
Knowledge Acquisition Issues for Intelligent Route
Optimization by Evolutionary Computation

Masaki Suzuki and Setsuo Tsuruta
School of Information Environment

Tokyo Denki University
Inzai, Japan

Rainer Knauf
Faculty of Computer Science

and Automation
Ilmenau University of Technology

Ilmenau, Germany

Yoshitaka Sakurai
The School of Interdisciplinary

Mathematical Sciences
Meiji University
Nakano, Japan

Abstract—The paper introduces a Knowledge Acquisition and
Maintenance concept for a Case Based Approximation method
to solve large scale Traveling Salesman Problems in a short time
(around 3 seconds) with an error rate below 3 %. This method
is based on the insight, that most solutions are very similar to
solutions that have been created before. Thus, in many cases a
solution can be derived from former solutions by (1) selecting
a most similar TSP from a library of former TSP solutions, (2)
removing the locations that are not part of the current TSP and
(3) adding the missing locations of the current TSP by mutation,
namely Nearest Insertion (NI). This way of creating solutions by
Case Based Reasoning (CBR) avoids the computational costs to
create new solutions from scratch.

I. INTRODUCTION

Due to the complicated road network, the product distribu-
tion is less efficient than that of the USA, which disadvantages
the productivity of the Japanese industry. This inefficiency also
causes social problems and economical losses. Namely, we are
facing the necessity of urgently reducing the volume of car
exhaust gases to meet environmental requirements as well as
curtailing the transport expenses in Japan.

There are many distribution systems that should be opti-
mized, including the delivery of parcels, letters and products
distribution across multiple ventures. In order to improve their
efficiency, it is necessary to optimize the delivery routes, or
the delivery order of multiple delivery locations (addresses).
One round delivery route includes more than several tens
or hundreds different locations. Thus, the optimization of a
delivery route can be modeled as a large scale Traveling
Salesman Problem (TSP).

However, the TSP is a combinatorial problem that causes
computational explosion due to the n! order of combinations
for a n city TSP. Therefore, to practically obtain an efficient
delivery route of such a distribution system, a near optimal
solving method of TSP is indispensable.

Yet, the practical use of such a solving method on an actual
site needs human confirmation of the solution, since social and
human conditions are involved. Namely, human users should
verify that the solution is practical. Users sometimes need
to correct manually or select an alternative solution to meet
miscellaneous technical and social side conditions. Therefore,
TSP solving methods are required to ensure a response time
necessary for the above human interaction.

By the way, solutions generated by domain experts may
have 2-3% of deviation from the mathematical optimal solu-
tion, but they never generate worse solutions, which may cause
practical problems. On the other hand, conventional approxi-
mate methods for solving TSP [9][14][25] may generate even
mathematically optimal solutions in some particular cases but
cannot ensure that the amount of errors is below 2-3%. Errors
more than 4% possibly discourage users, which makes those
conventional methods not practically useful for delivery route
schedule.

There are some rather simple ways to solve a TSP heuristi-
cally. For instance, users create a delivery schedule by repeat-
ing simple methods such as stepwise inserting new delivery
locations at a position that minimizes the gain of travelling
distance. This is a method called ”Nearest Insertion” (NI)1.
Also, users improve the delivery route by repeating exchanges
sub-routes in the delivery schedule. This is a method called
”2-opt”.

To cope with this, we proposed some types of Genetic
Algorithms (GAs) [20]. These GAs incorporated some simple
heuristics aiming at interactive real-time response as well as
avoiding significant errors2 for any kinds of delivery location
patterns.

Our first approach, a GA incorporating 2-opt type heuris-
tics, tends to fall into a local minimum solution with certain
delivery location patterns though it performs well for other
patterns. Therefore, we proposed a multi-outer-world GA
(Mow-GA) [20]. This method overcomes some 2-opt type
GA’s drawbacks by NI type GAs with 2-opt type GAs.

However, the Mow-GA has also some defects. The Mow-
GA starts an NI type GA from the first generation without
inheriting the information of the elite individuals generated
by the 2-opt type GA. Within about 3 seconds, it cannot
have enough performance for large scale TSPs. Moreover, an
attempt to compensate this drawback by adding a complemen-
tary approach did not work as well [20].

To overcome this problem, as an improvement of the Mow-
GA, a Multi-inner-world Genetic Algorithm (Miw-GA) was
proposed [21]. In this GA, the search efficiency was improved
by supplements that address the weak points by processing
two types of heuristics (2-opt and NI) in each generation.

1Some references call it ”Cheapest Insertion”.
2By ”error”, we denote deviations from the optimal solution.

