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Abstract—Many systems in social world can be represented 

by complex networks. It is of great significance to detect the 
community structure and analyze the functions for networks. In 
recent years, plenty of research and works have been focused on 
this problem. In this paper, we propose an enhanced algorithm 
based on ant colony optimization (ACO) for the community 
detection problems. In order to avoid redundant computing in 
ACO, we divide the ant colony into two groups, original group 
and intelligent group, which search the solution space 
simultaneously. In the intelligent group, due to the locus-based 
adjacency representation of the solution, we let some of them 
have an ability of self-learning and others can learn from the 
optimal solutions proactively. Experiments on synthetic and 
real-life networks show the proposed algorithm can explore in 
an efficient and stable way. 

Keywords—complex networks; community detection; 
intelligent ant clony optimization; self-learning; 
proactive-learning 

I.  INRODUCTION  
The form of complex networks can be commonly 

discovered in the world. As been called graphs mathematic, 
networks involve many different areas such as sociology, 
biology, mathematics, and physics. In the last decade, many 
works had been focused on the research of the components 
and functions of a specific network by applying graph theory 
[1]. When we consider the community detection problems as 
a graph analysis, a node or vertex equals to a dot and an edge 
connecting two vertices equals to a line [2].  

In the past decade, many methods were proposed to 
identify modules and classify vertices according to the 
principle that the connections should be sparse between 
communities and be dense inside [3][4]. Therefore, some 
objective functions which measure the quality and veracity of 
a partition have been gradually proposed. For example, the 
modularity introduced by Girvan and Newman in [5], which 
is widely accepted and most commonly used in many 
algorithms. However, the method of optimizing the 
modularity ࣫ has a resolution limitation problem according 
to the theory presented by Santo Fortunato and Marc 
Barthélemy [6]. Then a new quality function was introduced 
by Li et al. to overcome the limitation of modularity called 
modularity density [7]. And they also theoretically proved 

out that the modularity density can reveal communities of 
multi-resolution with a tunable parameter λ as a general 
version. Gong et al. [8] took the modularity density apart into 
two components ratio association [9] and ratio cut [10]. And 
due to the frame of multiobjective evolutionary algorithm, 
they can receive various different partitions hierarchically.  

Among plenty of techniques for community detection 
problem, the family of modularity based optimization 
algorithms play an important role. Actually, Modularity is 
originally proposed as a stopping criterion in the algorithm of 
Girvan and Newman (GN). The first algorithm to maximize 
modularity called FN in a greedy way by Newman [11]. It is a 
clustering method which can uncover the hierarchical 
structure by merging vertices with a maximum growth of 
value ࣫. Guimerà et al. [12] took use of simulated annealing 
to optimize modularity which result in reducing the risk of 
getting trapped in local optimum. However, the performance 
of simulated annealing is sensitive to the parameters (initial 
temperature and cooling factor). Duch and Arenas employed 
the extremal optimization which is a heuristic search strategy 
for the first attempting to maximizing modularity [13]. 
Newman found a spectral algorithm which can express the 
modularity in terms of eigenspectrum of a matrix [14][15]. 
And this procedure also aims at maximizing modularity. 

In this paper, we propose a modified algorithm called 
intelligent ant colony optimization for networks (IACO-Net) 
based on the optimization of modularity. In order to avoid 
redundant computing during the convergence process of 
ACO, We divide the ant colony into two groups, original 
group and intelligent group, which search the solution space 
simultaneously. For the intelligent ants in intelligent group, 
we assume that some of them have an ability of self-learning 
and others can learn from the optimal solutions proactively. 
And the locus-based encoding method is applied in the 
representation of solutions. By comparing with ACO and 
other algorithms, the proposed IACO-Net converges faster 
and receives a higher modularity. 

The rest of this article is structured as follows: section two 
introduces some related works about ant-based optimization 
and represents the definition of community detection. Section 
three shows the procedure of the proposed algorithm in 
detail. And the results of our experiments are represented in 
the section four. The last section includes the conclusions and 
the works in the future.  This work was supported by the National Basic Research Program (973

Program) of China (No. 2013CB329402), the National Natural Science 
Foundation of China (Nos. 61003199, 61072139, 61373111，61272279, 
61303032 and 61001202) and the Fundamental Research Funds for the 
Central Universities (Nos. JB140216, K5051202019, K5051302049 and
K50511020014). 
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II. RELATED WORK 

