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Abstract—Path planning technique is vital to Unmanned 

Aerial Vehicle (UAV). Evolutionary Algorithms (EAs) have been 

widely used in planning path for UAV. In these EA-based path 

planners, Cartesian coordinate system and polar coordinate 

system are commonly used to codify the path. However, either of 

them has its drawback: Cartesian coordinate systems result in 

an enormous search space, whilst polar coordinate systems are 

unfit for local modifications resulting e.g., from mutation and/ 

or crossover. In order to overcome these two drawbacks, we 

solve the UAV path planning in a new coordinate system. As the 

new coordinate system is only a rotation of Cartesian coordinate 

system, it is inherently easy for local modification. Besides, this 

new coordinate system has successfully reduced the search space 

by explicitly dividing the mission space into several subspaces. 

Within this new coordinate system, an Estimation of 

Distribution Algorithms (EDAs) based path planner is proposed 

in this paper. Some experiments have been designed to test 

different aspects of the new path planner. The results show the 

effectiveness of this planner. 

Keywords—Unmanned Aerial Vehicle; off-line path planning; 

rotated coordinate system; Estimation of Distribution Algorithms 

 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) are aircrafts without 

onboard pilots [1]. So far, UAVs have been used in various 

fields, including civil markets [2] and military [3], and draw 

increasingly research interests. Usually, UAVs execute those 

missions with being remotely controlled by humans on 

ground or autonomously flying by following the onboard 

preprogrammed path planner [4], [5]. As the missions get 

complex, remote controllers can hardly offer sufficiently 

accurate and quick reactions due to physiologically 

limitations of human. In this case, path planning technique 

becomes very important for UAVs. [3]. The path planning for 

UAVs is to generate an optimal or near-optimal path that has 

shortest length and largest survival probability to guide the 

UAV to reach the desired destination satisfying various 

constraints [4]. Finding such a path has been proved a NP-

Complete problem [5]. 

So far, various methods, e.g., A* [5], [6], Mixed-Integer 

Linear Programming [7], [8], Nonlinear Programming [9] and 

Voronoi Diagram [10], [11], have been proposed to construct 

path planners. These planners build a search map and search 

a path in it. However, this approach requires the calculation 

of the configuration space (C-space) for looking up the 

performance of any point in the search map, which is 

computationally expensive [12]. Besides, when the mission 

varies, e.g., an unknown threat pop-ups, the C-space must be 

explicitly updated [12], [13], [15], which is also very time-

consuming. Given these considerations, Evolutionary 

Algorithms (EAs) have been adopted into UAVs path 

planning [12]-[20] since the individuals (candidate paths) of 

EAs are evaluated in the search space, while the C-space is no 

longer required [12]. 

The search space of an EA-based path planner depends 

heavily on the representation of the path. In the existing EA-

based path planners, a path is commonly represented as a 

sequence of 3-D waypoints, each of which indicates a place 

somewhere in the mission space that the UAV will pass-by 

(Fig.1). Thus, the goal of EA-based planners is to find a 

 
 

Fig. 1.  A 2-D path codified with absolute Cartesian coordinate is 

shown in (a). A 2-D path with in the relative polar coordinate is shown 

in (b). 
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sequence of locations, i.e., waypoints, that makes the whole 

path optimal. Under this representation, two kinds of 

coordinate systems, i.e., Cartesian coordinate system [12], 

[14]-[17], [19], denoted as (𝑥, 𝑦, 𝑧 ), and polar coordinate 

system [13], [15], [18], [20], denoted as (𝑟, 𝜃, 𝑧), have been 

adopted in EA-based path planners. However, both of them 

have inherent drawbacks [4], [12], [15]: the Cartesian 

coordinate system based planner generates enormous search 

space while the path represented in polar coordinate system is 

difficult for local modifications, e.g., mutation and crossover. 

To overcome these drawbacks simultaneously, in this paper, 

a new coordinate system is used to represent the waypoints 

(Fig.2). This new coordinate system, denoted as (𝑥’, 𝑦’, 𝑧’), 
makes its 𝑥’ axis along the horizontal direction from the start 

to the destination of the mission and keeps 𝑦’  axis being 

orthogonal to the 𝑥’ axis, and leaves 𝑧’ axis the same with z. 

Within this new coordinate system, the 𝑥’  coordinate of 

successive waypoints should be always larger than the 𝑥’ 
coordinate of their previous ones. To benefit from this, the 𝑥’ 
axis is explicitly divided into 𝑁𝑤-2 equal intervals, where  𝑁𝑤 

is the number of waypoints of a path. In this way, the whole 

mission space can be divided into 𝑁𝑤-2 equal subspaces and 

each intermediate waypoint, i.e., ignoring the start and 

destination, will be sampled in its corresponding interval. 

Thus, the search space generated by the new coordinate 

system has been significantly reduced. Furthermore, as 

( 𝑥’, 𝑦’, 𝑧’ ) is a rotation of ( 𝑥, 𝑦, 𝑧 ), the waypoints are 

mathematically independent of each other, thus they suit local 

modification easily. In a word, this new coordinate system has 

solved the drawbacks of the previous two coordinate systems 

simultaneously. 