3252

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

To simplify the search processes and to make them clearly
understandable, the searching operator of the GA was limited
to the mutation to improve individuals. The Miw-GA can
obtain high accurate solutions for various kinds of delivery
location patterns within interactive response time. However,
when the number of cities in the TSP became more than 200,
the average error rate from the optimal solution exceeded 4%
in some cases.

To overcome this drawback, a so-called Backtrack and
Restart GA (BR-GA) [22] was proposed, which maintains the
diversity of a population by conducting a random restart and
fostering new children. This GA achieves below 3% level error
rate for less than 1000 cities TSPs within 3 seconds.

Even the world’s fastest exact algorithm called Concorde
[1] needs 10-100 seconds to solve the same size TSPs. As to
approximation algorithms, LKH [17][10] can solve below 1000
cities TSPs within about 3 seconds. This is the world’s top
level compromise between both accuracy and speed in solving
TSPs by an effective branch & cut search.

Our BR-GA can also solve below 2000 cities TSPs within
10 seconds. However, LKH is an improved version of the fairly
complex method called LK. This is not easy for application
field experts to understand and modify solutions according to
domain conditions. Experts in the delivery application field
are apt not to use complex methods that are too difficult to
understand.

An exact solution or too much accuracy is not valu-
able since 2-3% error is not recognizable for field experts.
Moreover, complex methods have problems in flexibility. The
developers of delivery schedules have difficulties in modifying
solutions generated by complicated methods deriving solutions
suitable for the deliverer’s convenience.

In practice, new TSPs distinguish from formerly solved
ones very slightly. The changes in the location patterns are less
than 10 - 30 % and about 5 % in average. This insight opens
ways to improve the computational complexity in solving large
scale TSPs. The contribution of the present paper is a method
to solve TSPs by Case Based Reasoning (CBR). Here, previous
TSP solutions are collected in a case base (CB). A new TSP
is solved by

1) retrieving the most similar TSP in the CB,
2) mutating its solution towards a solution of the current

TSP by (a) removing the redundant locations from the
library solution and (b) adding the deficient locations
of the current TSP by Nearest Insertion (NI), and,

3) in case the newly created solution TSP meets some
fitness requirements, adding it to the case library.

This paper is organized as follows. In the next (second)
section, the delivery route optimization problem and its tech-
nical issues are described. In the third section, related work is
summarized. Section four introduces our method for solving
the problem.

The main focus in this paper is a concept for the Case
Base maintenance. In the fifth section, experiments to validate
the solving method, its effects and its results are shown and
section six concludes the paper.

II. DELIVERY ROUTE OPTIMIZATION

The delivery route optimization problem of these distribu-
tion systems is formulated as follows.

The delivery network is represented by a weighted com-
plete graph G = (V,E,W). V is a node set. A node vi ∈ V
(i = 1, ⋅ ⋅ ⋅ , n) represents a delivery location. N = ∣V ∣ is the
number of nodes. E ⊆ V × V is a set of edges. An edge eij
represents a route from vi to vj . W is an edge weight set. An
edge weight dij represents a distance (or the costs to go) from
vi to vj . Here, we presume dij = dji. The problem to find the
minimal-length Hamilton path in such a graph G = (V,E,W)
is called Traveling Salesman Problem (TSP).

Delivery zones that are covered by one vehicle are different
according to the region. Delivery locations are comparatively
overcrowded in the urban area, whereas scattered in the rural
area. Therefore, the number of locations for delivery differs -
over several tens or hundreds up to 2000 or so - depending on
the region and period of time.

It is necessary to compose and optimize a new deliv-
ery route for each round delivery since delivery locations
change frequently. Though human or social factors should be
considered, this is a problem to search the shortest path or
route, modeled as a famous ”Chinese Postman Problem” or
”Traveling Salesman Problem (TSP)”.

The computer support by nearly optimal solving methods
is quite useful even though the method is an approximation
algorithm. This reduces the burden and time loss of workers
as well as costs and car exhaust gases in distribution networks.

III. RELATED WORK

Simulated Annealing (SA) [15] and Tabu Search (TS)
[4][6][7] are known as meta-heuristics search techniques.

Theoretically, SA is said to be able to find very near-
optimal solutions (below 3% worst error) by decreasing the
risk of falling into a local minimum [8]. But practically, it is
very difficult to adjust SA’s parameters such as cooling speed
for coping with various location patterns. Furthermore, SA
usually takes a long computation time to get nearly optimal
solutions.

TS usually needs a long computation time to get practically
optimal solutions [4]. Moreover, TS is said to be weak in
maintaining solution diversity though it has a strong capability
for local search.

