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Abstract—The quantum-inspired evolutionary algorithm
(QEA) uses several quantum computing principles to optimize
problems on a classical computer. QEA possesses a number of
quantum individuals, which are all probability vectors. They
work well for linear problems but fail on problems with strong
interactions among variables. Moreover, many optimization prob-
lems have multiple global optima. And because of the genetic
drift, these problems are difficult for evolutionary algorithms
to find all global optima. Local and global migration that
QEA uses to synchronize different individuals prevent QEA
from finding multiple optima. To overcome these difficulties,
we proposed a quantum-inspired evolutionary algorithm with
linkage learning (QEALL). QEALL uses a modified concept-
guide operator based on low order statistics to learn linkage. We
also replaced the migration procedure by a niching technology
to prevent genetic drift, accordingly to find all global optima
and to expedite convergence speed. The performance of QEALL
was tested on a number of benchmarks including both unimodal
and multimodal problems. Empirical evaluation suggests that the
proposed algorithm is effective and efficient.

I. INTRODUCTION

The quantum-inspired evolutionary algorithm (QEA) was
firstly proposed by Han and Kim [1]. This algorithm was
inspired by quantum computing and adopted some principles
and concepts of quantum computing to optimize problems
on a classical computer. Over the past decade, there has
been considerable research in QEA [2]. But there are still
some pending issues to be studied. Firstly, QEA uses a
simple probabilistic model which can not reflect the high
order relationship between variables. QEA employs quantum-
bit individual (Q-individual) instead of other representations to
constitute population. Each Q-individual is in fact equivalent to
probability vector as used in some estimation of distribution
algorithms (EDA) like PBIL [3] and cGA [4]. Researchers
have demonstrated that QEA belongs to univariate EDAs [5],
[6]. Secondly, QEA is unable to deal with problems with
multimodal landscape, especially symmetric problems. QEA
uses a migration method to exchange and share information
between individuals, and this makes all individuals converge
to the same solution.

For the first issue, we incorporated the concept-guided
combination (cg-combination) operator into QEA framework.
The cg-combination operator firstly proposed by Emmendorfer
and Pozo [7] was originally used on probability vector. We
firstly demonstrated that a Q-individual was in fact a probabili-
ty vector. Then the cg-combination was applied to Q-individual
under the assumption that each Q-individual stood for a cluster.

By using the cg-combination, the proposed algorithm is able
to learn linkage.

For the second issue, we removed the migration method
that promotes genetic drift in QEA. Genetic drift, which is the
inherent quality of the evolutionary algorithms, is the change in
frequency of gene in population due to selection operation. The
population will finally evolve into one of the basins randomly.
This tendency leads evolutionary algorithms which have no
particular technology for multimodal problems to converge to
only one optimal solution.

Additionally, the existence of several global optima does
not only weaken the effectiveness but also reduce the efficien-
cy of evolutionary algorithms. Most evolutionary algorithms
guide the exploration of the search space by assembling
different parts of solutions. But in multimodal problems, espe-
cially symmetric problems, combining solutions from different
basins without proper guidance often results in poor solutions.
We addressed this issue with the introduction of a nearest
replacement strategy that is similar with the idea of crowding
method which is a classical niching technology.

The contribution of this paper is as follows: firstly, by
incorporating QEA framework and cg-combination operator,
we enable QEA to learn linkage quickly and efficiently. The
experiment result of unimodal problems indicates that our
proposed QEALL outperforms BOA. Secondly, we removed
the migration method and employed niching technology, that
is a nearest replacement strategy into QEA to prevent genetic
drift, so as to find all the global optima and to accelerate the
convergence speed. This is the first algorithm based on QEA
framework that can solve multimodal problems to the best of
our knowledge.

In the remainder of this paper, we briefly review previous
studies relevant to this work in section II. In section III, the
proposed algorithm is described completely. In section IV
and section V, the test problems and experimental results of
unimodal and multimodal are reported respectively. Finally,
conclusions are in section VI.