As the mission space has been divided into 𝑁𝑤-2 subspaces, 

to find a possible path with 𝑁𝑤-2 intermediate waypoints is 

actually to find one optimal waypoint in each subspace, so 

that the line segments from itself to its two adjacent waypoints 

satisfy all the constraints and objectives. For the sake of 

finding optimal waypoints in each subspace, Estimation of 

Distribution Algorithms (EDAs) are adopted. EDAs are a new 

branch of EAs and have been proved efficient and reliable in 

many real-world applications [21]. An EDA generates new 

individuals by sampling from a probability distribution 

estimated from the promising individuals of previous 

generations rather than by crossover and mutation that 

classical EAs (e.g., GA) do. The motivation of using EDAs 

are two-fold: first, traditional operators like mutation and 

crossover are discarded, which simplifies the design of the 

path planners. Second, the problem structure can be revealed 

by learning the probability distribution, which has the ability 

of explicitly guiding the search for optimal waypoints. With 

this motivation, UMDAc [22] is employed to construct a new 

path planner. UMDAc  is one of the simplest EDAs and 

commonly regarded as the baseline of EDAs. The reason of 

choosing UMDAc  rather than other more complex and 

efficient EDAs is that we want to simply test the basal 

effectiveness of the how EDAs perform in path planning 

without any specific or complex assumed relations among 

variables.  

Experimental studies consist of two parts. First, 4 problems 

in different difficulty levels are designed to test the 

effectiveness of the new proposed path planner. Second, in 

order to show how the new coordinate system makes sense, 

another two UMDAc based path planners are constructed with 

the Cartesian coordinate system and the polar coordinate 

system, and tested. The results show that new coordinate 

system based path planner is competent on complex problems 

and outperforms the other two. 

The rest of this paper is organized as follows: Section II, 

the problem of UAV path planning is described. Section III 

introduces the new coordinate system in detail. After that, the 

UMDAc based path planner are constructed in Section IV. In 

Section V, the experimental studies are shown. 

II. PROBLEM DESCRIPTIONS 

The path planning for UAVs is to generate an optimal or 

near-optimal path in the mission space to guide the UAV to 

reach the desired destination. The path should satisfy various 

constraints and objectives. In this section, 4 constraints and 4 

objectives that are commonly used are described as follows. 

A. Constraints 

Constraints usually depict the limitations of UAV’s 

physical ability and mission space. Different constraints are 

required by different UAVs and missions. Here 4 commonly 

used constraints [12], [14], [15] are described: 

1) Maximal Turning Angle: The path at each waypoint 

should be smooth enough, so that the UAV can follow on it 

easily. Thus, the turning angle, i.e., the angle that included by 

two adjacent segments of a waypoint, at each intermediate 

waypoint should be smaller than a threshold. For each 

intermediate waypoint (𝑥′𝑖 , 𝑦′𝑖 ,𝑧′𝑖 ), 𝑖 =  2,3, …,  𝑁𝑤 -1, its 

turning angle can be calculated as: 

 

𝜃𝑖 = arccos (
(𝑥′𝑖−𝑥

′
𝑖−1 ,𝑦

′
𝑖−𝑦

′
𝑖−1)∙(𝑥

′
𝑖+1−𝑥

′
𝑖 ,𝑦

′
𝑖+1−𝑦

′
𝑖)
𝑇

|(𝑥′𝑖−𝑥
′
𝑖−1 ,𝑦

′
𝑖−𝑦

′
𝑖−1)|∙|(𝑥

′
𝑖+1−𝑥

′
𝑖 ,𝑦

′
𝑖+1−𝑦

′
𝑖)|
) (1) 

 

Suppose ∆ is an arbitrary vector, then |∆| means the norm 

of vector ∆ . The number of violations of a path on this 

constraint can be written as: 

 

∑ 𝑐𝑖
1𝑁𝑤−1

𝑖=2  𝑤𝑖𝑡ℎ 𝑐𝑖
1 = {

1     𝑖𝑓 𝜃𝑖 > 𝜃𝑚𝑎𝑥
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (2) 

where 𝜃𝑚𝑎𝑥 is the predefined maximal turning angle. 

2) Limited UAV Slope: The UAV slope indicates that the 

 
Fig. 2.  A 2-D example of the relation between the new coordinate and 
the absolute Cartesian coordinate. 
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angle at the waypoint where a UAV changes its altitude. For 

each waypoint (𝑥′𝑖 , 𝑦′𝑖 ,𝑧′𝑖), 𝑖 =  1,2, … , 𝑁𝑤-1, its slope can 

be calculated as: 

 

     𝑘 =
𝑧′𝑖+1−𝑧′𝑖

|(𝑥′′𝑖+1−𝑥
′
𝑖 ,𝑦

′
𝑖+1−𝑦

′
𝑖)|

       (3) 

 

Assuming the maximal diving angle is 𝛼 and the maximal 

climbing angle is 𝛽, the number of violations of a path on this 

constraint can be written as: 

 

∑ 𝑐𝑖
2𝑁𝑤−1

𝑖=1  𝑤𝑖𝑡ℎ 𝑐𝑖
2 = {

0     𝑖𝑓  α ≤ 𝑘 ≤ 𝛽
1       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

      (4) 

 

