
A Simplified Glowworm Swarm Optimization
Algorithm

Mingyu Du, Xiujuan Lei*, Zhenqiang Wu
School of Computer Science
 Shaanxi Normal University

Xi’an, China
Email: xjlei168@163.com

Abstract—Aimed at the poor optimizing ability and the low

accuracy of the glowworm swarm optimization algorithm
(GSO), a simplified glowworm swarm optimization algorithm
(SGSO) was put forward in this paper, which omitted the
phases of seeking dynamic decision domain and movement
probability calculation, and meanwhile simplified the location
updating process. Moreover, elitism was introduced to improve
the capacity of searching optimal solution. It was applied to the
unimodal and multimodal benchmark function optimization
problems. The improved SGSO algorithm is compared with the
basic GSO and other swarm intelligent optimization algorithms
to demonstrate the performance. Experimental results showed
that SGSO improves not only the precision but also the
efficiency in function optimization.

Keywords—glowworm swarm optimization; swarm
intelligence; function optimization

INTRODUCTION

ETA-HEURISTIC algorithms provide a new perspective
for solving complex problems by mimicking the
biological behaviors and nature phenomenon, with the

characteristics of high robustness, low complexities,
excellent efficiency and superb performance, compensate the
lack of searching and calculation for finite solutions and
high complexity in traditional algorithms.

As a significant branch of meta-heuristic research, swarm
intelligence algorithms, which inspired by the behavior of
birds, fish, ants, and bee colonies and so on, is applied to
search global optimum of many problems. Besides the
characteristics of the meta-heuristic algorithms, swarm
intelligent algorithms have the advantages of easy operation
and good parallel architecture. In recent years, novel swarm
intelligent algorithms for optimization have sprung up
continually and have driven a high tide of researches on
swarm intelligence. For example, particle swarm
optimization algorithm (PSO), proposed by Kennedy J,
Eberhard R.C. [1] in 1995, imitated the behavior of birds;
bacterial foraging optimization algorithm (BFO) [2],
introduced in 2002, simulated the foraging of bacteria;
artificial bee colony algorithm (ABC) [3], introduced in
2005, mimicked the behavior of bee colonies for searching
honey. Swarm intelligence optimization algorithms are
widely applied in many scientific field including function
optimization and combination optimization [4- 6], NP-hard

problems [7, 8], data mining [9- 11], engineering and
process [12, 13], biotechnology [14] and other fields.

Glowworm swarm optimization algorithm (GSO) is a
nature inspired heuristic intelligent algorithm, proposed by
Krishnanand K.N. and Ghose D. in 2005 [15], which
simulated behavior of glowworm group in moving by using
luciferin to attract other glowworms around or foraging. The
greater value of luciferin, the brighter of the glowworm, the
more attractive will be.

Glowworm swarm optimization algorithm has been
applied to many fields, such as multimodal function and
combination optimization [16, 17], robotics applications [18-
20], and wireless sensor networks [21, 22]. Also, it is widely
used in some NP-Hard problems like TSP [23] and 0-1
knapsack issues [24]. Glowworm swarm optimization
algorithm has some shortcomings, such as low accuracy in
later iterations, slow convergence speed and easy to be
trapped into local optimal solutions.

A simplified glowworm swarm optimization algorithm
(SGSO) is proposed to improve the performance of the
original GSO algorithm. Comparison shows good
performance in the field of function optimization problems
with the basic GSO, which embodies the ability of fast
convergence speed and strong searching ability in contrast to
PSO, BFO, ABC [25] and the fruit fly optimization
algorithm (FOA) [26, 27] which is a novel swarm intelligent
algorithm proposed by Pan in 2011, mimicking the foraging
behavior of fruit flies for searching global optimum.

The rest of this paper is organized as follows. Section II
introduces the basic concepts and principles of glowworm
swarm intelligent optimization algorithm. Section III
provides the simplified glowworm swarm optimization
algorithm and corresponding principles, location update,
elitism, boundary control, procedure of SGSO and
computation complexity. Results from experiments are
described in Section IV, where we test two groups of
experiments for SGSO. One is the comparison between the
basic GSO and SGSO in different dimensions, and the other
is the comparison among other intelligent algorithms in 30
dimensions. Finally, section V concludes the paper and
illustrates the future research.