II. PRELIMINARIES

This section is a concise introduction to the basic tech-
nology used in our proposed algorithm. The fundamental
principles of QEA are introduced. The relationship of QEA
and EDA is discussed and the concept-guided combination (cg-
combination) operator is described. Niching methods are also
described briefly.
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A. Quantum-Inspired Evolutionary Algorithm

Quantum computation is the study of handling information
using a quantum mechanical system. Narayanan and Moore
[8] attempted to employ concepts and principles of quantum
mechanics like interference crossover in the genetic algorithms
for the first time. That work indicated the potential of incor-
porating the concepts and principles of quantum computing
into evolutionary computation. Han and Kim [9] proposed the
genetic quantum algorithm and the concept of quantum-bit
individual (Q-individual), rotation gates was presented. Af-
terwards, the quantum-inspired evolutionary algorithm (QEA)
was proposed [1]. QEA uses a migration method to exchange
the result found by different Q-individual. Han and Kim [1],
[9] used QEA to solve 0-1 knapsack problem compared with
classical genetic algorithm and the results demonstrated the
effectiveness and capabilities of the algorithm.

The major difference between classical evolutionary algo-
rithm and QEA is the basic unit stored information adopted
in them. Binary digit (bit) used in classical evolutionary
algorithms can be one of the two states, ’0’ or ’1’. But
quantum-bit (qubit) of QEA can be a superposition of two
states.

|Ψ〉 = α|0〉+ β|1〉 (1)

where α and β are complex numbers in quantum mechanic.
The moduli of α and β, |α| and |β| are real numbers and
denote the probability of getting the corresponding state with
the normalizing condition |α|2+ |β|2 = 1. The state of a qubit
can be considered a point or a vector on the unit circle in the
first quadrant. To modify the qubit, quantum gate (Q-gate) was
proposed. It is actually a rotate operator on a qubit and defined
as

U(Δθ) =

[

cos(Δθ) − sin(Δθ)
sin(Δθ) cos(Δθ)

]

(2)

Q-gates change the α and β under normalizing condition as
follows

[

αt+1
i

βt+1
i

]

=

[

cos(Δθ) − sin(Δθ)
sin(Δθ) cos(Δθ)

] [

αt
i

βt
i

]

(3)

The modified rotation gates named Hε gate, were proposed
by Han and Kim [10]. Hε gates prevent Q-individual from
converging to 0 or 1 from which case the Q-individual cannot
escape the state by itself. Specifically, to prevent the qubit
evolves to state |0〉 or |1〉, that is, α = 0, β = 1 or α =
1, β = 0, the α and β are confined in the interval [ε,

√
1− ε2]

as shown in Fig.1 . Experiments on numerical problems and
combinatorial problems demonstrated that the QEA using Hε

gate could get better results with respect to the best results
found [10].

Q-individual consists of qubits, so each quantum individual
can be written in the form as an array of qubits:

Qj(t) =

[

αt
1 αt

2 . . . αt
d

βt
1 βt

2 . . . βt
d

]

(4)

Because the relation of α and β, a quantum individual is
equivalent to a probability vector with pi = β2

i .

PV (t) =
[

|βt
1|2 |βt

2|2 . . . |βt
d|2

]

(5)

As we can see, each quantum individual is a low order proba-
bilistic model. In quantum mechanic, when observe or measure
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Fig. 1. The Q-gate in QEA Framework

the qubit, the qubit will ”collapsed” to one of its eigenstate,
that is 0 or 1 with probability α2 and β2 respectively. To get
the binary code of a solution to the problem, each Q-individual
should be observed. In QEA, the sampled individual from Q-
individual is called collapsed state. The best result is stored as
an attractor to guide the search.

B. QEA is a Multimodel Univariate EDA

In the evolutionary computation community, researchers
have investigated a kind of algorithm called probabilistic
model-building genetic algorithms (PMBGAs), or estimation
of distribution algorithms (EDAs) [11]. EDAs evolve a proba-
bilistic model and use it to guide the search instead of using a
population as genetic algorithm does. Crossover operator and
mutation operator are removed because they cannot preserve
building blocks. According to the different types of probabilis-
tic models adopted, the EDAs are divided into three categories:
univariate EDA, bivariate EDA and multivariate EDA. Repre-
sentative algorithms are population-based incremental learning
(PBIL) [3], compact genetic algorithm (cGA) [4], extended
compact genetic algorithm (ECGA) [12] and the Bayesian
optimization algorithm (BOA) [13], to name a few.

