04±1.4140e-04

f8 9.218e-02±4.5619e-01 1.450e+01±3.5500e+00 7.278e-02±3.6018e-01 1.121e+00±3.1850e+00

f9 1.599e-16±7.9116e-16 3.713e-15±9.7360e-16 1.776e-17±8.7907e-17 3.357e-15±1.3790e-15

f10 2.056e-03±1.0176e-02 1.945e-01±1.1870e-01 8.540e-04±4.2263e-03 1.515e-01±1.1000e-01

f11 1.336e-30±6.6094e-30 1.096e-20±9.1200e-36 1.885e-33±9.3266e-33 1.096e-20±9.1200e-36

f12 1.723e-30±8.5261e-30 3.485e-21±1.5200e-36 5.399e-34±2.6719e-33 3.485e-21±1.5200e-36

an evolutionary algorithm: as the running process, the
population will converge and the solutions will hopefully
be more close to each other. Therefore, the estimation
quality of LWM will increase during the running process.

• The cost of LWM comes from two aspects: (a) the
choosing of K nearest solutions, and (b) the objective
estimation in (9). The time complexity of the two proce-
dures is on O(N2).

It should be noted that our LWM is similar to the locally
weighted regression (LWR) method proposed in [21]. The
major difference is that the LWM does not directly use the
function values of the neighbor points but uses the values of
the projected points.

IV. EXPERIMENTAL RESULTS

A. Test Instances and Parameter Settings

In this section, we apply the proposed LWM-EA to 12
widely used test instances from [22]. The details of these test
instances are listed in Table I. The nonparametric estimation
of distribution algorithm (nEDA) [11] is used for comparison
study. nEDA and LWM-EA share the similar idea, and the
major differences between the two approaches are (a) nEDA
uses a Gaussian model to sample new trial solutions, and (b)
nEDA utilizes a nonparametric density estimation method as
a metamodel. More details of nEDA are referred to [11].

The parameters for experimental study are as follows.
• The dimension of the test instance is d = 10 for all test

instances.

• The population size for both algorithms is N = 100.
• The maximum evolutionary generations is 3, 000.
• In LWM-EA, the number of candidate offspring solutions

is M = 9, and the number of nearest solutions is K = 5.
• In nEDA, the number of candidate offspring solutions is
M = 10 as used in [11].

• The experimental results are based on 50 independent
executions of the two algorithms for each instance.

B. Comparison Results and Analysis

LWM-EA is compared with nEDA on the 12 test instances
listed in Table I. The statistical results of the mean and std.
values of the two algorithms after 1, 500 and 3, 000 generations
are shown in Table II.

As shown in Table II, the statistical results after 1, 500 and
3, 000 generations are consistent with each other. It is obvious
that LWM-EA and nEDA perform similarly on f6, LWM-EA
outperforms nEDA on f5, f7-f12, while LWM-EA performs
worse than nEDA on f1-f4.

It should be noted that although LWM-EA does not work
as well as nEDA on f1-f4, it still can obtain good results.
However on f5, f8, and f10, nEDA fails to achieve good
results. Therefore, we may safely draw a conclusion that
LWM-EA performs better than nEDA on these test instances.

C. Sensitivity to Control Parameters

The proposed LWM-EA has a major control parameter, i.e.,
the number of nearest solutions K for LWM model building.
This section studies the sensitivity to this control parameters.
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The influence of the population size N is also taken into
consideration.

We set N = 50, 75, and 100, and K = 3, 5, 15, 30, and 45
respectively. The other algorithm parameters are the same as
in the previous section. f1 and f2 are chosen for the study.
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Fig. 3. The average function values obtained with different control parameters
on (a) f1, and (b) f2.

Fig. 3 plots the average function values obtained by LWM-
EA with different control parameters on f1 and f2. It is clear
that when K = 15, LWM-EA achieves the worst results
on both the test instances, while when K is less or more,
LWM-EA can get relatively better performance with different
parameter settings of the population size.

Figs. 4 and 5 show the average objective values versus
generations on f1 and f2 respectively with different settings
of N and K. The results are very consistent with those in
Fig. 3 that when K = 3, 5, and 45, LWM-EA performs better
than LWM-EA with K = 15 and 30. Furthermore, we can see
that when N = 50, LWM-EA with K = 45 performs the best
while when N = 75 and 100, LWM-EA with K = 5 performs
the best slightly.

It is not clear why LWM-EA performs the worst with
median settings of K. The reason might be that the quality
of the LWM is not high with median sizes of training points,
and it is worth for further investigation in the future.