3) Terrain Limited: A feasible path should not go through 

the terrain and has to avoid collisions with mountains. In order 

to check whether the path (segment) between two adjacent 

waypoints is within the terrain or not, that segment is divided 

equally into 6 parts. And each of the dividing points will be 

checked. If map ( 𝑥′𝑖 , 𝑦′𝑖 ) is the function that returns the 

altitude of the horizontal location (𝑥′𝑖 , 𝑦′𝑖), the numbers that 

the path go through the terrain can be calculated as: 

 

∑ ∑ 𝑐𝑖𝑗
36

𝑗=1
𝑁𝑤−1
𝑖=1    

             𝑤𝑖𝑡ℎ 𝑐𝑖𝑗
3 = {

1       𝑑𝑧′𝑖𝑗 ≤ map(𝑑𝑥′𝑖𝑗 , 𝑑𝑦
′
𝑖𝑗
)

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
       (5) 

where (𝑑𝑥′𝑖𝑗 , 𝑑𝑦
′
𝑖𝑗
, 𝑑𝑧′𝑖𝑗)  indicates the 𝑗thdividing point 

in the path between the 𝑖th and (𝑖 + 1)th waypoint, it can be 

calculated as:  

 
(𝑑𝑥′𝑖𝑗 , 𝑑𝑦

′
𝑖𝑗
, 𝑑𝑧′𝑖𝑗) = (𝑥′𝑖 , 𝑦′𝑖 , 𝑧

′
𝑖) + (𝑗 − 1) ∙

                             ((𝑥′𝑖+1, 𝑦
′
𝑖+1
, 𝑧′𝑖+1) − (𝑥

′
𝑖 , 𝑦

′
𝑖
, 𝑧′𝑖)) /6       (6) 

where 𝑗 = 1, 2, … ,6. 

4) Maps Limited: To restrict the path inside the given 

mission range, this constraint is used [15]. 

 

∑ 𝑐𝑖
4𝑁𝑤−1

𝑖=1  𝑤𝑖𝑡ℎ 𝑐𝑖
4 =  {

0     𝐼𝑛𝑅𝑎𝑛𝑔𝑒(𝑥′𝑖 , 𝑦′𝑖)
1           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

   

𝐼𝑛𝑅𝑎𝑛𝑔𝑒(𝑥′𝑖 , 𝑦
′
𝑖
) = (𝑙𝑥 ≤ 𝑥′𝑖 ≤ ℎ𝑥)⋀(𝑙𝑦 ≤ 𝑦′

𝑖
≤ ℎ𝑦) 

                         (7) 

where 𝑙𝑥  and ℎ𝑥  are the lower and higher bounds for 

x’ coordinate system, and 𝑙𝑦 and ℎ𝑦 are the lower and higher 

bounds for y’ coordinate system. 

B. Objectives 

1) Minimal Path Length: For military missions, shorter 

paths are better than longer ones, if all the objectives are 

equally regarded. This is reasonable since those shorter paths 

require less time of flight and are very likely to have lower 

chance of encountering some unexpected threat in a real 

uncertain mission space. The normalized path length is to be 

minimized rather than the real one since they are equivalent 

and the normalized one is considered admissible [15]. The 

path length ratio (PLR) is calculated as follows: 

 

PLR =  
∑ √(𝑥′𝑖+1−𝑥′𝑖)

2+(𝑦′𝑖+1−𝑦′𝑖)
2+(𝑧′𝑖+1−𝑧′𝑖)

2𝑁𝑤−1
𝑖=1

√(𝑥′𝑁𝑤−𝑥′1)
2+(𝑦′𝑁𝑤−𝑦′1)

2+(𝑧′𝑁𝑤−𝑧′1)
2

 

                                                                              (8) 

2) Minimal Probability of Kill: Paths with lower 

probability of kill are safer than those with higher ones. The 

probability of kill (PKill) [15] depends on the enemy Air 

Defense Units (ADUs) that are groups of radars and missiles. 

In order to calculate the approximate PKill, each dividing 

point is checked (seen in Fig.3). For each dividing point, the 

𝑘th ADU has a certain probability to destroy the UAV only if 

that point is inside the region defined by the ADU’s maximal 

risk distance, denoted as 𝑅𝑃𝐾𝑚𝑎𝑥
𝑘 . And the PKill of a dividing 

point caused by an ADU is fourth power to the distance from 

the dividing point to that ADU [12]. Thus, given the location 

of the 𝑘th ADU (𝑎𝑥′𝑘 , 𝑎𝑦′𝑘 , 𝑎𝑧′𝑘), the PKill of the whole path 

can be calculated as: 

PKill =  ∑ ∑ ∑ PK𝑖𝑗
𝑘𝐴

𝑘=1
6
𝑗=1

𝑁𝑤−1
𝑖=1   

 

with PK𝑖𝑗
𝑘 = {

(
𝛾

dis𝑖𝑗
𝑘 )

4        𝑖𝑓  dis𝑖𝑗
𝑘 ≤ 𝑅𝑃𝐾𝑚𝑎𝑥

𝑘

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
 

 

 dis𝑖𝑗
𝑘 = √(𝑑𝑥′𝑖𝑗 − 𝑎𝑥′𝑘)

2 + (𝑑𝑦′𝑖𝑗 − 𝑎𝑦′𝑘)
2 + (𝑑𝑧′𝑖𝑗 − 𝑎𝑧′𝑘)

2 

                                                                                        (9) 

where 𝛾 is a scale which reflects the intensity of ADUs, A 

is the number of ADUs. 