Zhou and Sun [5] proposed a Quantum-inspired genetic
algorithm with only one chromosome (SCQGA) and cast
this algorithm into the framework of the EDAs. Platel et
al. [6] integrated QEA into the class of EDAs in a more
systematical way and regarded QEA as a multimodel EDA. As
the probabilistic model used by QEA is Q-individual which
is essentially a probability vector just like PBIL and cGA
employed, the QEA belongs to univariate EDA.

Univariate EDA is simple and efficient, but an oversimple
probabilistic model can not handle problems like trap-k where
variables have complex relations effectively. The development
of EDA accompanied by the increase of complexity of the
probabilistic model. The merit and demerit of employing com-
plicated probabilistic models are plain to see. The more com-
plex probabilistic model can express the relationship between
variable more precisely. However, complicated probabilistic
model requires a significant amount of computing resources.
To learn linkage with less computing resources, Emmendorfer
and Pozo [7], [14]–[16] proposed an operator called concept-
guided combination using ideas from information theory. This
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operator is computationally efficient while powerful in learning
linkage because it uses a low order statistics. The main
idea of the concept-guided combination operator is that we
should choose the most informative parent for each gene when
combining two PVs into a temp PV. This operator enable
PVs which are simple probabilistic models to detect building
blocks.

C. Niching Method

Multimodal problems are difficult for evolutionary algo-
rithms. Niching method [17] is proposed for evolutionary com-
putation to find multimodal optima. The sharing [18], clearing
[19], crowding [20] are representative niching methods. Cluster
analysis or clustering is also used to partition population
into different niches [17]. There are works having integrated
the EDAs and niching method in order to solve multimodal
problems and improve effectiveness. Peña et al. [21] proposed
the unsupervised estimation of Bayesian network algorithm
(UEBNA). Emmendorfer and Pozo [7], [14]–[16] proposed ϕ-
PBIL combining PBIL and clustering technique. The islands
model is another method for multimodal problems. It is
inspired by organic evolution. In islands model, the population
is divided into multiple group which evolve independently
for some generations and then exchange individuals among
different groups. QEA framework is similar to islands model,
but the global migration strategy promotes genetic drift and
weakens the capability of finding multiple optima.

In addition to this, niching method could promote popula-
tion diversity and at the same time increase the efficiency [22].
Chuang and Hsu [22] put forward a multivariate multimodel
approach equip a heuristic mechanism to choose the number
of models. Comparing to ECGA, the multivariate multimodel
approach could obtain more global optima and reduce the
number of generations to converge.

III. QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM
WITH LINKAGE LEARNING

In this section, our proposed algorithm, quantum-inspired
evolutionary algorithm with linkage learning is described in
detail.

A. Framework of QEALL

The outline of the algorithm is depicted as Fig.2. The
quantum population is made up of units having three parts: a
Q-individual Qi(t) and its corresponding collapsed state Ci(t)
and the attractor Ai(t). There are two ways to generate a
collapsed state, one is to directly sample from Q-individual,
the other way is to cross-breed using cg-combination operator.
The attractors store the best collapsed states ever found. The
Q-gate modifies Q-individual towards the attractor based on
the condition of the attractor and the collapsed state.

Algorithm 1 gives pseudocode of the QEALL and the
details of the procedure are described as follows:

Lines 1-5 are initialization. Firstly, α and β of the Q-bits
in Q-individual are initialized with 1/

√
2 for all. Secondly, it

would observe the state of Q to get the collapsed state C,
then evaluate C. Attractors are copies of the corresponding

Unit 1 Unit n

Q-GateQ-Gate

Directly Collapse and 
Mixedly Collapse with Niching 

...

...

...

...

Q-Population

Fig. 2. Outline of Quantum-Inspired Evolutionary Algorithm with Linkage
Learning.

collapsed state for initialization. Finally, the matrix of infor-
mation measure W is initialized to a zero matrix, because that
all Q-bits are same and that means they have the same amount
of information.

Lines 6-16 are the main loop. The termination condition
can be set to be the maximum iterations, the number of
convergent Q-individuals or other criterion defined by user.