I. GLOWWORM SWARM OPTIMIAZTION ALGORITHM

In GSO algorithm, the glowworm is more attractive when

M

2861

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

the luciferin value is greater, which guides other glowworms
to move towards it. Each glowworm has its dynamic
decision space, which contains glowworms with both values
of luciferin higher than itself and distance within its dynamic
decision radius. Glowworm updates its location to a
glowworm in its dynamic decision space in the light of
probability, and then, renews its decision space radius.

A. Procedure of GSO

The value of luciferin is related to both the value of
luciferin in the former iteration and objective function in the
current iteration.

Let)(txi represents the location of glowworm i in the t
iteration,))((txJ i denotes the value of objective function,
which is transferred to the value of luciferin denotes by)(tli
follows as:

))(()()()(txJtltl iii γρ +−−= 11 (1)
where ρ and γ are the luciferin decay constant and
enhancement constant respectively. Both of them range from
0 to 1.

Each glowworm has a dynamic decision space, which
contains its neighbors with higher luciferin values than its
own value and the distance between them within the
decision space radius.)(tNi is the set of neighborhood of
glowworm i at the t iteration, given by (2).)(tpij is deemed to
be the probability of glowworm i moving toward a neighbor
j in the t iteration, calculated by (3).

)}()();()(:{)(tltltrtdjtN ji
i

diji <<= (2)

∈

−
−

=

)(

)()(

)()(
)(

tNk
ik

ij
ij

i

tltl

tltl
tp (3)

where)(tr i
d denotes the dynamic decision space radius of

glowworm i in the t iteration, and)(tl j is the luciferin value
of glowworm j after the phase of probabilistic mechanism in
the t iteration.

Each glowworm updates its location according to (4).

−

−
+=+

)()(

)()(
)()(

txtx

txtx
stxtx

ij

ij
ii 1 (4)

where s is the step-size, represents the Euclidean norm
operator.

The radius of each glowworm dynamic decision space not
only depends on the current radius of dynamic decision
space, but also associates with the radial range of the
luciferin sensor deemed by sr . The update rule of each
glowworm dynamic decision space radius is given by:

)}})(()(,max{,min{)(tNntrrtr it
i

ds
i

d −+=+ β01 (5)

where β denotes the dynamic decision space parameter, tn

is a control parameter for neighbors in the space.)(tNi is the
number of neighbors in the dynamic decision space.

II. THE SIMPLIFIED GLOWWORM SWARM OPTIMIZATON

ALGORITHM

A. Principle of SGSO

In GSO, the running time is very long because of the
complex computing of decision space and probabilistic

chosen mechanism. What’s more, the location update of
glowworm is based on the dynamic decision space, which is
concerned with luciferin. Hence, SGSO is proposed in this
paper, the location update of glowworm is simplified only
based on the luciferin, which reduces the running time.
Meanwhile, the dynamic decision space transferres its local
search to global search using elitism, which enhances the
efficiency and the searching ability. The procedure of SGSO
adopts new policies including luciferin update, location
update and elitism.

B. Location Update

As noted above, glowworms location updating policy
depends on the dynamic decision spaces consisting of the
neighbors, which leads to the local optimum as well.
Furthermore, location update also relates to both the radius
of dynamic decision space and radial range of the luciferin
sensor, which takes much time.

We modify the movement of glowworm individuals and
simplify the movement of glowworms by adopting the
thought of probabilistic selection in simulated annealing
algorithm [28]. In other words, glowworms move towards to
the best glowworm with a probability, otherwise moves to
another direction. Each glowworm moves to the best
location, in which luciferin value is the minimum in the
group. The location update of each glowworm follows (6).

))()(()()(txtxtwxtx ibestii −+=+ α1 (6)

where α is the speed parameter. w is deemed to be the
inertia weight,)(txbest

 is the best location in the t iteration.

The calculation of α is given by:

−
−

<
=

−

−

otherwise
txJtxJ

txJtxJ

rifr

jj

jj
i

i

i

))((min))((max

))((min))((

.

1

211 50

α

α
α (7)

where r1 and r2 are random number generated in each
iteration. α is a constant variable in the inception of the
algorithms.