A. Problem Definition 
As we have mentioned above, a complex network can be 

regarded as a graph ܩ  ൌ ሺܸ, ሻܧ , which includes ܰ ൌ |ܸ| 
vertices and ݉ ൌ |ܧ|  edges.  ܸ  represents the vertices set ሼݒଵ, ,ଶݒ … , ܰ is an ܣ .ܩ represents the set of edges in ܧ ேሽ, andݒ ൈ ܰ  adjacent matrix of an unweighted graph ܩ , the 
element ܣ௜௝ is 1 when there is an edge between vertex ݒ௜ and 
vertex ݒ௝  , otherwise ܣ௜௝  equals 0. For a final partition ܲ ൌ ሼܥଵ, ,ଶܥ … , ௄ሽܥ  of a network, each element ܥ௟ ሺ݈ ൌ1,2, … ,  is the total number ܭ ሻ is a proper subset of ܸ, andܭ
of communities. 

For a particular partition of a network, how to assess its 
quality should be emphasized on. A significative quality 
metric called modularity ࣫ has been introduced by Girvan 
and Newman [4], which is shown as follows: ࣫ ൌ 12݉ ෍ ൭ቆܣ௜௝ െ ݇௜ ௝݇2݉ ቇ ൈ ,ሺ݅ሻܥ൫ߜ ሺ݅ሻ൯൱       ሺ1ሻ௜௝ܥ  

Where ݉  is the number of edges in the network and ݉ ൌ ଵଶ ∑ ௜௝௜௝ܣ ௜௝ܣ ,  is an element of the adjacent matrix ܣ,  ݇௜ ൌ ∑ ௜௝௝ܣ  is the degree of vertex ݅ which equals to the total 
number of neighbors of vertex ݅. ߜሺݑ,  ሻ is the Kroneckerݒ
delta function in which ߜሺݑ, ሻݒ ൌ 1  if ݑ ൌ ݒ , otherwise ߜሺݑ, ሻݒ ൌ 0. And ܥሺ݅ሻ is the index of the community that 
vertex ݅  belongs to. If the partition shows the number of 
edges within community is less than a random network, this 
quantity will get ࣫ ൌ 0. Actually, value ࣫  of most social 
networks fall in the range about 0.3 to 0.7 [4], and high values 
of modularity indicate good partitions [1]. 

B. Ant-based Algorithms for Community Detection 
Inspired by the behavior of social insects, technologists 

produced a series of new solutions for traditional problems 
through a simulation on social insects. These works were 
called swarm intelligence which refers to subjects without 
intelligence exhibit intelligent behavior through cooperation. 
And the swarm are a group of subjects which can 
communicate with each other directly and indirectly. Under 
these conditions, swarm intelligence provides the basis for 
solving complex distributed problems without centralized 
control and global model. There are two kinds of algorithms 
based on swarm intelligence in the field of computational 
intelligence, Ant Colony Optimization (ACO) and Particle 
Swarm Optimization (PSO).  

In this article, we focus on the ACO algorithm proposed by 
Marco Dorigo [16] which is a probability-based technology 
inspired by the behavior of ant colonies in the process of 
foraging. Actually, what an ant concerns is not the 
information of the global world but the front information in a 
small area. Then they can utilize several simple rules to make 
decisions according to the local information. Thus, complex 
behavior will be highlighted in the swarm of ant colonies. 

Due to the diversity and positive feedback, two important 
properties of the ant-based algorithm, ant colonies have an 
outstanding performance in solving many problems, such as 
traveling salesman problem (TSP) [17], job shop scheduling 
problem [18], graph coloring [19] and vehicle routing 
problem [20]. It is the diversity that guarantee the ants not 

trapping in a blind alley in the procedure of foraging. And it 
is the positive feedback mechanism ensure the better solution 
to be preserved. Definitely, a tradeoff decision between these 
two properties will be determined finally. 

 In the field of community detection, ant-based algorithms 
also have been attempted to find groups in complex networks 
and experimentally verified to be feasible and efficient. Ji. et 
al. [21] proposed an ant colony clustering algorithm (called 
ACC-FP in this paper) in which the clustering process occurs 
in a virtual grid. And a pheromone diffusion model is 
employed by the pheromone trail update strategy which 
depends on the distribution in the grid and the structure of 
network simultaneously. Despite undirected social networks, 
community detection in oriented social networks also attracts 
attention in [22], the focus of the method put forward in 
which is the employing of ant colony optimization. Based on 
the locus-based coding strategy, Chang. et al. [23] introduced 
an ACO approach to find the structure of social networks. 
The proposed algorithm is under the framework of Max-Min 
Ant System (MMAS) [24] and has some features to adapt to 
the characteristics of community detection problem. 