3) Minimal Probability of Radar Detection: 

Only if the UAV is detected by radars, it can be destroyed 

by ADUs. Otherwise, the UAV will keep stealthy. The 

calculation of the probability of radar detection (PRD) is 

similar to that of PKill, only if the detective region of the 𝑘th 

radar is larger than 𝑅𝑃𝐾𝑚𝑎𝑥
𝑘 , denoted as 𝑅𝑃𝑅𝐷𝑚𝑎𝑥

𝑘 . Thus, given 

the location of the 𝑘th radar (𝑟𝑥′𝑘 , 𝑟𝑦′𝑘 , 𝑟𝑧′𝑘), the PRD of the 

whole path can be calculated as: 

PRD =  ∑ ∑ ∑ PD𝑖𝑗
𝑘𝑅

𝑘=1
6
𝑗=1

𝑁𝑤−1
𝑖=1   

 

with PD𝑖𝑗
𝑘 = {

(
𝛿

dis𝑖𝑗
𝑘 )

4          𝑖𝑓  dis𝑖𝑗
𝑘 ≤ 𝑅𝑃𝑅𝐷𝑚𝑎𝑥

𝑘

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
  

 

dis𝑖𝑗
𝑘 = √(𝑑𝑥′𝑖𝑗 − 𝑟𝑥′𝑘)

2 + (𝑑𝑦′𝑖𝑗 − 𝑟𝑦′𝑘)
2 + (𝑑𝑧′𝑖𝑗 − 𝑟𝑧′𝑘)

2 

 
Fig. 3.  Check the path between (𝑖 − 1)th  waypoint and (𝑖 + 1)th  

waypoint with 𝑗th and (𝑗 + 1)th  ADUs. 
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(10) 

where 𝛿 is a scale which reflects the intensity of the radars, 

and R is the number of radars. 

4) Minimal Flight Altitude: UAVs flying at a low altitude 

can take the advantages of the terrain-mask effect, which 

helps them to avoid radars. To approximate the Flight 

Altitude (FA), the average relative height of each dividing 

point is calculated. The FA is calculated as follows: 

FA =∑∑FA𝑖𝑗

6

𝑗=1

𝑁𝑤

𝑖=1

 𝑤𝑖𝑡ℎ FA𝑖𝑗 = 

 {
  0                              𝑖𝑓  𝑑𝑧′𝑖𝑗 ≤ map(𝑑𝑥′𝑖𝑗 , 𝑑𝑦

′
𝑖𝑗
)       

(𝑑𝑧′
𝑖𝑗
−map(𝑑𝑥′𝑖𝑗 , 𝑑𝑦

′
𝑖𝑗
))/6       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

       (11) 

III. THE NEW COORDINATE SYSTEM 

A. The Commonly Used Coordinate Systems 

In UAV path planning problems, EA-based path planners 

have been extensively studied [12]-[20] for the candidate 

paths are evaluated within the search space rather than the C-

space, which significantly reduces the computational costs. 

The search space heavily depends on the representation of the 

path. In previous work, the path of UAV is usually represented 

in a sequence of 3-D waypoints. Under this representation, the 

Cartesian coordinate system and polar coordinate system are 

commonly used to codify the waypoints.  

The Cartesian coordinate system is the most direct and 

natural representation of a spatial point that uses traditional 

orthogonal (𝑥, 𝑦, 𝑧   to address the 3-D waypoints, where x 

and y indicate the location of a waypoint in the horizontal 

mission space and z denotes the height of a waypoint. A 2-D 

example of the Cartesian coordinate system based path is 

shown in Fig.1 (a . In this coordinate system, the waypoints 

are easy for local modifications, e.g., mutation and crossover, 

since the waypoints are independent of each other. 

Nevertheless, it generates enormous search space since the 

domain for generating each waypoint has to be always the 

whole mission space.  

The polar coordinate system uses (𝑟, 𝜃, 𝑧 ) to indirectly 

define the location of a waypoint, where r is the distance 

between two adjacent waypoints,  𝜃  is the turning angle at 

each waypoint, and 𝑧 is the height of a way point. A 2-D polar 

coordinate system based path is shown in Fig.1 (b). The 

waypoints in the polar coordinate system are just relative 

locations. This diminishes the search space since the domain 

for (𝑟, 𝜃, 𝑧) is smaller than the whole mission space. However, 

changing any intermediate waypoint can heavily influence all 

its successive ones since the absolute location in the mission 

space of a waypoint depends heavily on all its previous ones. 

Thus, it turns out to be unfit for local modifications, e.g., 

mutation and crossover.  