Algorithm 1 QEA with Linkage Learning
1: initialize Q ≡ (Q1, Q2, · · · , QN )
2: make C ≡ (C1, C2, · · · , CN ) by observing the state of Q
3: evaluate C
4: A← C
5: compute W = (wi,j) = (0)
6: while not termination-condition do
7: generate(Q, C), see details from Algorithm 2
8: for i = 1, 2, . . . , N do
9: if f(Ai) better than or equal to f(Ci) then

10: updateModel (Qi, Ci, Ai)
11: else
12: Ai ← Ci

13: end if
14: end for
15: compute W = (wi,j) using Equation (12)
16: end while

17: procedure UPDATEMODEL(Qi, Ci, Ai)
18: for j = 1, 2, . . . , d do
19: if Aj

i �= Cj
i then

20: if Aj
i = 1 then

21: Qj
i ← rotate Δθ using Equation (3)

22: else
23: Qj

i ← rotate −Δθ using Equation (3)
24: end if
25: end if
26: end for
27: end procedure

2469



Line 7 is the heart of the algorithm as shown in Algorithm
2. The generation of C in the light of Q includes two parts:
N × pc collapsed states were created by cg-combination
operator and the rest N×(1−pc) collapsed states were directly
created from observing the corresponding Q-individual. When
a collapsed state was generated by observing the temporary
Q-individual assembled by cg-combination operator from two
Q-individuals selected randomly, it would replace the more
similar one of two collapsed state corresponding . By using the
cg-combination operator, the QEALL is able to learn linkage
and identify building blocks. The nearest replacement method
also belongs to this procedure. We will explain the details of
the generation procedure of collapsed states C in section III-B.

Lines 8-14 are the loop of the update process. For each
unit, either the probabilistic model, that is the Q-individual Qi

or the attractor Ai will be updated based on the fitness of Ai

and Ci. The fitness of Ai and Ci are denoted by f(Ai) and
f(Ci). If f(Ai) is better than or equal to f(Ci), that means
the attractor is better than the collapsed state, we should let the
attractor remain unchanged and use it to guide the Q-individual
by means of Q-gate. Otherwise, we should replace the attractor
with the collapsed state. The model updating procedure is
shown in the subprocedure indicated by lines 17-27, it gives
the concrete steps about how to update the Q-individual. The
Aj

i and Cj
i are the j-th bit of the attractor Ai and collapsed

state Ci, respectively.

Line 15 expresses the recalculation of information measure
matrix W . The element of W , wij , is calculated based on
Equation (12) and will be described in the next subsection.

B. Generative Process of Collapsed States

The generative process of collapsed states is a key step of
the QEALL. The shortcoming of QEA is that the Q-individual
is too simple for complex problem and cannot reveal the
relation of variables. The cg-combination operator is designed
for probability vector and it gives PV the capacity of learning
linkage. This operator recombines two PVs into a new PV
by selecting the most informative parts. We introduce the cg-
combination operator into the QEA framework to give QEA
the ability of learning linkage. The pseudocode of the gener-
ative process of a collapsed state C is shown as Algorithm 2
and the detail of the procedure is described as follows.

Algorithm 2 Generating Procedure
1: procedure GENERATE(Q, C)
2: for j = 1, 2, . . . , N × pc do
3: Qr, Qs ← select two Q-individuals randomly
4: Qtemp ← create using concept-guided combination
5: Ctemp ← make by observing the state of Qtemp

6: if DistH (Cr, Ctemp) < DistH (Cs, Ctemp) then
7: Cr ← Ctemp

8: else
9: Cs ← Ctemp

10: end if
11: end for
12: make the rest of C by observing corresponding Q
13: end procedure

1) Details of the Generative Process: In QEALL, there
are two ways to generate the collapsed states: one is to use
the concept-guided combination operator , the other way is by
observing the corresponding Q-individual directly. Parameter
pc in line 2 determines the ratio between mixedly and directly
collapsed states in population. N × pc is the number of
collapsed states that should be created using cg-combination
operator. Because a quantum individual is equivalent to a
probability vector, the concept-guided combination operator
can be easily modified for the use of quantum individuals.
Define

hj = −
∑

q∈{0,1}
pj,q log(pj,q) (6)

be the entropy hj of the distribution of gene j, where

pj,0 =
1

N

∑

k

α2
k,j (7)

pj,1 =
1

N

∑

k

β2
k,j (8)