III. THE IACO-NET ALGORITHM 

A. Representation 
In this algorithm, solutions are coded by the locus-based 

adjacency representation [25]. The most significant 
advantage of this representation is the automatical decoding 
process without knowing the clusters number in advance. For 
a particular network with ܰ vertices, every individual g in the 
population is expressed as ݃ۃଵ, ݃ଶ, … , ݃ேۄ with ܰ genes. And 
each ݃௜ can take the allele value ݆ in the range of  1,2ۃ, … ,  . ۄܰ
Fig. 1(a) shows a hypothetical network contains 11 vertices 
in three different shapes of square, circle and triangle. And a 
solution of locus-based expression is shown in Fig. 1(b). 
Obviously, the network consists of three components, 
community A includes 3 vertices  ሼ1,2,3ሽ , community B 
includes 5 vertices ሼ4,5,6,7,8ሽ and the rest vertices ሼ9,10,11ሽ 
belong to community C. The community label of each vertex 
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Fig. 1.  (a) A model of a network with 11 vertices and 16 edges, 
including 3 communities expressed in different shape. (b) The 
locus-based adjacency scheme, the “Ant” sequence and the 
corresponding partition (including 3 communities: A, B and C) is 
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is presented in Fig. 1(b) intuitively. 

B. Solution Construction 
Due to the locus-based adjacency representation in 

previous, a solution can be constructed by a corresponding 
ant. Each ant takes charge of choosing the allele values for all 
the ܰ vertices by a probabilistic choice model of the ACO 
algorithm. In other words, a particular ant selects ܰ edges in 
turn which may include two same edges. The probability ௜ܲ௝ሺݐሻ of current vertex ݅ choosing the next vertex ݆ involve 
two factors, the pheromone information ߬௜௝ and the heuristic 
information ௜௝ߟ  . Both of them are of great importance to 
determine the probability ratio among the neighbors. And the 
probabilistic model for vertex ݅ to choose a connected vertex ݆ is introduced as follows: 

௜ܲ௝ሺݐሻ ൌ ൞ ൣ߬௜௝ሺݐሻ൧ఈ · ∑௜௝൧ఉߟൣ ሾ߬௜௟ሺݐሻሿఈ · ሾߟ௜௟ሿఉ௟ࣨאሺ௜ሻ , ݆ א ࣨሺ݅ሻ0,  ሺ2ሻ         ݁ݏ݅ݓݎ݄݁ݐ݋

௜௝ߟ ൌ 11 ൅ ݁ି஼ሺ௜,௝ሻ                                     ሺ3ሻ 

,ሺ݅ܥ ݆ሻ ൌ ∑ ሺܣ௜௞ െ ௝௞ܣ௜ሻ൫ߤ െ ௏א௝൯௏ೖߤ ௝ߪ௜ߪ݊                   ሺ4ሻ 

Where ࣨሺ݅ሻis the neighbor vertices set of vertex ݅  in the 
network. The fraction consists of two components, the 
pheromone trail information ߬௜௝ሺݐሻ  and the heuristic 
information ߟ௜௝. The former is the value of pheromone trail 
on the edge ݅ۃ,  and the latter is the structure similarity , ۄ݆
between vertex ݅  and vertex ݆  in the ܩ ൌ ሺܸ, ሻܧ . The 
parameters ߙ and ߚ determine the importance of pheromone 
trail factor versus heuristic factor. Obviously, the higher the 
value of ߬௜௝ሺݐሻ and ߟ௜௝, the more possible for source vertex ݅ 
to select vertex ݆. 
 In (4), ܥሺ݅, ݆ሻ is the Pearson correlation between vertices ݒ௜ and ݒ௝, ܣ௝௞ is the corresponding element in the adjacency 
matrixߤ ,ܣ௜ ൌ ∑ ௜௞ܣ ܰ⁄௞  and ߪ௜ ൌ ඥ∑ ሺܣ௜௞ െ ௜ሻଶߤ ܰ⁄௞ . And 
a higher value of ߟ௜௝  denotes a higher similarity between 
vertex ݅ and vertex ݆. 

