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Abstract—Aimed at the poor optimizing ability and the low 

accuracy of the glowworm swarm optimization algorithm 
(GSO), a simplified glowworm swarm optimization algorithm 
(SGSO) was put forward in this paper, which omitted the 
phases of seeking dynamic decision domain and movement 
probability calculation, and meanwhile simplified the location 
updating process. Moreover, elitism was introduced to improve 
the capacity of searching optimal solution. It was applied to the 
unimodal and multimodal benchmark function optimization 
problems. The improved SGSO algorithm is compared with the 
basic GSO and other swarm intelligent optimization algorithms 
to demonstrate the performance. Experimental results showed 
that SGSO improves not only the precision but also the 
efficiency in function optimization. 

Keywords—glowworm swarm optimization; swarm 
intelligence; function optimization 

INTRODUCTION 

ETA-HEURISTIC algorithms provide a new perspective 
for solving complex problems by mimicking the 
biological behaviors and nature phenomenon, with the 

characteristics of high robustness, low complexities, 
excellent efficiency and superb performance, compensate the 
lack of searching and calculation for finite solutions and 
high complexity in traditional algorithms.  

As a significant branch of meta-heuristic research, swarm 
intelligence algorithms, which inspired by the behavior of 
birds, fish, ants, and bee colonies and so on, is applied to 
search global optimum of many problems. Besides the 
characteristics of the meta-heuristic algorithms, swarm 
intelligent algorithms have the advantages of easy operation 
and good parallel architecture. In recent years, novel swarm 
intelligent algorithms for optimization have sprung up 
continually and have driven a high tide of researches on 
swarm intelligence. For example, particle swarm 
optimization algorithm (PSO), proposed by Kennedy J, 
Eberhard R.C. [1] in 1995, imitated the behavior of birds; 
bacterial foraging optimization algorithm (BFO) [2], 
introduced in 2002, simulated the foraging of bacteria; 
artificial bee colony algorithm (ABC) [3], introduced in 
2005, mimicked the behavior of bee colonies for searching 
honey. Swarm intelligence optimization algorithms are 
widely applied in many scientific field including function 
optimization and combination optimization [4- 6], NP-hard 

problems [7, 8], data mining [9- 11], engineering and 
process [12, 13], biotechnology [14] and other fields. 

Glowworm swarm optimization algorithm (GSO) is a 
nature inspired heuristic intelligent algorithm, proposed by 
Krishnanand K.N. and Ghose D. in 2005 [15], which 
simulated behavior of glowworm group in moving by using 
luciferin to attract other glowworms around or foraging. The 
greater value of luciferin, the brighter of the glowworm, the 
more attractive will be.  

Glowworm swarm optimization algorithm has been 
applied to many fields, such as multimodal function and 
combination optimization [16, 17], robotics applications [18-
20], and wireless sensor networks [21, 22]. Also, it is widely 
used in some NP-Hard problems like TSP [23] and 0-1 
knapsack issues [24]. Glowworm swarm optimization 
algorithm has some shortcomings, such as low accuracy in 
later iterations, slow convergence speed and easy to be 
trapped into local optimal solutions. 

A simplified glowworm swarm optimization algorithm 
(SGSO) is proposed to improve the performance of the 
original GSO algorithm. Comparison shows good 
performance in the field of function optimization problems 
with the basic GSO, which embodies the ability of fast 
convergence speed and strong searching ability in contrast to 
PSO, BFO, ABC [25] and the fruit fly optimization 
algorithm (FOA) [26, 27] which is a novel swarm intelligent 
algorithm proposed by Pan in 2011, mimicking the foraging 
behavior of fruit flies for searching global optimum. 