In each iteration, α relates to the former value of itself in
the iteration in advance. When r2 is less than 0.5, α is
connected with a random number changing in each iteration.
Otherwise, it relates to the best and worst fitness values in
the last iteration see (7).

As noted above, new location update can ensure the
location update which helps glowworms jump out of the
local optimum superiorly. Furthermore, it reduces the
calculation times which promotes the moving speeding of
glowworms.

C. Elitism

For the purpose of promoting the searching ability of the
optimum, each glowworm moves to the best location in all
iterations. The worst m glowworm locations with the largest
value of luciferin are instead of the best m glowworm
locations possessing the smallest value of luciferin in each
iteration.

2862

D. Boundary Control

Locations of glowworms will go beyond the domain of
the problems, so we need to limit them in the domain
problems to ensure the legality of the locations. Hence, when
the location exceeds the upper bound, the value is assigned
to the upper bound value, similarly when the location value
low than the lower bound, the value is assigned to the lower
bound value.

E. Procedure of SGSO

Step1 ： Initialize parameters including the scale of
glowworm group n, the dimension d, the maximal iteration

maxiter , ρ , γ ， the initial luciferin value)(0il , w, α ,the
boundary value of objective function upbnd and lwbnd, etc.

Step2：Luciferin update: transform objective function
value to luciferin value using (1).

Step3：Update the location of each glowworm based on
(6) and (7).

Step4：Calculate the value of objective function after
location update, replace the m worst locations using the m
best locations to accomplish the elitism mechanism.

Step5：Compare the value of the optimum and objective
function, if objective function value better than the optimal
exists, update the optimal value using the objective function
value.

Step6：If the t iteration is equal to maxiter , the algorithm
come to the end, else t=t+1, go to Step2.

F. Computation Complexity

In GSO, each glowworm experiences luciferin updating,
dynamic decision space and movement probability solving,
location updating. During the phase of dynamic decision
space solving, each glowworm compares all neighbors
within the radius. Probabilistic mechanism runs in location
update phase of each glowworm. The worst computation
complexity of sorting is)(2nΘ , and the best is))log((nnΘ .
Therefore, If the group scale of n, and the max iteration

maxiter , the worst computation complexity of GSO is
)(maxitern3Θ , the best is))log((maxiternn2Θ ; While, the SGSO

omits the computation for solving dynamic decision space
and its radius, the computation complexity is)(maxitern2Θ in
the worst case, and))log((maxiternnΘ in the best case.

III. EVALUATION AND ANALYSIS OF EXPERIMENTAL

RESULTS

The algorithms are coded in Matlab7.13 and experiments
were executed on Pentium dual-core processor 3.10 GHz PC
with 4G RAM.

Two experiments are tested in this section. Comparison
between SGSO and the basic GSO to testify the performance
of SGSO for benchmark functions in 10, 20, 30 dimensions,
respectively. After that, we compare SGSO with some
famous and recent swarm intelligent algorithms, such as
PSO, BFO, ABC and FOA. Taking the best value, mean
value and running time into consideration for the
experiments.

A. Parameter Discussion

In all algorithms, upbnd and lwbnd are equal to the upper
and lower bounds of the objective function domain
respectively. 9 benchmark functions used for experiments
are shown in Table I. Each benchmark function has the
optimum of 0. Functions f1 - f4, f9 are unimodal functions,
while the others are multimodal functions. The parameters
setting for the swarm intelligent algorithms see Table II.