In addition, there is a pseudo-random probabilistic model 
including a threshold value ݍ଴  which is smaller than 1. 
Before computing the ௜ܲ௝ሺݐሻ, if a random number ݍ is larger 
than the threshold ݍ଴ , the allele vertex ݆ will be determined 
according to the ௜ܲ௝ሺݐሻ by the roulette selection mechanism. 
On the contrary, the choice of vertex ݆ will be the vertex with 
the maximal value of ൣ߬௜௝ሺݐሻ൧ఈ · ௜௝൧ఉߟൣ

. When ݍ ൑ ݆  :଴, vertex ݆ can be determined by the following ruleݍ ൌ ݃ݎܽ ሺ௜ሻࣨא௝ݔܽ݉ ቄൣ߬௜௝ሺݐሻ൧ఈ ·  ௜௝൧ఉቅ                 ሺ5ሻߟൣ

 In our algorithm, in order to compare with the ACO 
algorithm in [23], we follow the original probabilistic model 
according to (2). 
 After getting a solution consists of ܰ edges by an ant with ܰ steps, a decoding procedure will be adopted to transform 
the locus-based solution into a certain community label set. 
Thus, modularity ࣫ will be calculated according to (1). This 

procedure will be repeated ௔ܰ times during each iteration 
because the amount of the ant colony population is ௔ܰ.  

C. Proactive-learning Mechanism 
As our observation, as well as other problems using ACO 

[25]-[27], the pheromone factor ߬௜௝ of some edges has a trend 
to be closer to each other as the iterations increase. After 
several iterations, the pheromone on such edges with a higher ߟ௜௝  (which means vertex ݅  and vertex  ݆  are more likely 
belong to the same community) will be relatively more than 
that of other edges. More precisely, the ants will favor these 
edges called sub-solutions, which may eventually be parts of 
the final solution. Obviously, in a particular iteration, a great 
many ants choose the same edges, this phenomenon will lead 
to some redundant computations, such as repeatedly 
computing of ߬௜௝ and ௜ܲ௝  for the current vertex ݅. As the ACO 
converges, this situation will become more and more serious. 
Actually, this situation also happened in other metaheuristics, 
such as GA-Net [28]. 

Fig. 2 shows a schematic to illustrate the repeated edges 
that may lead to redundant computations during the 
convergence process of ACO. Fig. 2(a) and Fig. 2(b) show 
two possible solutions for a hypothetical network of seven 
vertices. And we assume the two partitions are the optimal 
and sub-optimal solutions which we found in present. So we 
can intuitively extract the public part ۄ2,4,0,0,6,0,5ۃ of the 
two ants ܣ: ۄ2,4,7,1,6,3,5ۃ  and : ۄ2,4,1,3,6,7,5ۃ  , and the 
public part actually includes four public edges ۄ5,6ۃ ,ۄ2,4ۃ ,ۄ1,2ۃ and ۄ7,5ۃ which means that these edges are 
more likely to be components of the global optimal solution. 
This characteristic of ACO for community detection 
stimulates our interest in how to make use of the public edges 
to avoid redundant computing and reduce the computation 
time. 

In order to improve this phenomenon, we propose a 
modified algorithm called intelligent ACO. Our motivation is 
to improve the searching speed and the efficiency to find 
global optimum during the optimization searching process on 
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Fig. 2.  (a) and (b) are two locus-based solutions, “Ant A” is the optimal 
solution and “Ant B” is the sub-optimal solution. (c) and (d) introduce the 
generation of public edge in detail.  
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the basis of public edges (PE for short). We separate a small 
part of ants from the colony, and these separated ants have an 
intelligent ability of learning from the optimal and 
sub-optimal solutions. In each iteration, after all the ௔ܰ  ants 
have been constructed, the optimal and sub-optimal solutions 
will be saved according to the value of modularity. Then 
compare the optimal and sub-optimal solutions of current 
iteration and of last iteration, and the two ants with higher 
value of modularity among the four individuals will be the 
“Ant A” and “Ant B” in the Fig. 2 to update the public edges 
(despite for the first iteration, which the public edges are 
initialized with a null vector). 

Assuming the locus-based public edges represented as a 
vector ܲܧ: ሺ݌ଵ, ,ଶ݌ … ,  ேሻ, of course some of the elements݌
are 0. The amount of the intelligent ants is  ூܰ௔ . Each 
intelligent ant construct a solution on the basis of PE. 