In original cg-combination operator, the pj,q is the proportion
of individuals possessing the value q for gene j in the whole
population. The [αk,j , βk,j ] is the j-th qubit of individual
k. Here, we assume that the each Q-individual is a cluster
processing only one virtual solution. Under such condition,
the number of virtual population is N . Let

h′
i,j = −

∑

q∈{0,1}
p′i,j,q log(p

′
i,j,q) (9)

be the entropy of the distribution of gene j without the i-th
Q-individual, where

p′i,j,0 =

∑

k∈{1,2,...,N}\{i} α
2
k,j

N − 1
(10)

p′i,j,1 =

∑

k∈{1,2,...,N}\{i} β
2
k,j

N − 1
(11)

The difference of hj and h′
i,j

wi,j = hj − h′
i,j (12)

indicates the increase of entropy of gene j after the i-th quan-
tum individual was taken into account than that without the
i-th quantum individual. When recombining two Q-individuals
(Qr and Qs for example) into a temporary Q-individual, each
qubit qj of the new Q-individuals is defined as

qj =

{

qr,j if wr,j > ws,j

qs,j otherwise (13)

where qr,j and qs,j are the j-th qubit of the corresponding Qr

and Qs. At each time, we select two Q-individual untapped
randomly and recombine them into a temporary Q-individual
based on the informative measure matrix, refer to Equation
(13). Then observe the temporary Q-individual and we will
get a temporary collapsed state. The new collapsed state is
associated with two Q-individuals. Here we have two replace-
ment strategy, one is random replacement and the other is
nearest replacement. As the idea lay behind crowding method
as mentioned in section II-C, we would let the new collapsed
state replace the more similar one. So the similarity should
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Directly Collapse 
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Fig. 3. A simple example with only two Q-individuals. Assuming pc = 0.5
and the number of collapsed state generated by concept-guided combination
is 2 × 0.5 = 1. Qtp is recombination of Qr and Qs using concept-guided
combination. Ctp is the result of observing Qtp. By calculating similarity of
Ctp to Cr and Cs, replace the more similar one (assuming Ctp and Cr are
more similar) with Ctp. The Cs remind unchanged and should be updated by
observing the corresponding Qs.

be computed. We use Hamming distance when dealing with
binary coding.

DistH(x1, x2) =
m
∑

i=1

|x1i − x2i| (14)

By removing the migration method in QEA, our proposed
algorithm was able to find more than one optima. By in-
troducing the nearest replacement procedure besides the cg-
combination operator, algorithm achieves a speedup. Repeat
this for N × pc times. But there are still N × (1 − pc) units
in which the collapsed states had not been updated in this
iteration. These unchanged collapsed states will be updated
by observing their corresponding Q-individuals directly as
original QEA. A simple example of the process of generating
C in the two approaches is illustrated in the Fig.3.

2) Effect of the Generative Process: The generative process
of collapsed states in QEALL has three main effects. The
first effect is that the introduction of cg-operator gives the Q-
individual the ability to learn linkage. The second effect is that
this process acts as intermediary of information interchange.
In QEALL, the migration procedure was removed and Q-
individuals can still exchange information by the generative
process and the replacement procedure. The last effect is that
QEALL achieves a speed-up due to nearest replacement. This
is in fact a niching technology.

IV. PERFORMANCE EXPERIMENTS ON UNIMODAL
PROBLEMS

This section presents experimental results of QEALL com-
paring with the BOA that is the well-known multivariate
EDA on unimodal problems. The effectiveness of niching
method was also tested by a comparative trial employing
a QEALL using random strategy of replacing. This section
includes two parts: Firstly, the test problems, concatenated
trap-5 and overlapping concatenated trap-5, are introduced
briefly. Secondly, it describes the evaluation setup for QEALL
and BOA. Then the performance of the QEALL and BOA on
these optimization problems are reported and compared.