The rest of this paper is organized as follows. Section II 
introduces the basic concepts and principles of glowworm 
swarm intelligent optimization algorithm. Section III 
provides the simplified glowworm swarm optimization 
algorithm and corresponding principles, location update, 
elitism, boundary control, procedure of SGSO and 
computation complexity. Results from experiments are 
described in Section IV, where we test two groups of 
experiments for SGSO. One is the comparison between the 
basic GSO and SGSO in different dimensions, and the other 
is the comparison among other intelligent algorithms in 30 
dimensions. Finally, section V concludes the paper and 
illustrates the future research. 

I. GLOWWORM SWARM OPTIMIAZTION ALGORITHM 

In GSO algorithm, the glowworm is more attractive when 
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the luciferin value is greater, which guides other glowworms 
to move towards it. Each glowworm has its dynamic 
decision space, which contains glowworms with both values 
of luciferin higher than itself and distance within its dynamic 
decision radius. Glowworm updates its location to a 
glowworm in its dynamic decision space in the light of 
probability, and then, renews its decision space radius. 

A. Procedure of GSO 

The value of luciferin is related to both the value of 
luciferin in the former iteration and objective function in the 
current iteration. 

Let )(txi  represents the location of glowworm i in the t 
iteration, ))(( txJ i  denotes the value of objective function, 
which is transferred to the value of luciferin denotes by )(tli  
follows as: 

))(()()()( txJtltl iii γρ +−−= 11                        (1) 
where ρ and γ  are the luciferin decay constant and 
enhancement constant respectively. Both of them range from 
0 to 1. 

Each glowworm has a dynamic decision space, which 
contains its neighbors with higher luciferin values than its 
own value and the distance between them within the 
decision space radius. )(tNi  is the set of neighborhood of 
glowworm i at the t iteration, given by (2). )(tpij  is deemed to 
be the probability of glowworm i moving toward a neighbor 
j in the t iteration, calculated by (3). 
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where )(tr i
d  denotes the dynamic decision space radius of 

glowworm i in the t iteration, and )(tl j  is the luciferin value 
of glowworm j after the phase of probabilistic mechanism in 
the t iteration. 

Each glowworm updates its location according to (4).  
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where s is the step-size,  represents the Euclidean norm 
operator. 

The radius of each glowworm dynamic decision space not 
only depends on the current radius of dynamic decision 
space, but also associates with the radial range of the 
luciferin sensor deemed by sr . The update rule of each 
glowworm dynamic decision space radius is given by: 

)}})(()(,max{,min{)( tNntrrtr it
i

ds
i

d −+=+ β01          (5) 

where β  denotes the dynamic decision space parameter, tn  

is a control parameter for neighbors in the space. )(tNi  is the 
number of neighbors in the dynamic decision space. 

II. THE SIMPLIFIED GLOWWORM SWARM OPTIMIZATON 

ALGORITHM 

A. Principle of SGSO 

In GSO, the running time is very long because of the 
complex computing of decision space and probabilistic 

chosen mechanism.  What’s more, the location update of 
glowworm is based on the dynamic decision space, which is 
concerned with luciferin. Hence, SGSO is proposed in this 
paper, the location update of glowworm is simplified only 
based on the luciferin, which reduces the running time. 
Meanwhile, the dynamic decision space transferres its local 
search to global search using elitism, which enhances the 
efficiency and the searching ability. The procedure of SGSO 
adopts new policies including luciferin update, location 
update and elitism. 

B. Location Update 

As noted above, glowworms location updating policy 
depends on the dynamic decision spaces consisting of the 
neighbors, which leads to the local optimum as well. 
Furthermore, location update also relates to both the radius 
of dynamic decision space and radial range of the luciferin 
sensor, which takes much time.  

We modify the movement of glowworm individuals and 
simplify the movement of glowworms by adopting the 
thought of probabilistic selection in simulated annealing 
algorithm [28]. In other words, glowworms move towards to 
the best glowworm with a probability, otherwise moves to 
another direction. Each glowworm moves to the best 
location, in which luciferin value is the minimum in the 
group. The location update of each glowworm follows (6). 

))()(()()( txtxtwxtx ibestii −+=+ α1                    (6) 

where α  is the speed parameter. w is deemed to be the 
inertia weight, )(txbest

 is the best location in the t iteration. 