For a current vertex ݅, if ݌௜ ് 0 , there will be no need to 
evaluate the probabilistic model, and directly let ݆ ൌ ௜݌ , 
otherwise, if ݌௜ in PE equals to 0, the choice of edge ݅ۃ,  is ۄ݆
still determined by ௜ܲ௝  in a roulette way. Therefore, the 
probabilistic model of intelligent ant  ௜ܲ௝ூ௔ሺݐሻ can be defined 
as: 

௜ܲ௝ூ௔ሺݐሻ ൌ ൜1ሺ݆ ൌ ௜ሻ݌ ௜ݒ ് 0௜ܲ௝ , ௜ݒ ൌ 0                      ሺ6ሻ 

D. Self-learning Mechanism 
In this part, we assume another kind of intelligent ant has an 

ability of self-learning. It is a mechanism that searching for a 
better solution by itself without the knowledge of the prior 
information and global optimal information. In order to 
reduce the computational complexity, we just allow the 
optimal ant and sub-optimal ant in the whole ant colony to 
have such an ability. Then each ant randomly pick  ߣڿ ·ܰܽ vertices out and replace each vertex with its connected 
vertices orderly, then evaluate the value ࣫ correspondingly. 
Where ߣ  is a tunable parameter smaller than 1 and  ۀݔڿ  
denotes rounding the elements of ݔ to the nearest integers 
towards infinity. Finally, if a better ࣫ has been found, the 
original ant will be replaced by the new ant with the biggest ࣫. And the procedure can be described as pseudo-code in 
Algorithm 1. 

Thus, benefit from the relatively better characteristics and 
structure, these two clever ants are more likely to find a much 
better solution which is closer to the global optimum. 

E. Pheromone Trail Update 
The most virtual and important differences between all the 

ACO-based algorithms are pheromone trail definition and 
update mechanism. The pheromone trail update mechanism 
in this paper follows the MMAS.  

The MMAS limits the pheromone trails to an interval ሾ߬௠௜௡, ߬௠௔௫ሿ  to avoid early search stagnation. The 
pheromone trail on each edge should be deliberately 
initialized to  ߬௠௔௫  with a purpose of achieving a higher 
exploration of solutions at the start of the algorithm. And to 
exploit the best solutions found during the current iteration, 
only one ant adds pheromone after each iteration. This ant in 
our algorithm is the best solution of current iteration and only 
the edges in the iteration-best solution have their pheromone 
trail increasing. Therefore, the update mechanism of the 
pheromone trail can be represented as follows: ߬௜௝ሺݐ ൅ 1ሻ ൌ ሻݐ௜௝ሺ߬ߩ ൅ ∆߬௜௝                            ሺ7ሻ 

Where the parameter ߩ  (with 0 ൑ ρ ൏ 1 ) in the trail 
persistence (then, 1 െ  models the evaporation) and ∆τ௜௝ ߩ
denotes the amount of pheromone increased on the edge ݅ۃ,  ,ۄ݆
and it can be written as follows: ∆߬௜௝ ൌ ቄ࣫௜௕ ,݅ۃ ݁݃݀݁ ۄ݆ א  ௜ܵ௕0 ݁ݏ݅ݓݎ݄݁ݐ݋                           ሺ8ሻ 

Where ௜ܵ௕ is the best solution of the current iteration, ࣫௜௕ is 
the modularity ࣫ of the solution correspondingly. 

Due to the pheromone limitation suggested by MMAS, we 
limit the pheromone amount on each edge to a range of an 
interval  ሾ߬௠௜௡, ߬௠௔௫ሿ . And the maximum pheromone trail ߬௠௔௫ is determined by an estimate of the asymptotically 
maximum value. The ߬௠௔௫ is defined as follows: ߬݉ܽݔ ൌ 11 െ ߩ · ܾܳ݃                                      ሺ9ሻ 

Where ࣫௚௕ is modularity of global optimal solution with the 
largest ࣫ found so far. 
 The definition of τ௠௜௡ in the MMAS is: τ௠௜௡ ൌ ߬௠௔௫ሺ1 െ ඥ݌௕௘௦௧೙ ሻሺேଶ െ 1ሻ ඥ݌௕௘௦௧೙                           ሺ10ሻ 

 Where ݌௕௘௦௧  is the probability to find the best solution. 
However, in order to simplify the expression of the equation, 
we redefine the ߬௠௜௡ as follows:  ߬௠௜௡ ൌ ߝ · ߬௠௔௫                                   ሺ11ሻ 