A. Problems

The problems we selected for testing the performance of
QEALL are concatenated trap-5 [13] and overlapping trap-
5 problems [23]. It is hard for evolutionary algorithms like

classical genetic algorithm to solve these problems because the
variables in these problems are dependent on each other. EDAs
can solve this kind of problems effectively. In overlapping
trap-5, building blocks are overlapping. This structure is even
awkward for BOA which uses a complex Bayesian network.

1) Concatenated Trap-5: The concatenated trap-5 is an
additively decomposable function. It is an aggregation of some
trap-5 functions and the objective function is defined as:

ftrap 5(z) =

n
5

∑

i=1

trap5(z5i−4, z5i−3, ..., z5i) (15)

where
trap5(z) =

{

5 if u = 5
4− u otherwise (16)

The objective is maximization and the global optima is z =
(1, 1, . . . , 1) with fitness n. Instances of size 30, 60 and 90
were considered and denoted as Ptrap30, Ptrap60 and Ptrap90

respectively.

2) Overlapping Trap-5: The overlapping Trap-5 is an
overlapping additive decomposable function. Building blocks
shares their variables with other building blocks bordering
on. Each building block is a trap-5 function. Two variables
in the left an right are shared with building blocks on both
sides. The objective is maximization and the global optima is
z = (1, 1, . . . , 1) with fitness 5n/3. Instances of size 30, 60
and 90 were considered, denoted as Po−trap30, Po−trap60 and
Po−trap90 respectively.

B. Evaluation Setup and Results

QEALL has four main parameters, they are population size
N , lower boundary of Q-gate ε, rotation angle Δθ and the
ratio of two generating approach pc. In all the experiments
in this section, ε, Δθ and pc are set to be 0.1, 0.03π and
0.5 respectively. The population size N is set to be 10, 25
and 50 to test the influence of population size. To measure
the performance of QEALL and compare it with BOA, all the
best solution found were averaged over 50 independent runs.
BOA needs a relatively larger population size to get its best
performance. If the population size is too small, BOA tends
to converge to local optima. Otherwise too large population
size result in overlarge evaluations. In order to conduct a fair
comparison, the termination condition is set to be the max
number of evaluations instead of max number of generations.

On Ptrap30, Ptrap60 and Ptrap90, the population size of
BOA are set to be 1000, 3000 and 5000 respectively. Fig.4
(a) (b) (c) show the experiment results. A successful run
means the algorithm had found the global optima. For three
concatenated Trap-5 instances, BOA can find global optima
in most of the runs, the success rates are 43/50, 49/50
and 48/50. Performance of QEALL with population size 50
slightly exceeded BOA, the success rates are 50/50, 49/50
and 49/50. Furthermore, QEALL converged faster than BOA.
As the size of the problem gets larger, QEALL’s advantage of
efficiency increases. QEALL with population size 10 and 25
can not find global optima in every run. But they also have an
advantage of faster convergence speed.

To verify the effect of employing the nearest replacement,
we removed the comparison step in lines 6-10 of Algorithm
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Fig. 4. Experimental Results on Concatenated Trap-5 and Overlapping trap-5 Problems

2 and replaced it with a random replacement. The random
replacement means when a new collapsed state was generated
by the cg-combination operator, it would replace one of two
related collapsed states randomly. We tested three modified
QEALL (denoted as QEALL RR) with population size 25 on
Ptrap30, Ptrap60 and Ptrap90. Fig.4 (a) (b) (c) show that the
introduction of niching technology brought improvement in
quality and efficiency under the same conditions.

On Po−trap30, Po−trap60 and Po−trap90, we set the popu-
lation size of BOA to be 2000, 5000 and 8000. The parameters
of QEALL were same as above. Experimental results show that
QEALL can handle overlapping problems. The BOA, although
employing multivariate probabilistic model, cannot deal with
this kind of problem effectively. Fig.4 (d) (e) (f) show that
the BOA can not converge to global optima in all runs. For
the three overlapping Trap-5 problems, the success rates of
BOA are 21/50, 2/50 and 0/50 respectively. It is beneficial
for BOA if we use a larger population. Meanwhile, the number
of evaluations would increase rapidly. QEALL of 25 and 50
population can find the global optima for all the tests. Although
not all QEALL of which the population was 10 can find global
optima, it outperforms BOA on average in speed and quality.