B. The New Coordinate System  

In order to solve these two drawbacks simultaneously, a 

new coordinate system, denoted as (𝑥’, 𝑦’, 𝑧’), is used in this 

paper. This coordinate system makes its x’  axis along the 

horizontal direction from the start to the destination of the 

mission and keeps 𝑦’ axis being orthogonal to the 𝑥’ axis, and 

leaves 𝑧’  axis the same with 𝑧 . Assume the start and 

destination in Cartesian coordinate system as (𝑥1, 𝑦1, 𝑧1) and 

(𝑥𝑁𝑤 , 𝑦𝑁𝑤 , 𝑧𝑁𝑤 ) are fixed and already known before path 

planning. For any point (𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′) in new coordinate system, 

its location in Cartesian coordinate system, (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ), is 

defined mathematically as follows:  

  

{
 
 

 
 𝑥𝑖 = 𝑥1 + cos (𝜑 + 𝜙) ∙ √𝑥𝑖

′2 + 𝑦𝑖
′2

𝑦𝑖 = 𝑦1 + sin(𝜑 + 𝜙) ∙√𝑥𝑖
′2 + 𝑦𝑖

′2

𝑧𝑖 = 𝑧𝑖
′

                             (12) 

 

where 𝜑 is the angle included by the direction from start to 

waypoint and x’ axis, and 𝜙 is the angle between x’ axis and 

x axis. The linear transformation from the new coordinate 

system to the Cartesian coordinate system can be seen in Fig.2. 

For example, the codifications of the start and destination in 

new coordinate system are ( 0, 0, 𝑧1 ) and 

(√(𝑥𝑁𝑤 − 𝑥1)
2 + (𝑦𝑁𝑤 − 𝑦1)

2,  0, 𝑧𝑁𝑤). 

The successive waypoints should be always closer to the 

destination than their previous ones. Otherwise, these two 

adjacent waypoints will induce a meaningless larger path 

length. This is an implicit demand of shorter path length. A 

general example is given in Fig.4 to illustrate why the path 

that violates the demand above will be the longer. In Fig.4, A, 

B, P, Q are four waypoints and P is closer than Q to 

Destination. To fly from A to B, there are four possible path 

for UAV, i.e., A-P-B, A-Q-B, A-Q-P-B and A-P-Q-B. Among 

them, only A-P-Q-B violates the demand that Q is successive 

to P while P is closer to B. Apparently, A-P-B is the shortest 

path and A-Q-B is the second shortest path according to the 

axiom that the two sides of a triangle is greater than the third 

side. For A-Q-P-B and A-P-Q-B, as Q is closer to A and P is 

closer to B, which indicates AQ is smaller than AP and PB is 

smaller than QB, thus A-Q-P-B is shorter than A-P-Q-B. Thus, 

A-P-Q-B is the longest path. 

In the new coordinate system, to smooth the path length, 

the differences of 𝑦’ or 𝑧’ between two adjacent waypoints 

should be small, relative to the differences of 𝑥’. Otherwise, 

the turning angle will be large, which the UAV is difficult to 

follow on. In that way, the path length between two adjacent 

waypoints is mainly determined by the distance between the 

𝑥’  of these two waypoints. Hence, for simplicity, we can 

modify the demand as: the 𝑥’ of successive waypoints should 

be always larger than the 𝑥’ of their previous ones. According 

to this modified demand, the waypoints of a path will be 

always in an ascending order along the 𝑥’ axis. In this case, if 

the 𝑥’  coordinate system of the (𝑖 − 1)th  waypoint of one 

candidate path will never larger than that of the ith waypoint 

of all the other candidate paths, where 𝑖 =  2, 3, … , 𝑁𝑤-1, all 

 
Fig. 4.  The path A-P-Q-B violates the demand and is the longest path. 
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the intermediate waypoints will form 𝑁𝑤 -2 clusters and 

anyone in the 𝑖th cluster, along the 𝑥’ axis, is the 𝑥’ waypoint 

of its path. 

Inspired by this thought, the 𝑥’ axis is explicitly divided 

into 𝑁𝑤 -2 equal intervals, by which the mission space is 

divided into 𝑁𝑤 -2 equal subspaces, and the 𝑖th intermediate 

waypoints will be sampled in the 𝑖th subspace. In this case, 

the domain for generating each waypoint becomes 𝑁𝑤 -2 

smaller than the original one. As a path consists of 𝑁𝑤 -2 

waypoints, the whole search space becomes (𝑁𝑤 − 2  
𝑁𝑤−2 times 

smaller than that of the Cartesian coordinate system. Besides, 

the absolute location of each waypoint in the new coordinate 

system is only based on the start and destination, which are 

predefined. Thus, the absolute location of each waypoint is 

independent of the others, which means changing any of the 

waypoint will not influence the others. Hence, the drawbacks 

of the Cartesian coordinate system and the polar coordinate 

system simultaneously have been solved.   

IV. THE EDA BASED PATH PLANNERS 

In this paper, as the 𝑥’ axis of the new coordinate system 

has been divided into 𝑁𝑤-2 subspaces, to find an optimal path 

with 𝑁𝑤  -2 intermediate waypoints is actually to find one 

optimal waypoint in each subspace, so that the line segments 

from itself to its two adjacent waypoints satisfy all the 

constraints and objectives. In order to locate optimal 

waypoints in each subspace, Estimation of Distribution 

Algorithms (EDAs) [22] are adopted. 

A. Estimation of Distribution Algorithms 

EDAs are a new branch of EAs that have been adopted in 

many real-world applications [21]. An EDA estimates a 

probability distribution from selected individuals to replace 

the design of crossover and mutation in classical EAs. The 

framework of EDAs can be described as follows:   

1) 𝑔0 ← Initialize 𝑁𝑝 individuals uniformly. 