TABLE I. BENCHMARK FUNCTIONS

ID Function equation Domain

f1
−

=
+ −+−

1

1

222
1 1100

d

i
iii xxx))()((±50

f2
=

d

i
ix

1

2 ±5.12

f3
2

1 1

= =

d

i

i

j
jx)(±100

f4
=

+
d

i
ixx

2

22
1

610 ±100

f5
=

+−
d

i
ii xx

1

2 10210))cos((π ±5.12

f6
−

−+ ==

−
d

i
i

d

i
i x

d
x

d
eee 11

2 2
11

20

2020
)cos(. π

±32

f7 1
4000

1

11

2 +− ∏
==

d

i

i
d

i
i

i

x
x)cos(±5.12

f8 []150 102
1

2

1

2502
1

2 +++ +
=

+))（sin()（ ..
ii

d

i
ii xxxx ±100

f9 [)10
1

4 ,randix
d

i
i +

=

 ±1.28

TABLE II. PARAMETERS OF ALGORITHMS

Algorithm Parameters

PSO n = 50, w = 0.8, 21 =c , 22 =c

BFO n = 20, cn = 10, sn = 5, rn = 2, rc = 0.025

GSO
n = 20, ρ = 0.4, γ = 0.6,)(0il = 4, tn = 4,

 dr = 50, sr = 50

FOA n = 20

SGSO w=0.8，α =0.4, m=3

B. Comparison between GSO and SGSO

We compare SGSO with the basic GSO to testify the
performance. The optimal value, average value and average
running time are calculated after 300 independent
experiments with maximal iteration 300.

Performances of running in 30 dimensions and 300
iterations are shown respectively in Fig.1. Due to the
objective function values close to 0, which cannot
distinguish clearly, logs base e are deal with the vertical
function values. Moreover, considering on either the
convergence speed or accuracy, SGSO performs
demonstrably superior to GSO. The four stages and
probabilistic mechanism in dynamic decision space of GSO
takes a long time to give rise to the longest running time and
the worst accuracy for solutions; SGSO omits the calculation

2863

for dynamic decision space and probabilistic mechanism and
meanwhile adopts elitism with little complexity, which lead
to the high accuracy and searching speed of the optimum.

From Table III to Table V, we can see that SGSO shows
good performance in both precision and efficiency while the
basic GSO performs worse. From the perspective of values
of objective functions, SGSO shows good performance in

both running time and the solutions. GSO changes obviously
in different dimensions, but the running time remains
approximately in different dimensions; SGSO reaches the
real optimum for f2 to f8 regardless of dimensions. Although
dimensions changing from 10 to 30, the optimum of SGSO
varies tiny, as well as the running time.

Fig. 1. Comparison of searching curves for f1 to f9 between GSO and SGSO

TABLE III. COMPARISON OF GSO AND SGSO IN 10 DIMENSIONS

f Algorithm Best Mean Running time(s)

f1
GSO 1.4456e+003 1.4982e+003 0.8680
SGSO 0.0204 0.0361 0.0575

f2
GSO 8.3816 10.3736 0.8597
SGSO 0 1.1254e-310 0.0555

f3
GSO 31.8760 53.8612 0.8674
SGSO 0 3.2784e-315 0.0761

f4
GSO 44.4378 48.3262 0.7421
SGSO 0 7.1634e-299 0.0586

f5
GSO 38.4087 41.6258 0.7428
SGSO 0 0.0017 0.0508

f6
GSO 3.9220 4.2801 0.8174
SGSO -8.8818e-016 -8.8818e-016 0.1063

f7 GSO 0.2528 0.6919 1.3480

SGSO 0 1.7718e-008 0.2160

f8
GSO 0.1298 0.3982 1.3463
SGSO 0 1.0495e-079 0.2481

f9
GSO 0.0158 0.0454 1.3201
SGSO 3.1842e-005 2.8543e-004 0.1842

TABLE IV. COMPARISON OF GSO AND SGSO IN 20 DIMENSIONS

f Algorithm Best Mean Running time(s)