V. PERFORMANCE EXPERIMENTS ON MULTIMODAL
PROBLEMS

This section presents the dynamic of QEALL and QEA on
twomax problems and also reports the experimental results of
QEALL comparing with ϕ-PBIL and UEBNA for some graph
bisection problems.

A. Problems

1) Twomax: The twomax problem is multimodal optimiza-
tion problem whose two global optima are symmetrical. The

search space is {0, 1}n, where n is the dimension of the
problem. The objective function is as follows:

ftwomax(z) =

∣

∣

∣

∣

∣

n

2
−

n
∑

i=1

zi

∣

∣

∣

∣

∣

(17)

The objective is maximization and there exists two global
optima. One is z0 = (0, 0, . . . , 0) and the other one is
z1 = (1, 1, . . . , 1) with fitness equal to n/2. An instance of
twomax problem of n = 50 was used to show the dynamic of
QEA and QEALL. It was denoted by Ptwomax50.

2) Graph bisection problems: Graph bisection problem,
also named as bipartitioning problem, aims to split a given
graph into two equally sized subsets each of which is called
a partition. The objective is to find a graph partitioning in
which the number of edges whose adjacent vertices are located
in different partitions is minimal [24]. These edges are named
cut edges. In order to transform the objective be maximization.
The fitness of a given partitioning is set to be the difference
of the number of nodes and the cut edges. A solution of the
problem is encoded as a vector whose length equals to n. The
i-th gene of the vector represents the label of the i-th node.
The node numbers in both partition should be equal, so a lot of
solutions obtained are unfeasible. Hence a randomized repair
operator that inverts the gene in the majority until a solution
is obtained was used.

Three categories of graph bisection problem in [21] were
used. The first is grid-like graphs. Three instances with n =
16, 36, 64 were involved and denoted by Pgrid16, Pgrid36,
Pgrid64. The rest instances are graphs composed of seven node
subgraphs and named caterpillar graphs. One part contains
three instances each of which composed of 4, 6 and 8 sub-
graphs connected in line. These three instances were denoted
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(a) QEA (generation 0)
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(b) QEA (generation 80)
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(c) QEA (generation 300)
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(d) QEALL (generation 0)
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(e) QEALL (generation 80)
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(f) QEALL (generation 300)

Fig. 5. Dynamic of QEA and QEALL on Ptwomax50.

by Pcat28, Pcat42, Pcat56. All the six instances mentioned
above possess 2 global optima. The last category has two
instances in which 4 and 6 subgraphs connected like a ring.
These instances are denoted by Pring28 and Pring42 with the
number of global optima 4 and 6.

B. Evaluation Setup and Results

The QEA uses a global migration would set all Q-
individual to be the same value and this strategy aggravates
genetic drift. In QEALL, the migration process was removed.
Q-individuals exchange messages with each others by the nich-
ing method. Solutions from different basins will be preserved.
Parameter of QEA an QEALL are same for N , ε and Δθ and
they were 100, 0.01 and 0.015π. In QEA, the local immigration
period was 1 and the global immigration period was 100. For
QEALL, the probability of mixedly collapse pc was 0.5.

For grid-like graphs and caterpillar graphs whose number
of global optima is 2. The ε, Δθ and pc are set to be 0.1,
0.015π and 0.5 respectively. The termination condition is set
to be maximum generations or the attractors are remained
unchanged for a certain number of generations. QEALL will
stop if its attractors remained unchanged for 200 generations or
the max generations, that is 2000, is reached. Analogously, For
two ring-like instances, the Δθ is 0.02π and QEALL will stop
when attractors remained unchanged for 50 generations or max
generations reach 2000. Each instance was tested on QEALL
for 10 independent runs. This is conformance to specifications
of the experiments settings of UEBNA [21] and ϕ-PBIL [16]
both of which had been tested on graph bisection problems for
10 times.