2) Evaluate the 𝑁𝑝 individuals. 

3) 𝑔𝑖+1/2 ←  eelect 𝑁𝑝 22 individuals with better 

fitness. 

4) Estimate a probability distribution 𝑝𝑖 with 𝑔𝑖+1/2. 

5) 𝑔𝑖+1
′ ← eample 𝑁𝑝22 new individuals from 𝑝𝑖. 

6) 𝑔𝑖+1 ←  Form new population with 𝑔𝑖+1/2  and 

𝑔𝑖+1′. 
7) etop if some stop criterion meets. Otherwise 𝑖 =

 𝑖 + 1，go to step 2 . 

The motivation of introducing EDAs is two-fold: first, 

EDAs do not require the design of reproductive operators, i.e., 

mutation and crossover operators. Besides, the parameters are 

reduced, which take lots of time to fine-tune. Second, EDAs 

can help guide the path planning by explicitly learning the 

probability distribution of individuals. 

B. 𝑈𝑀𝐷𝐴𝑐  Based Path Planner 

The framework of EDAs based path planners is essentially 

the extension of the framework of EDAs. It first uniformly 

initializes a population with 𝑁𝑝 paths.   

Then all the 𝑁𝑝 paths are evaluated. Some of the previous 

work evaluated individuals with a single objective function, 

which combines constraints and objectives with predefined 

parameters [12], [16]-[19]. However, these parameters are 

difficult to fine-tune and may not be able to reflect the real 

intention of users. With that consideration, other researchers 

[13]-[15], [20] adopt multi-objective methods to evaluate the 

individuals. In this paper, an efficient multi-objective and 

multi-constraints handling method [23] based on goals, 

priorities, and Pareto sets is adopted to evaluate the candidate 

paths. This method has been successfully used in [15] and its 

ability of dealing with many-objective problems has been 

shown. Besides, this method does not require any parameters. 

According to this method, all these criteria are placed into 

three priority levels: the 4 constraints that must be satisfied 

are placed in the highest-priority; the Minimal path length and 

Minimal probability of kill objectives that should be 

minimized are placed in the second-priority; the last two 

objectives are placed in the lowest-priority. With this 

organization, paths that fulfill the highest-priority are better 

than those that do not, and the latter are basically organized 

according to how far the constraints have been optimized. If 

path A is better than path B, path B is said to be preferred by 

A.   

After evaluation, the better 𝑁𝑝 22 paths which have less 

preferred counts are selected for estimating probability 

distribution. eo far, quite a few EDAs have been proposed in 

literature, and various methods have been adopted to estimate 

probability distribution. In this paper, one of the simplest 

EDA, i.e., UMDAc, is adopted to construct the path planner. 

UMDAc is commonly regarded as the baseline of EDAs. The 

purpose of choosing UMDAc rather than other EDAs is to test 

the basal effectiveness of EDAs based path planners without 

any specific or complex assuming relation among variables. 

UMDAc  naively assumes there is no interdependencies 

among variables. In this paper, the variables are actually two-

stages: the waypoints stage and the 3-D coordinate systems 

stage. That is, given a path with 𝑁𝑤-2 intermediate waypoints 

(𝑤2, 𝑤3, … , 𝑤𝑁𝑤−1 , there are 3(𝑁𝑤-2  variables (𝑥′𝑖 , 𝑦′𝑖 , 𝑧′𝑖 , 

i =2, 3,…, 𝑁𝑤-1. Hence, the probability distribution can be 

decomposed as 3(𝑁𝑤-2  marginal distribution. That is, 
 

𝑝(𝑤2, 𝑤3, … , 𝑤𝑁𝑤−1) = 𝑝(𝑤2) ∙ 𝑝(𝑤3)⋯𝑝(𝑤𝑁𝑤−1) 

= 𝑝(𝑥′2) ∙ 𝑝(𝑦
′
2
) ∙ 𝑝(𝑧′2) ∙ 𝑝(𝑥

′
3) ∙ 𝑝(𝑦

′
3
) ∙

          𝑝(𝑧′3)⋯𝑝(𝑥′𝑁𝑤−1) ∙ 𝑝(𝑦′𝑁𝑤−1) ∙ 𝑝(𝑧′𝑁𝑤−1) 

                                            (13) 

As UMDAc is a Gaussian distribution based EDA, the joint 

probability can be written as: 

 

𝑝(𝑤2, 𝑤3, … , 𝑤𝑁𝑤−1) 

= ∏ 𝒩(𝜇𝑥‘
𝑘
, 𝜎𝑥‘𝑘) ∙

𝑁𝑤−1
𝑘=2 𝒩(𝜇𝑦’

𝑘
, 𝜎𝑦‘𝑘) ∙ 𝒩(𝜇

𝑧’
𝑘
, 𝜎𝑧‘𝑘)

                                                                              (14) 

Where 𝒩 ( 𝜇∆𝑘, 𝜎
∆
𝑘 ) represents a marginal Gaussian 

density function with mean 𝜇∆𝑘 and standard deviation 𝜎∆𝑘. 