The calculation of α  is given by: 
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where r1 and r2 are random number generated in each 
iteration. α  is a constant variable in the inception of the 
algorithms.  

In each iteration, α  relates to the former value of itself in 
the iteration in advance. When r2 is less than 0.5, α  is 
connected with a random number changing in each iteration. 
Otherwise, it relates to the best and worst fitness values in 
the last iteration see (7).  

As noted above, new location update can ensure the 
location update which helps glowworms jump out of the 
local optimum superiorly. Furthermore, it reduces the 
calculation times which promotes the moving speeding of 
glowworms. 

C. Elitism 

For the purpose of promoting the searching ability of the 
optimum, each glowworm moves to the best location in all 
iterations. The worst m glowworm locations with the largest 
value of luciferin are instead of the best m glowworm 
locations possessing the smallest value of luciferin in each 
iteration. 
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D. Boundary Control 

Locations of glowworms will go beyond the domain of 
the problems, so we need to limit them in the domain 
problems to ensure the legality of the locations. Hence, when 
the location exceeds the upper bound, the value is assigned 
to the upper bound value, similarly when the location value 
low than the lower bound, the value is assigned to the lower 
bound value.   

E. Procedure of SGSO  

Step1 ： Initialize parameters including the scale of 
glowworm group n, the dimension d, the maximal iteration 

maxiter , ρ , γ ， the initial luciferin value )(0il , w, α ,the 
boundary value of objective function upbnd and lwbnd, etc. 

Step2：Luciferin update: transform objective function 
value to luciferin value using (1). 

Step3：Update the location of each glowworm based on 
(6) and (7). 

Step4：Calculate the value of objective function after 
location update, replace the m worst locations using the m 
best locations to accomplish the elitism mechanism. 

Step5：Compare the value of the optimum and objective 
function, if objective function value better than the optimal 
exists, update the optimal value using the objective function 
value. 

Step6：If the t iteration is equal to maxiter , the algorithm 
come to the end, else t=t+1, go to Step2. 

F. Computation Complexity 

In GSO, each glowworm experiences luciferin updating, 
dynamic decision space and movement probability solving, 
location updating. During the phase of dynamic decision 
space solving, each glowworm compares all neighbors 
within the radius. Probabilistic mechanism runs in location 
update phase of each glowworm. The worst computation 
complexity of sorting is )( 2nΘ , and the best is ))log(( nnΘ . 
Therefore, If the group scale of n, and the max iteration 

maxiter , the worst computation complexity of GSO is 
)( maxitern3Θ , the best is ))log(( maxiternn2Θ ; While, the SGSO 

omits the computation for solving dynamic decision space 
and its radius, the computation complexity is )( maxitern2Θ  in 
the worst case, and ))log(( maxiternnΘ  in the best case.  

III. EVALUATION AND ANALYSIS OF EXPERIMENTAL 

RESULTS 

The algorithms are coded in Matlab7.13 and experiments 
were executed on Pentium dual-core processor 3.10 GHz PC 
with 4G RAM. 

Two experiments are tested in this section. Comparison 
between SGSO and the basic GSO to testify the performance 
of SGSO for benchmark functions in 10, 20, 30 dimensions, 
respectively. After that, we compare SGSO with some 
famous and recent swarm intelligent algorithms, such as 
PSO, BFO, ABC and FOA. Taking the best value, mean 
value and running time into consideration for the 
experiments. 