The dynamic of QEA and QEALL on Ptwomax50 is shown
on Fig.5. QEALL can preserve solutions in different basins

but the QEA can not. Results of graph bisection problems are
shown in Table I where the data for UEBNA and ϕ-PBIL were
extracted from [16], [21]. Population size is indicated in the
table. In all instances, the QEALL could find all global optima.
Except for Pring42, it was shown that QEALL outperforms
UEBNA and ϕ-PBIL on all other problems. The number of
evaluations is less than UEBNA and ϕ-PBIL. Experimental
results show QEALL can solve problems having multimodal
landscape effectively.

VI. CONCLUSION

QEA is a simple and effective algorithm and has been
investigated widely. But algorithms based on QEA framework
are limited by its oversimple model and cannot effectively
address problem with complex links. Besides, though QEA
uses more than one Q-individual and adopts the migration
procedure which is similar to island modal in niching method,
the global migration promotes genetic drift which deprives
its ability to find multiple optima on problems that have
a multimodal landscape. To solve both of these problems,
we proposed QEALL equipped cg-combination operator and
niching technology.

QEALL is in the framework of QEA and uses Q-
individuals. In QEALL, we introduced the cg-combination
operator of ϕ-PBIL into our algorithms. The cg-combination
operator can select the most informative parts from two parent
Q-individuals to form a new Q-individual. Building blocks will
be detected and reserved so that QEALL can learn linkage. The
migration procedure was removed to make QEA have the abil-
ity to conserve multiple optima simultaneously. Additionally,
we added a nearest replacement method for acceleration.

The QEALL was tested on both unimodal problems and
multimodal problems. We used concatenated trap-5 and over-
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TABLE I. QEALL ON GRAPH BISECTION PROBLEMS

Problem Algorithm Optima ± sd Eval ± sd

Pgrid16

(2 optima)

UEBNA K = 4 2.0 ± 0.0 51400±2366
ϕ-PBIL K = 5 2.0 ± 0.0 10126±606

QEALL N = 10 2.0 ± 0.0 4578±934

Pgrid36

(2 optima)

UEBNA K = 2 2.0 ± 0.0 85600±8462
ϕ-PBIL K = 5 2.0 ± 0.0 28963±10754

QEALL N = 16 2.0 ± 0.0 16048±3998

Pgrid64

(2 optima)

UEBNA K = 4 2.0 ± 0.0 124900±3479
ϕ-PBIL K = 10 2.0 ± 0.0 64245±10999
QEALL N = 24 2.0 ± 0.0 42655±5714

Pcat28

(2 optima)

UEBNA K = 2 2.0 ± 0.0 57100±2846
ϕ-PBIL K = 5 2.0 ± 0.0 14311±1299

QEALL N = 10 2.0 ± 0.0 6370±1683

Pcat42

(2 optima)

UEBNA K = 2 2.0 ± 0.0 73900±1449
ϕ-PBIL K = 10 2.0 ± 0.0 29714±3644
QEALL N = 16 2.0 ± 0.0 14856±5482

Pcat56

(2 optima)

UEBNA K = 4 2.0 ± 0.0 96400±2366
ϕ-PBIL K = 10 2.0 ± 0.0 46151±4362
QEALL N = 24 2.0 ± 0.0 33425±12564

Pring28

(4 optima)

UEBNA K = 2 4.0 ± 0.0 54700±949
ϕ-PBIL K = 5 4.0 ± 0.0 12694±853

QEALL N = 24 4.0 ± 0.0 9804±2486

Pring42

(6 optima)

UEBNA K = 6 5.9 ± 0.3 75700±3302
ϕ-PBIL K = 15 6.0 ± 0.0 32361±1513
QEALL N = 50 6.0 ± 0.0 36925±5107

Note: Data for UEBNA extracted from [21], data for ϕ-PBIL
extracted from [16].

lapping trap-5 problems. These kind of problems are hard for
evolutionary algorithms. Experimental results suggested that
QEALL precede BOA. This implied that QEALL can learn
linkage quickly and effectively. A contrast experiment was
also conducted to verify effects of introduction of the nearest
replacement strategy. The nearest replacement would improve
quality and speed. QEA can also handle overlapping trap-5
problems if it has enough Q-individuals while BOA can not.
The QEA and QEALL were conducted on the twomax problem
to show their dynamic when confronts multimodal problems.
QEALL were test graph bisection problems. The results show
that the QEALL has the ability to solve multimodal problems
efficiently.
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