The values of (𝜇∆𝑘 , 𝜎
∆
𝑘 ) can be calculated by maximum 

likelihood estimation with the ∆ ( ∆ = 𝑥′, 𝑦′, 𝑧′)  coordinate 
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system of the kth  (k =  2, 3,… , 𝑁𝑤 -1) waypoint of all the 

selected paths. 

After the probability distribution is estimated, new 

individuals will be sampled with the probability distribution 

by the Probabilistic Logic Sampling (PLS) method [22], 

which can be summarized, in the situation of UAV path 

planning, as follows: 

1) For i = 1 : S 

2)    (𝑥′𝑖1, 𝑦′𝑖1, 𝑧′𝑖1) ← (𝑥′1, 𝑦′1, 𝑧′1) 
3)    (𝑥′𝑖𝑁𝑤 , 𝑦′𝑖𝑁𝑤 , 𝑧′𝑖𝑁𝑤) ← (𝑥′𝑁𝑤 , 𝑦′𝑁𝑤 , 𝑧′𝑁𝑤) 

4)    For j = 2 : 𝑁𝑤-1  

5)       (𝑥′𝑖𝑗 , 𝑦′𝑖𝑗 , 𝑧′𝑖𝑗) ← (𝑝(𝑥′𝑗), 𝑝 (𝑦
′
𝑗) , 𝑝(𝑧

′
𝑗)) 

where S is the sample size, (𝑥′𝑖𝑗 , 𝑦′𝑖𝑗 , 𝑧′𝑖𝑗)  is the 𝑗th 

waypoint of the 𝑖th path, (𝑥′1, 𝑦′1, 𝑧′1) and (𝑥′𝑁𝑤 , 𝑦′𝑁𝑤 , 𝑧′𝑁𝑤) 

are the fixed start and destination. 

After the new 𝑁𝑝/2 individuals are generated, they form the 

new population for the next generation with the 𝑁𝑝 /2 

truncatedly selected individuals at the previous generation. 

Notice that although EDAs are used to search optimal 

waypoint in each subspace within this new coordinate system, 

the traditional EAs can also be adopted to utilize the new 

coordinate system, inherently. 

V. EXPERIMENTAL STUDIES 

A. Experiments Setup 

In this paper, the 3-D off-line single UAV path planning is 

studied. To illustrate the effectiveness stability of this new 

proposed path planners, 4 problems with the same terrain but 

different number of ADUs are adopted, including 7, 15, 30, 

60 randomly initialized ADUs. As far as we know, no 

previous work has tested its planner with so many ADUs. 

Most of the previous work [12]-[14], [16]-[19] set at most 7 

ADUs in the mission space, and only a few of them have 

adopted about 15 ADUs [15], [20]. Although in real missions, 

there might be less ADUs than our experiments have 

initialized, it is also necessary to have these tests since there 

might be some other obstacles in mission space which have 

the similar features to ADUs. For example, if we regard these 

ADUs as the rugged terrain, then these problems are actually 

testing the ability of the new planner on terrain following and 

terrain avoidance.  

As the number of ADUs increases, the safe space reduces. 

Thus, in order to make the optimal path smooth enough for 

UAV to follow on, the number of waypoints should increase. 

Some researchers [14]-[17] have noticed the importance of 

the smoothness of a path, and they adopt the B-spline curves 

and Bezier curves instead of the line segments used in this 

paper. By using those curves, the path can be easily smoothed 

with less waypoints although it costs additional computational 

times at each generation. In this paper, the reason of not using 

these curves is that we want to test the scalability of our 

planner since in some real applications, the mission space can 

be extremely complex and large.  

In this new planners, there are only two parameters, i.e., the 

population size 𝑁𝑝 and the number of waypoints 𝑁𝑤 of a path. 

They are set as: 𝑁𝑤 = 10, 𝑁𝑝 = 120 for 7 ADUs problem, 𝑁𝑤 

= 12, 𝑁𝑝 = 200 for 15 ADUs problem, 𝑁𝑤 = 15, 𝑁𝑝 = 300 for 

30 ADUs problem, 𝑁𝑤 = 20, 𝑁𝑝 = 500 for 60 ADUs problem.  

The whole experiment consists of two parts. First, the new 

planner runs 15 times for each problem to show its 

effectiveness. Second, in order to test how the new coordinate 

system proposed helps improve the ability of the new planner, 

 
Fig. 5.  15 paths in the 7 ADUs problem. 

 
Fig. 6.  15 paths in the 15 ADUs problem. 

 
Fig. 8.  15 paths in the 60 ADUs problem. 

 
Fig. 7.  15 paths in the 30 ADUs problem. 
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we construct and test two other UMDAc based planners with 

the Cartesian coordinate system and polar coordinate system, 

respectively. These three path planners share the same 

parameters. The only difference among them is the 

representation of waypoints. All the experiments stop at 100 

generations.  

B. The Results and Analyses 

In these figures, the color bar indicates the height of areas. 

There are almost 9 outstanding mountains, shown in dense 

contour lines. The horizontal mission space is within the 

range of [0,10]2 . The start is fixed at (0.5,0.5 ) and the 

destination is fixed at (9.6,9.6). The radars detection ranges 

are shown in bigger circles and the missiles destruction ranges 

are shown in smaller circles.   