A. Parameter Discussion 

In all algorithms, upbnd and lwbnd are equal to the upper 
and lower bounds of the objective function domain 
respectively. 9 benchmark functions used for experiments 
are shown in Table I. Each benchmark function has the 
optimum of 0. Functions f1 - f4, f9 are unimodal functions, 
while the others are multimodal functions. The parameters 
setting for the swarm intelligent algorithms see Table II. 
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TABLE II.  PARAMETERS OF ALGORITHMS 

Algorithm Parameters 

PSO n = 50, w = 0.8, 21 =c , 22 =c  

BFO n = 20, cn  = 10, sn = 5, rn = 2, rc  = 0.025

GSO 
n = 20, ρ  = 0.4, γ = 0.6, )(0il  = 4, tn  = 4,

 dr  = 50, sr  = 50 

FOA n = 20 

SGSO w=0.8，α =0.4, m=3 

B. Comparison between GSO and SGSO 

We compare SGSO with the basic GSO to testify the 
performance. The optimal value, average value and average 
running time are calculated after 300 independent 
experiments with maximal iteration 300. 

Performances of running in 30 dimensions and 300 
iterations are shown respectively in Fig.1. Due to the 
objective function values close to 0, which cannot 
distinguish clearly, logs base e are deal with the vertical 
function values. Moreover, considering on either the 
convergence speed or accuracy, SGSO performs 
demonstrably superior to GSO. The four stages and 
probabilistic mechanism in dynamic decision space of GSO 
takes a long time to give rise to the longest running time and 
the worst accuracy for solutions; SGSO omits the calculation 
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for dynamic decision space and probabilistic mechanism and 
meanwhile adopts elitism with little complexity, which lead 
to the high accuracy and searching speed of the optimum. 

From Table III to Table V, we can see that SGSO shows 
good performance in both precision and efficiency while the 
basic GSO performs worse. From the perspective of values 
of objective functions, SGSO shows good performance in 

both running time and the solutions. GSO changes obviously 
in different dimensions, but the running time remains 
approximately in different dimensions; SGSO reaches the 
real optimum for f2 to f8 regardless of dimensions. Although 
dimensions changing from 10 to 30, the optimum of SGSO 
varies tiny, as well as the running time. 

 

Fig. 1. Comparison of searching curves for f1 to f9 between GSO and SGSO 

TABLE III.  COMPARISON OF GSO AND SGSO IN 10 DIMENSIONS 

f Algorithm Best Mean Running time(s)

f1 
GSO 1.4456e+003 1.4982e+003 0.8680 
SGSO 0.0204 0.0361 0.0575 

f2 
GSO 8.3816 10.3736 0.8597 
SGSO 0 1.1254e-310 0.0555 

f3 
GSO 31.8760 53.8612 0.8674 
SGSO 0 3.2784e-315 0.0761 

f4 
GSO 44.4378 48.3262 0.7421 
SGSO 0 7.1634e-299 0.0586 

f5 
GSO 38.4087 41.6258 0.7428 
SGSO 0 0.0017 0.0508 

f6 
GSO 3.9220 4.2801 0.8174 
SGSO -8.8818e-016 -8.8818e-016 0.1063 

f7 GSO 0.2528 0.6919 1.3480 

SGSO 0 1.7718e-008 0.2160 

f8
GSO 0.1298 0.3982 1.3463 
SGSO 0 1.0495e-079 0.2481 

f9
GSO 0.0158 0.0454 1.3201 
SGSO 3.1842e-005 2.8543e-004 0.1842 

TABLE IV.  COMPARISON OF GSO AND SGSO IN 20 DIMENSIONS 

f Algorithm Best Mean Running time(s)

f1
GSO 3.7212+003 4.0139+003 0.9650 
SGSO 1.3793 1.4021 0.0539 

f2
GSO 11.7586 32.8547 1.0261 
SGSO 0 2.0543-309 0.0543 

f3
GSO 140.7542 228.8223 0.9390 
SGSO 0 3.2527e-311 0.0992 

f4
GSO 36.1046 44.1825 0.9009 
SGSO 0 4.2742e-310 0.0603 
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f5 
GSO 133.2175 142.1874 0.8841 
SGSO 0 0.0023 0.0567 