When giving a large size of K, the complexity of LWM
modeling process will increase. Therefore, we choose a small
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Fig. 4. The average objective values versus generations on f1 with population
size (a) N = 50, (b) N = 75, and (c) N = 100.
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Fig. 5. The average objective values versus generations on f2 with population
size (a) N = 50, (b) N = 75, and (c) N = 100.
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TABLE III
MEAN±STD. VALUES OF THE RESULTS OBTAINED BY LWM-EA AFTER 3, 000 GENERATIONS OVER 50 RUNS FOR ALL THE TEST INSTANCES WITH

VARIABLE DIMENSION d = 10, 15, 20, 25,AND 30.

d = 10 d = 15 d = 20 d = 25 d = 30
f1 7.219e-64±3.5726e-63 5.335e-27±2.6400e-26 4.001e-13±1.9800e-12 1.167e-06±5.7768e-06 6.957e-03±3.4429e-02

f2 3.580e-36±1.7715e-35 4.283e-11±2.1193e-10 4.489e-08±2.2216e-07 1.842e-06±9.1176e-06 3.507e-05±1.7353e-04

f3 1.759e-12±8.7050e-12 2.220e+00±1.0987e+01 9.153e+01±4.5298e+02 4.020e+02±1.9892e+03 6.765e+02±3.3480e+03

f4 2.526e-16±1.2501e-15 3.343e-04±1.6542e-03 7.747e-02±3.8336e-01 5.084e-01±2.5162e+00 1.502e+00±7.4311e+00

f5 4.440e-06±2.1970e-05 2.226e+00±1.1016e+01 3.846e+00±1.9034e+01 2.940e+00±1.4548e+01 5.526e+00±2.7346e+01

f6 0.000e+00±0.0000e+00 0.000e+00±0.0000e+00 0.000e+00±0.0000e+00 0.000e+00±0.0000e+00 0.000e+00±0.0000e+00

f7 5.803e-05±2.8716e-04 2.766e-04±1.3689e-03 5.238e-04±2.5920e-03 1.077e-03±5.3307e-03 2.920e-03±1.4448e-02

f8 7.278e-02±3.6018e-01 1.066e-01±5.2750e-01 1.104e+00±5.4636e+00 2.475e+00±1.2249e+01 6.889e+00±3.4090e+01

f9 1.776e-17±8.7907e-17 8.436e-13±4.1746e-12 8.715e-07±4.3128e-06 2.762e-04±1.3668e-03 1.107e-02±5.4784e-02

f10 8.540e-04±4.2263e-03 3.455e-03±1.7097e-02 1.190e-02±5.8898e-02 3.882e-02±1.9209e-01 7.799e-02±3.8593e-01

f11 1.885e-33±9.3266e-33 1.552e-12±7.6812e-12 4.100e-05±2.0291e-04 2.157e-01±1.0672e+00 2.133e+00±1.0555e+01

f12 5.399e-34±2.6719e-33 6.357e-08±3.1457e-07 6.620e-03±3.2760e-02 7.295e-01±3.6102e+00 7.297e+02±3.6112e+03

one in the other experiments.

D. Scalability of LWM

Usually, the model quality will decrease as the dimension
of the problems increase. In this section, we investigate the
scalability of the LWM. For this purpose, LWM-EA is applied
to the 12 test instances with dimension d = 10, 15, 20, 25, and
30. The mean and std. deviation values of the algorithm over
50 runs for the test instances after 3, 000 generations are shown
in Table III.

It is clear from Table III that on most of the test instances,
the performance of LWM-EA decreases as the variable di-
mension increases. The reason is that the quality of the LWM
decreases as the variable dimension increases. It is similar to
that in nEDA [11].

To build a high quality model in high dimensional space,
we may need (a) more training points, and (b) the training
points are similar with the given points. However, these two
requirements are hard to be satisfied since the population in
the high dimensional space is sparse and might be far away
from each other. Therefore, it might not be suitable to apply
metamodel directly to high dimensional problems. How to use
metamodel more efficiently for high dimensional problems is
worth for further investigation in the future.

V. CONCLUSIONS

In this paper, we proposed a locally weighted metamodel
(LWM) to do pre-selection in an evolutionary algorithm. A
new evolutionary algorithm, combing the LWM and a multi-
operator search strategy, called LWM-EA, was thus proposed.
In each generation, nine candidate offspring solutions are

generated for each parent solution by the multi-operator, and
only the most promising one according to the LWM is chosen
as the offspring solution. LWM-EA was compared with an
estimation of distribution algorithm based on nonparametric
density estimation (nEDA) on 12 selected test instances. The
experimental results indicated that LWM-EA outperformed
nEDA on 7 out of the 12 test instances.

We also empirically studied the influences of the number of
points to build the LWM and the scalability of the LWM. The
experimental results suggested that (a) the LWM is sensitive
to median sizes of the training points, and (b) the LWM
does not work well when the variable dimension increases.
Therefore, it is worth to investigate how to choose a proper
parameter to build the LWM, and how to apply the LWM
to high dimensional problems in the future. Furthermore, the
comparison between different metamodels is another direction
worth for future work.
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