f1
GSO 3.7212+003 4.0139+003 0.9650
SGSO 1.3793 1.4021 0.0539

f2
GSO 11.7586 32.8547 1.0261
SGSO 0 2.0543-309 0.0543

f3
GSO 140.7542 228.8223 0.9390
SGSO 0 3.2527e-311 0.0992

f4
GSO 36.1046 44.1825 0.9009
SGSO 0 4.2742e-310 0.0603

0 100 200 300
0

1

2

3

4
x 105

Iteration

O
pt

im
a

SGSO
GSO

0 100 200 300
0

50

100

150

200

Iteration

O
pt

im
a

SGSO
GSO

0 100 200 300
0

1000

2000

3000

4000

Iteration

O
pt

im
a

SGSO
GSO

0 100 200 300
0

1

2

3
x 104

Iteration

O
pt

im
a

SGSO
GSO

0 100 200 300
0

200

400

600

Iteration

O
pt

im
a

SGSO
GSO

0 100 200 300
0

5

10

15

20

Iteration

O
pt

im
a

SGSO
GSO

0 100 200 300
0

0.5

1

1.5

Iteration

O
pt

im
a

SGSO
GSO

0 100 200 300
0

10

20

30

Iteration

O
pt

im
a

SGSO
GSO

0 100 200 300
0

0.2

0.4

0.6

0.8

Iteration

O
pt

im
a

SGSO
GSO

2864

f5
GSO 133.2175 142.1874 0.8841
SGSO 0 0.0023 0.0567

f6
GSO 4.1808 5.3152 0.9486
SGSO -8.8818e-016 -8.8818e-016 0.1027

f7
GSO 0.5904 0.8217 1.3217
SGSO 0 2.2561e-009 0.2198

f8
GSO 0.5062 1.2323 1.3945
SGSO 0 4.4237e-078 0.2171

f9
GSO 0.0298 0.0445 1.3001
SGSO 1.2016e-005 1.4392e-004 0.1765

TABLE V. COMPARISON OF GSO AND SGSO IN 30 DIMENSIONS

f Algorithm Best Mean Running time(s)

f1
GSO 3.9215e+003 9.0725+003 0.9252
SGSO 8.2845 9.8914 0.0575

f2
GSO 27.1790 35.7654 0.9617
SGSO 0 8.7145e-310 0.0572

f3
GSO 327.2692 452.2723 0.9639
SGSO 0 8.1278e-310 0.1451

f4
GSO 58.9423 71.2306 0.9821
SGSO 0 4.2748e-310 0.0627

f5
GSO 244.2684 248.3783 0.8823
SGSO 0 0.0071 0.0574

f6 GSO 5.7349 7.2853 0.9696
SGSO -8.8818e-016 -8.8818e-016 0.1173

f7
GSO 0.5985 0.8711 1.1627
SGSO 0 2.9032e-008 0.2231

f8
GSO 2.0431 8.3309 1.3979
SGSO 0 6.4709e-078 0.2679

f9
GSO 0.0423 0.0692 1.3789
SGSO 8.0662e-006 4.3982e-005 0.1726

C. Comparison with Other Swarm Intelligent Algorithms

We compare SGSO with PSO, BFO, ABC and FOA for
the 9 benchmark functions. Due to the convergence speed is
very slow in FOA, here we set the maximal iteration to 1000
and run 300 times to observe the results for f1 to f9
benchmark functions in 30 dimensions.

Table VI shows the best and mean values of the
algorithms, as well as the running time for benchmark
functions f1 to f9 in 30 dimensions. As we know, PSO is an
excellent algorithm which applies to almost every scientific
field. Results show that PSO performs worse than FOA and
SGSO from Table VI in respect of both precision and
running time; BFO performs seldom well for the values,
nevertheless, the running time is the highest because of the
three behavior in foraging; ABC takes less time than BFO
but still a little longer than others, the optimum is better than
BFO, but worse than the others; FOA takes the lowest
running time on account of its simple mechanism. Although
FOA performs better than PSO, BFO and ABC taking the
least running time, as well as the smallest deviation by
comparison with others, the values of the best and mean are
larger than SGSO; SGSO performs well for the best, mean
values and the running time in contrast to other algorithms.
With the tiny deviation, SGSO owns highest robustness.
And furthermore, SGSO has the low time cost comparing
with others in functions f1 to f9 although the running time is a
bit longer than FOA, but far less than the other algorithms.

TABLE VI. COMPARISON WITH OTHER ALGORITHMS IN 30
DIMENSIONS

f Algorithm Best Mean Running time(s)

f1

PSO 31.0285 49.4807 0.7931
BFO 43.4631 1.4331e+003 7.1552
ABC 27.7962 28.6873 2.9437
FOA 28.2173 28.7338 0.2338
SGSO 8.0789 16.2837 0.3779

f2

PSO 0.2219 0.6284 0.7513
BFO 27.8451 29.8431 5.9817
ABC 3.3128 4.8721 2.5912
FOA 1.0150e-004 2.0982e-004 0.2098
SGSO 0 1.0905e-007 0.3651