Where the coefficient  ߝ is a fairly small number. 
 During the procedure of exploring, when a new global 
optimal solution was found, ߬௠௔௫  and ߬௠௜௡  would be 
updated according to (9) and (11). The complete pseudo-code 
of IACO-Net algorithm for community detection in complex 
network is shown as Algorithm 2. 
 In this way, the update of pheromone trail consists of two 
stages: the weakening stage and reinforcement stage. During 
the pheromone weakening stage, as a global updating, the 
pheromone trails on all the edges are reduced by the 
evaporation factor. This procedure can avoids early search 
stagnation due to the excessive depositing of pheromone, and 
encourage the ants in the next iteration to search for new 

Algorithm 1: Framework of self-learning (). 
Input: a solution ܵ ൌ ሼݒଵ, ,ଶݒ … ,  ேሽݒ
Parameters: λ 

1 Choose ߣڿ ·    locations in ܵ randomly ۀܰ
2 for (each randomly location ݅ in ܵ ) 
3    for (each neighbor ݆ of ݒ௜) 
՚ ,ݏ        4  ;(݆)௜ replaced by neighborݒ
5        if (modularity(ݏ,) > modularity(s)) 
6            s ՚  ;,ݏ
7    end for 
8 end for 

Output: a solution with the higher modularity 
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solution. During the reinforcement stage, a positive feedback 
of pheromone strategy is adopted on the edges of the 
iteration-solution merely. This stage makes sure the prior 
information of good solutions can be utilized and promotes 
the convergence rate of the algorithm to find optimal 
solution. 

Algorithm 2: IACO-Net. 
 Input: A complex network modeled by ܩ ൌ ሺܸ,  ሻܧ
Output: ܲ ൌ ሺܥଵ, ,ଶܥ … ,  ௞ሻ, the partition of the networkܥ
1.Initialization:  
    Set parameters ݐ, ௔ܰ, ߬ሺ0ሻ, ,ߙ ,ߚ ,ߩ  ;ߣ

Initialize the public edge ܲܧ ൌ ,ሺ1ݏ݋ݎ݁ݖ ܸሻ; 
Evaluate ߟ of each edge ݅ۃ,  ;in graph G ۄ݆
Divide the colony into two groups: intelligent 

antsሺ ூܰ௔ ൌ ߣ · ௔ܰሻ and original antsሺ ைܰ௔ ൌ ௔ܰ െ ூܰ௔ሻ. 
2.Intelligent ACO stage: 

while ሺݐ ൏  ሻ doݏ݊݋݅ݐܽݎ݁݊݁ܩ ݂݋ ݎܾ݁݉ݑܰ ݔܽܯ
    for ݅ ൌ ைܰ௔ ݋ݐ 1  do 

          {Construct a new solution according to (2)}; 
  for ݆ ൌ  ூܰ௔ do ݋ݐ 1

//proactive-learning process. 
{Construct a new solution according to (2)}; 

        Self-learning(the optimal solution) 
Self-learning(the sub-optimal solution) 
Update the iteration-best ( ௜ܵ௕) and global-best ( ௚ܵ௕) 
Compute pheromone trail limits ߬௠௔௫ and ߬௠௜௡  
Update public edges (ܲܧ) 
Update pheromone trails  

end while 
3.Output the partition with maximum modularity 

IV. EMPIRICAL STUDY 
 In order to verify the effectiveness of our method, we 

apply the IACO-Net algorithm to a synthetic network and 
four real-world networks. In this section, the simulation 
experiments will be showed, and the analysis of the results 
are presented in detail. What is worth mentioning is the 
algorithms that we adopted in the contrast experiment. The 
first one is the algorithm FN which can reveal hierarchical 
structure of the network, and this greed technique to optimize 
modularity ࣫  was proposed by Newman [29]. The FN 
algorithm also has an advantage of running speed. The other 
one is GA-Net, a genetic-based method proposed by Pizzuti 
[28]. The GA-Net can identify communities in the network 
by optimizing a simple effective fitness function community 
score. 

We simulate the proposed algorithm and two compared 
algorithms in MATLAB. All the experiments have been 
performed on a PC with an Intel(R) Core(TM)2 Duo CPU, 
2.20 GHz, 2 GB RAM under Windows 7 OS. Specially, some 
of the parameters in IACO-Net follow the ACO that are set to 
typical values constantly. For instance, we set ߙ ൌ ߚ ,1 ൌ2, ߩ ൌ 0.8, ε ൌ 0.005. In addition, the number of the whole 
ant colony ௔ܰ ൌ 50 including intelligent ants of ூܰ௔ ൌ 20 
and original ants of  ைܰ௔ ൌ 30 . The coefficient in the 
self-learning procedure ߣ  ൌ 0.2 . And the termination 
condition use a maximum number of iteration which is set to 
100. 