1) The effectiveness of the new planner: The 15 optimal 

paths of each problem is shown in Figs.5-8 with black line 

segments. From these figures we can see the effectiveness of 

this new planner in the following aspects: 

Stability: All the paths of the first 3 problems are safe 

and quite short. As seen in Figs.5-7, all the paths successfully 

avoid the missiles destruction range and the mountains, where 

the UAV may be destroyed. To be specific, near the 

destination is the highest mountain, which the UAV should 

carefully avoid. Besides, some of the randomly initialized 

ADUs just stand by that mountain. Thus, there is quite narrow 

space for safe paths, i.e., zero probability for destruction. As 

seen that all the paths pass-by the highest mountain from its 

both sides safely and keep quite far distances to the ADUs. 

There are two paths in the missile destruction range at almost 

(5.0,7.0  in Fig.5, however, the PKill of those two paths are 

0. This is because the paths are above the missile destruction 

range since that ADU stands at a very low height. It can be 

seen that almost all the paths go through the radars detection 

range in some places. The reason of such situation is that: as 

the priority of PLR is higher than PRD, the planner would 

rather choose the path with smaller PLR than with lower PRD. 

In this case, all the path length is quite short and the PLR of 

most paths vary from 1.1 to 1.3. Even that, the PRD is low 

enough. 

In the fourth problem, as the number of ADUs comes up 

to 60, there are quite few safe space where the optimal paths 

can happen. As seen in Fig.8, all the paths avoid all the 

missiles destruction range but one at (5.8, 5.6 . Although this 

single ADU may destroy the UAV, those paths are quite near 

optimal. We guess the situation in Fig.8 is because 100 

generations are not sufficient for the planner to obtain an 

optimal path, i.e., the waypoints in each subspace have not 

really converged yet.  

Smoothness: All the paths in Figs.5-8 are smooth as the 

maximal turning angle is set to be 45° . eince the paths in 

Fig.8 are just near optimal, some of them are not smooth. For 

example, all the paths turns sharply at the second waypoint. 

And the reason is that one randomly initialized ADU is just in 

front of the start, which heavily restricts the choice for the 

second waypoint.  

Scalability: These 4 problems have different number of 

ADUs, making the number of waypoints various. In that way, 

the search space of the 4 problems are quite distinct. As 

 
Fig. 9.  The paths on 7 ADUs problem produced by the planner with the 

new coordinate, absolute Cartesian coordinate and relative coordinate are 

presented in ‘start-line’, ‘dot dash-line’ and ‘circle-line’, respectively. 

 
Fig. 10.  The paths on 15 ADUs problem produced by the planner with the 
new coordinate, absolute Cartesian coordinate and relative coordinate are 

presented in ‘start-line’, ‘dot dash-line’ and ‘circle-line’, respectively. 

 
Fig. 11.  The paths on 30 ADUs problem produced by the planner with the 
new coordinate, absolute Cartesian coordinate and relative coordinate are 

presented in ‘start-line’, ‘dot dash-line’ and ‘circle-line’, respectively. 

 
Fig. 12.  The paths on 60 ADUs problem produced by the planner with the 
new coordinate, absolute Cartesian coordinate and relative coordinate are 

presented in ‘start-line’, ‘dot dash-line’ and ‘circle-line’, respectively. 
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analyzed above, the new planner performs optimal or near 

optimal on these 4 problems, which proves the new planner is 

scalable and are competent on both simple and complex 

problems.  

Notice that the diversity of paths decreases from the 

simplest problem to the hardest problem. This is reasonable 

that as the ADUs increase, the safe areas in mission space 

become narrower, and the local optimal areas in the search 

space get smaller. On one hand, it gets increasingly difficult 

to find the local optima in search space, i.e., the optimal paths 

in mission space. On the other hand, once two optimal paths 

in mission space are found, they are very likely to belong to 

the same local optimal area in the search space.  

2) The other coordinate systems based path planners: 

Figs.9-12 show the path produced by the UMDAc based path 

planners in the codification of the new coordinate system, 

Cartesian coordinate system and polar coordinate system, 

respectively in ‘start-line’, ‘dot dash-line’ and ‘circle-line’. 

As seen that the previous two coordinate systems based 

planners perform poorly on all these complex problems. The 

reason of their poor performance is mainly because the search 

space becomes quite large as the problems get complex. 

Oppositely, as the new coordinate system has successfully 

reduce the search space, the new planner works quite well on 

these four problems. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, the problem of 3-D offline path planning for 

single UAV is studied. A new coordinate system is used to 

remedy the drawbacks of two commonly used coordinate 

systems by rotating the Cartesian coordinate system and 

dividing the whole mission space into several subspaces, 

which heavily reduces the search space. Based on this new 

coordinate system, EDAs are introduced into UAV path 

planning problem. The motivation of introducing EDAs is to 

save the fine-tuning time of reproductive parameters and 

guide the search for optimal waypoint in each subspace. 

Specifically, one of the simplest EDA, i.e., UMDAc, is used to 

construct a new path planner. Generally speaking, the new 

coordinate system is also suit for the traditional EAs. 

In the future, some other EDAs may be adopted to reveal 

the interdependencies among variables.  
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