f3

PSO 2.0701 15.9722 1.2205
BFO 0.5419 108.6321 14.1602
ABC 0.0203 0.0497 7.1757
FOA 0.0012 0.0015 0.4081
SGSO 0 8.3895e-007 0.6003

f4

PSO 4.5567 20.9914 0.8457
BFO 3.4542e-005 40.0019 7.6265
ABC 0.0032 0.0038 2.7734
FOA 2.6782 2.6976 0.2697
SGSO 0 1.2861e-004 0.3982

f5

PSO 49.2173 77.6424 0.8698
BFO 102.8421 137.9542 7.9631
ABC 0.1692 0.4624 2.6402
FOA 0.0210 0.0231 0.2627
SGSO 0 1.2536e-004 0.3740

f6

PSO 0.8998 1.5890 1.2047
BFO -5.2288e-004 2.5243 14.6496
ABC 2.0182 3.1521 7.4484
FOA 0.0072 0.0079 0.3202
SGSO -8.8818e-016 -8.8818e-016 0.5754

f7

PSO 0 0 1.1103
BFO 0.0414 2.0124 39.6883
ABC 0 1.0218 2.6551
FOA 7.2976e-006 7.6892e-006 0.4339
SGSO 0 0 0.7038

f8

PSO 0.0754 0.1358 1.6925
BFO 67.5995 79.4626 38.9332
ABC 17.6547 27.3869 3.5812
FOA 2.0480 2.3768 0.6536
SGSO 0 0.0297 0.5472

f9

PSO 8.3267e-005 1.1154e-004 1.0839
BFO 7.4369e-004 0.0025 12.2972
ABC 5.7077e-006 0.0001 2.6599
FOA 1.2551e-007 1.0227e-005 0.3473
SGSO 0 5.0498e-006 0.4950

Comparisons of searching process among BFO, ABC,
FOA and SGSO for f1 to f9 in 30 dimensions are shown in
Fig. 2 to Fig. 10. Because of the similar values for the
optimum, we plot the searching curves by evaluating the
logarithm of function values for better observing. SGSO and
PSO converge fast and the value comes to 0 before the 40
iterations, hence its curve is broken in Fig.8. Due to the
characteristic of f9

PSO converges fast but the optimum is much worse than
FOA and SGSO; BFO converges slower than PSO, the
optimum is as worse as PSO; ABC gains the best optimum
to 0 in f7, the searching speed is less than SGSO; FOA have
the worst convergence, its searching curves are not
convergent finally, although the optimum is smaller than it
in PSO, BFO and ABC taking the second place; SGSO
performs best in convergence speed. Its optimum comes to
the minimum which shows its good searching ability. In
short, SGSO is a brilliant algorithm for searching the
optimum with fast convergence speed.

2865

Fig. 2. Searching curves for f1

Fig. 3. Searching curves for f2

Fig. 4. Searching curves for f3

Fig. 5. Searching curves for f4

Fig. 6. Searching curves for f5

Fig. 7. Searching curves for f6

0 200 400 600 800 1000
-20

-15

-10

-5

0

5

10

15

20

Iteration

O
pt

im
a

SGSO
PSO
BFO
ABC
FOA

0 200 400 600 800 1000
2

3

4

5

6

7

8

9

10

11

Iteration

O
pt

im
a

SGSO
PSO
BFO
ABC
FOA

100 101 102 103
-1

0

1

2

3

4

5

Iteration

O
pt

im
a

SGSO
PSO
BFO
ABC
FOA

0 200 400 600 800 1000
-10

-5

0

5

10

15

Iteration

O
pt

im
a

SGSO
PSO
BFO
ABC
FOA

0 200 400 600 800 1000
-15

-10

-5

0

5

10

15

20

Iteration

O
pt

im
a

SGSO
PSO
BFO
ABC
FOA

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

Iteration

O
pt

im
a

SGSO
PSO
BFO
ABC
FOA

2866

Fig. 8. Searching curves for f7

Fig. 9. Searching curves for f8

Fig. 10. Searching curves for f9

IV. CONCLUSION

A simplified glowworm swarm optimization algorithm
was proposed in this paper, which improved the basic GSO