However, such weaknesses of TS were improved by
Kanazawa et al. [12]. So-called random restart methods [26],
which apply local search such as 2-opt for improving ran-
dom initial solutions, can obtain near-optimal solutions. Other
methods to guarantee responsiveness by limiting the number
of repetitions are the Greedy Randomized Adaptive Search
Procedure (GRASP) [5] or the elaborated random restart
method [16]. This elaborated random restart method is the
basic method of MowGA [20].

However, these methods cannot guarantee the required ac-
curacy level for over 200 cities TSPs though it obtained below
3% error solution for 40 cities TSP within 100 milliseconds.

3253

As to using Genetic Algorithms (GA) to efficiently solve
TSPs, various techniques are proposed. GA applications’ solv-
ing methods using the edges assembly crossover (EAX) [18]
and the distance-preserving crossover (DPX) [24] could get
highly optimized solutions in case of very-large-scale TSPs
(with 1000-10000 cities) [2][19].

These crossover methods examine the characteristics of
parent’s tour edge to strictly inherit it to children. However,
since these crossover operations take a long computation time
for analyzing edges, using it for large-scale TSP is often
inefficient.

The Lin-Kernighan (LK) method [17] is a very famous
heuristic search technique for TSPs. However, LK and its
improved variants [25] are too complex methods though the
optimality of obtained solutions is high. These methods are
often incorporated with the meta-heuristics search such as SA,
TA, and GA.

Especially, LKH [10] with a performance of the world’s
top class for approximation algorithm can solve a 1000 cities
TSP within about 3 seconds and an about 2000 cities TSP
within about 10 seconds . However, flexibility corresponding
to peculiar condition is not favorable, since the algorithm is
complex.

As to the approximate solution method, various techniques
are proposed. In [2], two kinds of methods are compared for
many cases. It shows that CGA-LK is advantageous to 300 -
10000 cities TSP, but Random-LK is advantageous to 198 -
268 cities TSP. Therefore, the solution that can efficiently solve
TSP of 1000 cities or more can not necessarily efficiently solve
TSP of about 100 cities.

As to TSP of lower scales (with 10s to 100 cities), in [2],
the TSP lin105 benchmark test was solved with 1.77% average
error rate in 231 seconds. In [3], the performance comparison
experiments were conducted using various crossover operators.

A GA method aiming at obtaining high quality approximate
solution as fast as possible for 10s - 100s cities TSPs is
proposed by Van et al. [23].

In [20] and [21], a comparison experiment for the Mow-
GA, the Miw-GA, the GA that used the best crossover in [3],
the Random-LK, the GA by Van, and the TS by Kanazawa
was conducted and the advantage of our proposed methods
according speed and accuracy has been proven.

As to the exact algorithm for TSP, ABCC (Concorde) [1]
is the world’s fastest algorithm that needs 10s - 100s seconds
to solve below 1000 cities TSPs.

All these approaches aim at constructing a TSP solution
without considering former TSP solutions. In many applica-
tions, however, a new TSP does not differ a lot from a former
one. In these cases, a Case Based Reasoning (CBR) [11]
technology saves a lot of computational costs.

IV. THE PROPOSED TECHNIQUE

The contribution of the present paper is a method to solve
the TSP by CBR. CBR is a usual problem solving method in
fields, were creating a new solution to a problem from scratch
is expensive and solutions to similar problems are available:

justice, medicine, architecture, and even bigger programming
projects are partially performed in such a way.

Generally, CBR holds a case base (CB) with pairs [prob-
lem, solution] of formerly solved problems and consists of the
steps (1) case retrieval, (2) case reuse, (3) case revision, and
(4) case retaining.

In the case retrieval step, a case of the CB needs to be
identified, which is ”most similar” to the present case. The way
to define ”similarity” and to quantify it in a way that at ”more
similar or identical” can be decided (or better, quantified on a
scale of values with an ordering relation in-between), depends
on the kind of problem to be solved.

In the reuse step, the solution of the retrieved case needs
to be adapted to the needs of the current problem.

The revision step aims at validating the adapted solution
in the real world application and revising it according to the
results of the real world application.

The retain step crucial. The question, whether or not a
new case should be included as a new case into the CB, may
be not easy to answer in many application fields. Also, adding
new cases without considering the removal of (other) cases (1)
”blows up” the CB and (2) bags the risk to keep old solutions
that are outperformed by more recent ones.

In our particular application, we hold a CB with TSP
problems along with their solutions sorted by their problem
scale (number n of locations to visit).