A. Evaluation Criteria 
For the modularity-optimization based algorithm, another 

evaluation criteria is definitely needed to measure the 
similarity between the structure revealed by the proposed 
algorithm and the real structure. In consequence, the 
normalized mutual information (NMI) in [30] stands out due 
to its reliability and veracity.  

By assuming that there is a network with two partitions A 
and B, we let C be a confusion matrix whose element ܥ௜௝ is 
the number of the same vertices in the community ݅ of 
partition A and in the community j of partition B. Then the 
NMI is defined as: 

NMI ൌ െ2 ∑ ∑ ௜௝ܥ log ൮ܥ௜௝ܰ ௝൘.ܥ.௜ܥ ൲஼ಳ௝ୀଵ஼ಲ௜ୀଵ
∑ ቀܥ௜. log ቀܥ௜. ܰൗ ቁቁ஼ಲ௜ୀଵ ൅ ∑ ൬ܥ.௝ log ൬ܥ.௝ ܰൗ ൰൰஼ಳ௝ୀଵ ሺ12ሻ 

Where ܥ஺ሺܥ஻ሻ  is the number of communities in the 
partition ܣሺܤሻ, ܥ௜.൫ܥ.௝൯ is the sum of the elements in row ݅ 
(column ݆), and N is the number of vertices. Obviously, ܫሺܣ, ሻܤ ൌ ,ܤሺܫ ሻܣ , if ܣ ൌ ܤ ܫ , ൌ 1 , and  ܫ ൌ 0  when ܣ  is 
totally different with ܤ.  

Generally, a higher value of NMI corresponds to a closer 
partition to the real one. What should be noticed is value ࣫ 
and value NMI are two different metrics, there does not exist 
a positive correlation between them. In some cases, a 
partition with a higher ࣫ may not share a higher NMI. This 
phenomenon will be met in the following part. 

B. Results on Synthetic Networks 
Firstly, we apply our algorithm to the benchmark networks 

(LFR) proposed by Lancichinetti et al. in [31]. The LFR 
benchmark is an extension of the classical benchmark in [32] 
proposed Grivan and Newman. And the LFR benchmark 
contains 128 vertices with 4 clusters, and each cluster 
including 32 vertices. Each vertex has an average degree of 
16 and shares a fraction ߤ of edges connected to the vertices 
in other clusters, and 1 െ  .to the vertices in its own cluster ߤ
We call the ߤ mixing parameter and ߤ ranges 0 to 0.5 in our 
experiment. And we adopt the NMI to measure the similarity 
between the detected partitions and the real ones.  

Fig. 3 represents the tests of our algorithm on the LFR 

 
Fig. 3. Experiments on computer-generated network. 
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benchmark network, and that of ACO, FN and GA-Net as 
well. Each vertex in the curve responding to the largest NMI 
of 10 implementations. By observing the curve, all of them 
have the same trend: when the mixing parameter ߤ is small, 
the NMI of each algorithm is high. With an increasement of ߤ, 
the structure of the network becomes fuzzy, and the NMI of 
all the methods decrease drastically. And it is obvious that 
our algorithm receives a better results in most cases with 
different value of mixing parameter ߤ.  

C. Results on Real-World Networks 
In this part, we will show the experiments of IACO-Net on 

four undirected real-world networks. They are the Zachary’s 
karate club, the Dolphin social network, the American 
College football and the Books about US politics. All the 
structures of the four networks are known. And we compared 
the results with ACO, FN, and GA-Net on these networks 
respectively. The results in TABLE I represent the value ࣫ 
and NMI of each network. The average ࣫ and NMI of all the 
networks come from the running of each algorithm for 10 
times. The maximum ࣫  of each metric is also listed 
respectively, and the corresponding NMI as well. Specially, 
in the GA-Net, the coefficient λ  corresponds of different 
number of communities, and λ א ሾ1,1.5ሿ  as told in the 
algorithm. We set λ ൌ 1 corresponds of a better result after 
tests on different values of  λ. 