in that: (1) omitted the dynamic decision space and
probabilistic mechanism for selection, reduced the time
complexity of the algorithm and enhanced the efficiency; (2)
modified the location update mechanism, the location update
transferred based on dynamic decision space to both the
optimal and the searching space for solutions; (3) adopt the
elitism strategy which makes the excellent glowworms to the
next iteration. Results on benchmark function optimization
experiments show that SGSO performs much better than the
basic GSO in searching ability and the running time, but also
than other recent swarm intelligent algorithms such as PSO,
BFO, ABC and FOA. As can be seen from the experimental
results, SGSO owns the best mean values but not the best
minimum values for all problems. We intend to ameliorate
the performance and apply SGSO to other problems like
clustering to test the performance in future.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (61100164, 61173190), Scientific
Research Start-up Foundation for Returned Scholars,
Ministry of Education of China ([2012]1707) and the
Fundamental Research Funds for the Central Universities,
Shaanxi Normal University (GK201402035, GK201302025).

REFERENCES
[1] J. Kennedy, R.C. Eberhard, “Particle swarm optimization,” in

Proceedings of the First IEEE International Conference on Neural
Networks, Perth, Australia, IEEE Press, 1995, pp.1942-1948.

[2] K.M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control,” IEEE Control Systems Magazine, vol.22,
pp. 52-67, 2002.

[3] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Erciyes University, Engineering Faculty, Computer
Engineering Department, Erciyes, Turkey, Tech. Rep.TR06, 2005.

[4] Manoj Thakur, “A new genetic algorithm for global optimization of
multimodal continuous functions,” Journal of Computational Science,
vol. 5, no. 2, pp. 298-311, March 2014.

[5] Ramin Barati, “A novel approach in optimization problem for research
reactors fuel plate using a synergy between cellular automata and
quasi-simulated annealing methods,” Annals of Nuclear Energy, vol.
70, pp. 56-63, August 2014.

[6] Anupam Yadav, Kusum Deep, “An efficient co-swarm particle swarm
optimization for non-linear constrained optimization,” Journal of
Computational Science, vol. 5, no. 2, pp. 258-268, March 2014.

[7] Michalis Mavrovouniotis, Shengxiang Yang, “Ant colony
optimization with immigrants schemes for the dynamic travelling
salesman problem with traffic factors”, Applied Soft Computing, vol.
13, no. 10, pp. 4023-4037, October 2013.

[8] Kaushik Kumar Bhattacharjee, S.P. Sarmah, “Shuffled frog leaping
algorithm and its application to 0/1 knapsack problem,” Applied Soft
Computing, vol. 19, pp. 252-263, June 2014.

[9] Satyasai Jagannath Nanda, Ganapati Panda, “A survey on nature
inspired metaheuristic algorithms for partitional clustering,” Swarm
and Evolutionary Computation, vol. 16, pp. 1-18, June 2014.

[10] Ruochen Liu, Yangyang Chen, Licheng Jiao, Yangyang Li, “A
particle swarm optimization based simultaneous learning framework
for clustering and classification, ” Pattern Recognition, vol. 47, no. 6,
pp. 2143-2152, June 2014.

[11] Vijay Kumar, Jitender Kumar Chhabra, Dinesh Kumar, “Automatic
cluster evolution using gravitational search algorithm and its
application on image segmentation,” Engineering Applications of
Artificial Intelligence, vol. 29, pp. 93-103, March 2014.

[12] Mostafa Z. Ali, Noor H. Awad, “A novel class of niche hybrid
Cultural Algorithms for continuous engineering optimization,”
Information Sciences, vol. 267, pp. 158-190, May 2014.

0 200 400 600 800 1000
-40

-35

-30

-25

-20

-15

-10

-5

0

Iteration

O
pt

im
a

SGSO
PSO
BFO
ABC
FOA

0 200 400 600 800 1000

-10

-5

0

5

10

Iteration

O
pt

im
a

SGSO
PSO
BFO
ABC
FOA

0 200 400 600 800 1000
-4

-2

0

2

4

6

8

10

Iteration

O
pt

im
a

SGSO
PSO
BFO
ABC
FOA

2867

[13] Mostafa A. Elhosseini, Amira Y. Haikal, “Modified hybrid algorithm
for process optimization,” Applied Mathematics and Computation, vol.
232, pp. 1209-1224, April 2014.