f6 
GSO 4.1808 5.3152 0.9486 
SGSO -8.8818e-016 -8.8818e-016 0.1027 

f7 
GSO 0.5904 0.8217 1.3217 
SGSO 0 2.2561e-009 0.2198 

f8 
GSO 0.5062 1.2323 1.3945 
SGSO 0 4.4237e-078 0.2171 

f9 
GSO 0.0298 0.0445 1.3001 
SGSO 1.2016e-005 1.4392e-004 0.1765 

TABLE V.  COMPARISON OF GSO AND SGSO IN 30 DIMENSIONS 

f Algorithm Best Mean Running time(s)

f1 
GSO 3.9215e+003 9.0725+003 0.9252 
SGSO 8.2845 9.8914 0.0575 

f2 
GSO 27.1790 35.7654 0.9617 
SGSO 0 8.7145e-310 0.0572 

f3 
GSO 327.2692 452.2723 0.9639 
SGSO 0 8.1278e-310 0.1451 

f4 
GSO 58.9423 71.2306 0.9821 
SGSO 0 4.2748e-310 0.0627 

f5 
GSO 244.2684 248.3783 0.8823 
SGSO 0 0.0071 0.0574 

f6 GSO 5.7349 7.2853 0.9696 
SGSO -8.8818e-016 -8.8818e-016 0.1173 

f7 
GSO 0.5985 0.8711 1.1627 
SGSO 0 2.9032e-008 0.2231 

f8 
GSO 2.0431 8.3309 1.3979 
SGSO 0 6.4709e-078 0.2679 

f9 
GSO 0.0423 0.0692 1.3789 
SGSO 8.0662e-006 4.3982e-005 0.1726 

C. Comparison with Other Swarm Intelligent Algorithms 

We compare SGSO with PSO, BFO, ABC and FOA for 
the 9 benchmark functions. Due to the convergence speed is 
very slow in FOA, here we set the maximal iteration to 1000 
and run 300 times to observe the results for f1 to f9 
benchmark functions in 30 dimensions. 

Table VI shows the best and mean values of the 
algorithms, as well as the running time for benchmark 
functions f1 to f9 in 30 dimensions. As we know, PSO is an 
excellent algorithm which applies to almost every scientific 
field. Results show that PSO performs worse than FOA and 
SGSO from Table VI in respect of both precision and 
running time; BFO performs seldom well for the values, 
nevertheless, the running time is the highest because of the 
three behavior in foraging; ABC takes less time than BFO 
but still a little longer than others, the optimum is better than 
BFO, but worse than the others; FOA takes the lowest 
running time on account of its simple mechanism. Although 
FOA performs better than PSO, BFO and ABC taking the 
least running time, as well as the smallest deviation by 
comparison with others, the values of the best and mean are 
larger than SGSO; SGSO performs well for the best, mean 
values and the running time in contrast to other algorithms. 
With the tiny deviation, SGSO owns highest robustness. 
And furthermore, SGSO has the low time cost comparing 
with others in functions f1 to f9 although the running time is a 
bit longer than FOA, but far less than the other algorithms. 

TABLE VI.  COMPARISON WITH OTHER ALGORITHMS IN 30 
DIMENSIONS 

f Algorithm Best Mean Running time(s)

f1

PSO 31.0285 49.4807 0.7931 
BFO 43.4631 1.4331e+003 7.1552 
ABC 27.7962 28.6873 2.9437 
FOA 28.2173 28.7338 0.2338 
SGSO 8.0789 16.2837 0.3779 

f2

PSO 0.2219 0.6284 0.7513 
BFO 27.8451 29.8431 5.9817 
ABC 3.3128 4.8721 2.5912 
FOA 1.0150e-004 2.0982e-004 0.2098 
SGSO 0 1.0905e-007 0.3651 

f3

PSO 2.0701 15.9722 1.2205 
BFO 0.5419 108.6321 14.1602 
ABC 0.0203 0.0497 7.1757 
FOA 0.0012 0.0015 0.4081 
SGSO 0 8.3895e-007 0.6003 