Zachary’s karate club: This network consists of 34 vertices 
and 78 edges which was compiled by Zachary [33]. By a 
consecutive observation of a karate club with 34 members in 
two years, Zachary found the club is separated into two 
groups ultimately. In our algorithm, we separate each of the 
group into two smaller groups, and get a modularity of 0.42 
which is higher than the other algorithms. 

Dolphin social network: This is a network of 62 vertices 
and 160 edges constructed by David Lusseau [34] and is 
based on an observation of 62 bottlenose dolphins’ behavior 
during their life in seven years in Doubtful Sound, New 
Zealand. The edge between two vertices means the two 
dolphins have a more frequent association statistically. 
Naturally, the whole colony is divided into two groups, the 
female group and the male group. The average value ࣫ we 
obtained on this network is 0.526, also the higher one. 
However, the value NMI of our algorithm is smaller than that 

of FN. Actually, FN is a bottom-top and global optimization 
algorithm which is deficient in local search. That resulting in 
a local optimum modularity value of 0.495 and a higher NMI 
value of 0.606.  

American College football: This network including 115 
vertices and 613 edges, which represents American football 
games between Division IA colleges during regular season 
Fall 2000, and was established by Grivan and Newman [32]. 
Therefore, a vertex here is a team and an edge represents the 
game between the two teams. And the network can be parted 
into 12 groups. We got an average modularity of 0.602 and 
NMI of 0.879. Due to the limitation of population diversity in 
GA-Net, the result is also a local optimum. 

Books about US politics: This a network of books on 
politics consists of 105 vertices and 441 edges, discovered by 
V. Krebs [14]. In this network, a vertex represent a book on 
American politics and an edge denotes for the connected two 
books is frequent co-purchased by the same buyer from 
Amazon.com. Eventually, the books are classified into 3 
classes according to the descriptions and reviews of the 
books. And in our experiments, the maximal modularity is 
0.525 and the corresponding NMI is 0.565.  

 In order to show the influence of intelligenct ants during 
the generation, we randomly choose two group of solutions 
generated by the original ant colony and intellgent ant colony 
in the middle procedure of the run. Fig. 4 shows the 
modularity of two groups and each group including 8 
solutions. Obviously, the intelligent ants have a better 
performance during the iteration.  

V. CONCLUSIONS 
In this paper, we focus on the modification of the ant 

colony optimization for community detection problem, and 
introduce an intelligent ant with learning ability. This 
learning based strategy can reveal the underlying community 
structure of a complex network without knowing the exact 
number of clusters in advance. It is a fact that the 
performance of ACO is sensitive to the parameters, an 
improper setting of each parameter will lead to two extreme 
opposite situations, premature convergence and too much 
randomness. Fortunately, the procedure of learning from the 
global optimal solutions can not only avoid redundant 
computations during the convergence process of ACO, but 

Fig. 4. Comparison between two ant colony generation means, original 
way and intelligent way (example on Dolphin social network). 
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TABLE I 
EXPERIMENTAL RESULTS ON FOUR REAL-WORLD NETWORKS 

Network Metric IACO-Net ACO GA-Net FN 

karate 
Avg. Q 0.420 0.419 0.406 0.381 

NMI 0.687 0.638 0.637 0.837 

Max. Q 0.420 0.420 0.406 0.381 
NMI 0.687 0.687 0.637 0.837 

dolphin 
Avg. Q 0.526 0.493 0.467 0.495 

NMI 0.567 0.507 0.412 0.606 

Max. Q 0.529 0.504 0.490 0.495 
NMI 0.586 0.592 0.450 0.606 

football 
Avg. Q 0.602 0.531 0.598 0.550 

NMI 0.879 0.861 0.923 0.654 

Max. Q 0.605 0.555 0.601 0.550 
NMI 0.909 0.907 0.929 0.654 

polbook 
Avg. Q 0.517 0.476 0.490 0.502 

NMI 0.523 0.498 0.441 0.534 

Max. 
Q 0.525 0.501 0.501 0.502 

NMI 0.565 0.558 0.477 0.534 
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also can make sure the solutions of the next iteration 
constructed in a stable and definitely convergent way. The 
self-learning phase can help the good individuals to promote 
their quality in a simple but efficiency way. Finally, the 
experiments on the computer-generated network and 
real-world networks confirm the advantage and validity of 
our approach. And in the future, we will focus on the research 
of adaptive parameters and the combination with other 
algorithms to receive a better performance of ACO.  
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