[14] Rasul Enayatifar, Abdul Hanan Abdullah, Ismail Fauzi Isnin, “Chaos-
based image encryption using a hybrid genetic algorithm and a DNA
sequence,” Optics and Lasers in Engineering, vol. 56, pp. 83-93, May
2014.

[15] K.N. Krishnanand, D. Ghose.D, “Detection of multiple source
location using a glowworm metaphor with applications to collective
robotics,” in IEEE swarm Intelligence Symposium, Pasadena, CA,
June 2005, pp. 84–91.

[16] K.N. Krishnanand, D. Ghose, “Glowworm swarm optimization for
simultaneous capture of multiple local optima of multimodal
functions,” Swarm Intelligence, vol.3, no.2, pp. 87–124, June 2009.

[17] Bin WU, Cunhua QIAN, Weihong NI, Shuhai FAN, “The
improvement of glowworm swarm optimization for continuous
optimization problems,” Expert Systems with Applications, vol. 39,
no. 7, pp. 6335-6342, June 2012.

[18] Krishnanand, K.N., Ghose, D, “A glowworm swarm optimization
based multi-robot system for signal source localization,” in: Design
and Control of Intelligent Robotic Systems - Studies in Computational
Intelligence, 2009, pp. 49–68.

[19] K.N. Krishnanand, P. Amruth, M.H. Guruprasad, Sharschchandra V.
Bidargaddi, D. Ghose, “Glowworm-inspired robot swarm for
simultaneous taxis toward multiple radiation sources,” in: Proceedings
of IEEE International Conference on Robotics and Automation,
Orlando, Florida, May 2006, pp. 958–963.

[20] K.N. Krishnanand, P. Amruth, M.H. Guruprasad, S.V. Bidargaddi, D.
Ghose, “Rendezvous of glowworm-inspired robot swarms at multiple
source locations: A sound source based real-robot implementation,” in:
Ant Colony Optimization and Swarm Intelligence, Lecture Notes in

Computer Science, LNCS, vol. 4150, Springer Verlag, 2006, pp. 259–
269.

[21] Wen-Hwa LIAO, Yucheng KAO, Ying-Shan Li, “A sensor
deployment approach using glowworm swarm optimization algorithm
in wireless sensor networks,” Expert Systems with Applications,
vol.38, pp. 12180-12188, September 2011.

[22] Sumedh Mannar, S. N. Omkar, “Space suit puncture repair using a
wireless sensor network of micro-robots optimized by Glowworm
Swarm Optimization,” Journal of Micro-Nano Mechatronics, vol.6,
no.3-4, pp.47-58, June 2011.

[23] Yongquan ZHOU, Zhengxin HUANG, Hongxia LIU, “Discrete
glowworm swarm optimization algorithm for TSP problem,” ACTA
ELECTRONICA SINICA, vol.40, no.6, pp.1164-1170, June 2012.

[24] Qiaoqiao GONG, Yongquan ZHOU, Qifang LUO, “Hybrid artificial
glowworm swarm optimization algorithm for solving multi-
dimensional knapsack problem,” in 2011 International Conference on
Advanced in Contorl Engineering and Information Science, vol.15,
Dalian, 2011, pp. 2880-2884.

[25] Xiujuan LEI, Xu HUANG, Aidong ZHANG, “Improved artificial bee
colony algorithm and its application in data clustering,” in: the IEEE
Fifth International Conference on Bio-Inspired Computing, Changsha,
2010, pp. 514-521.

[26] Wen-Tsao PAN, Fruit Fly Optimization Algorithm. Taipei: Tsang Hai
Book Publishing Co, 2011.

[27] Wen-Tsao PAN, “A new evolutionary computation approach: fruit fly
optimization algorithm,” in: 2011 conference of digital tech-nology
and innovation management, Taipei, 2011.

[28] R. L. YANG, “convergence of the simulated annealing algorithm for
continuous global optimization,” Journal of Optimization Theory and
Applications, vol. 104, no. 3, pp 691-716, March 2000.

2868