f4

PSO 4.5567 20.9914 0.8457 
BFO 3.4542e-005 40.0019 7.6265 
ABC 0.0032 0.0038 2.7734 
FOA 2.6782 2.6976 0.2697 
SGSO 0 1.2861e-004 0.3982 

f5

PSO 49.2173 77.6424 0.8698 
BFO 102.8421 137.9542 7.9631 
ABC 0.1692 0.4624 2.6402 
FOA 0.0210 0.0231 0.2627 
SGSO 0 1.2536e-004 0.3740 

f6

PSO 0.8998 1.5890 1.2047 
BFO -5.2288e-004 2.5243 14.6496 
ABC 2.0182 3.1521 7.4484 
FOA 0.0072 0.0079 0.3202 
SGSO -8.8818e-016 -8.8818e-016 0.5754 

f7

PSO 0 0 1.1103 
BFO 0.0414 2.0124 39.6883 
ABC 0 1.0218 2.6551 
FOA 7.2976e-006 7.6892e-006 0.4339 
SGSO 0 0 0.7038 

f8

PSO 0.0754 0.1358 1.6925 
BFO 67.5995 79.4626 38.9332 
ABC 17.6547 27.3869 3.5812 
FOA 2.0480 2.3768 0.6536 
SGSO 0 0.0297 0.5472 

f9

PSO 8.3267e-005 1.1154e-004 1.0839 
BFO 7.4369e-004 0.0025 12.2972 
ABC 5.7077e-006 0.0001 2.6599 
FOA 1.2551e-007 1.0227e-005 0.3473 
SGSO 0 5.0498e-006 0.4950 

Comparisons of searching process among BFO, ABC, 
FOA and SGSO for f1 to f9 in 30 dimensions are shown in 
Fig. 2 to Fig. 10. Because of the similar values for the 
optimum, we plot the searching curves by evaluating the 
logarithm of function values for better observing. SGSO and 
PSO converge fast and the value comes to 0 before the 40 
iterations, hence its curve is broken in Fig.8. Due to the 
characteristic of f9  

PSO converges fast but the optimum is much worse than 
FOA and SGSO; BFO converges slower than PSO, the 
optimum is as worse as PSO; ABC gains the best optimum 
to 0 in f7, the searching speed is less than SGSO; FOA have 
the worst convergence, its searching curves are not 
convergent finally, although the optimum is smaller than it 
in PSO, BFO and ABC taking the second place; SGSO 
performs best in convergence speed. Its optimum comes to 
the minimum which shows its good searching ability. In 
short, SGSO is a brilliant algorithm for searching the 
optimum with fast convergence speed. 

2865



 
Fig. 2. Searching curves for f1 

 

Fig. 3. Searching curves for f2 

 

Fig. 4. Searching curves for f3 

 

Fig. 5. Searching curves for f4 

 

Fig. 6. Searching curves for f5 

 

Fig. 7. Searching curves for f6 
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Fig. 8. Searching curves for f7 

 
Fig. 9. Searching curves for f8 

 

Fig. 10. Searching curves for f9 

IV. CONCLUSION 

A simplified glowworm swarm optimization algorithm 
was proposed in this paper, which improved the basic GSO 

in that: (1) omitted the dynamic decision space and 
probabilistic mechanism for selection, reduced the time 
complexity of the algorithm and enhanced the efficiency; (2) 
modified the location update mechanism, the location update 
transferred based on dynamic decision space to both the 
optimal and the searching space for solutions; (3) adopt the 
elitism strategy which makes the excellent glowworms to the 
next iteration. Results on benchmark function optimization 
experiments show that SGSO performs much better than the 
basic GSO in searching ability and the running time, but also 
than other recent swarm intelligent algorithms such as PSO, 
BFO, ABC and FOA. As can be seen from the experimental 
results, SGSO owns the best mean values but not the best 
minimum values for all problems. We intend to ameliorate 
the performance and apply SGSO to other problems like 
clustering to test the performance in future. 
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