A. Case Retrieval

If a new problem has to be solved, a ”most similar” TSP
needs to be retrieved from the CB. Here, we define similarity
as the fraction of locations (cities) in the actual TSP, which are
also in TSP of the CB. For example, if we have to solve a TSP
with the scale 200 and 180 out of these 200 cities are in a TSP
solution of the CB, its similarity is 180 / 200 = 0.9. If there
are several solutions with the highest degree of similarity, the
fittest one will be defined as ”most similar”.

However, a less similar TSP solution may be appropriate,
too, in case its fitness is better than the fitness of the most
similar one. There might be a TSP in the CB, which even
covers all locations (cities) of the current TSC, i.e. with a
similarity of 1, but the scale of this ”very similar” TSP is 10
times bigger and thus, it is not a good candidate to derive a
solution for the current TSP from it.

Therefore, we consider fitness, too. We retrieve the case
with the next lower degree of similarity (respective the fittest
one among them, if there are several ones) and look, whether
this case has a higher fitness than the most similar case.

We define the fitness gain of a TSP solution s1 with the
fitness f1 compared to a solution s2 with a fitness f2 as (1−
f2/f1). If, for example, the most similar solution s1 has a
fitness of f1 = 100 (units of length for the complete distance
of the tour) and the solution with the next better degree of
similarity s2 has a fitness of f2 = 80, the fitness gain of s2,
related to solution s1 is (1− 80/100) = 0.2.

Also, we define the similarity loss of a TSP solution s1
with a similarity sim1 to the actual TSP, related to the solution

3254

s2 with the next lower degree of similarity to the actual TSP
of sim2 as (sim1 − sim2). If, for example, the most similar
solution s1 has a similarity of 0.9 to the actual TSP and the
solution with the 2nd highest similarity s2 has a similarity of
0.8 to the actual TSP, the similarity loss is 0.1.

In our case retrieval strategy, we continue considering the
next similar TSPs (to the currently considered one in the CB)
as long as the fitness gain is higher than the similarity loss.
When we come to a point, at which the next similar solution
has a higher similarity loss then fitness gain (or even has a
negative fitness gain), we refuse the next similar solution and
retrieve the currently considered solution.

B. Case Reuse and Revision

After retrieving a solution from the CB, the redundant
places (locations that are not in the current TSP) are removed
from it.

After removal, the deficient locations (locations of the
current TSP, which are not in the TSP retrieved from the
CB) are added by the Nearest Insertion (NI) technique. This
technique finds the position of a new location to insert, at
which the increment of the complete tour length is minimal.

Since this reuse method already includes optimization
issues by finding the optimal place for each inserted location
(and a rejection of the non-optimal ones), there is no explicit
revision of this result in our CBR application here.

C. Case Retaining and Case Base Maintenance

First, we determined a reasonable number of TSP solutions
in the CB. By experiments with various TSP scales n we found
that

∙ in CBs with less than n/2 TSP solutions there is not
much hope to find a similar case,

∙ in CBs with around n TSP solutions we always found
a similar TSP case in a reasonable time of 50−100ms,
which is negligible compared to the permitted solution
time 3s, and

∙ in CBs 2n cases and more the search time for a
similar solution is not acceptable any more (9s, in
some cases),

where n is the scale of the largest TSP to be solved.

There are two important CB maintenance issues, namely
(1) it should contain the fittest individuals (shortest TSP tours),
but also (2) diversity, i.e. individuals, which are not too similar
to each other to ensure not to fall into local optima.

For ensuring both fitness and diversity, we hold the fitness
(tour length) of each individual in the CB as well as a
representation of the similarity of the current population in
the CB.

To quantify both, we use a parameter, which is currently
fixed by 5:

∙ If a new TSP solution is more than 1/5 worse in terms
of fitness than the CBs fittest element, it is accepted
for CB inclusion only, if improves the CBs diversity.

∙ For checking the diversity, a pattern set is hold, which
describes all 4/5 (80%) similarities of the current
population in the CB.

Technically, we represent the similarity (common 4/5 sub-
routes of the TSP solutions in the CB) by a set of patterns,
which describes the commonalities of a population by using

∙ non-variables (as lower case letters), which represent
all 80% sub-routes that occur in the current CB) and

∙ variables (as upper case letters), which represent 20%
sub-routes, which have to be exceeded by a new TSP
solution to be accepted for inclusion into the CB.

Such a pattern set represents the similarities (sub-routes that
some TSP solutions have in common) of a population, if each
individual is covered by at least one pattern.

The shortest length of sub-routes a variable can stand for
is, when related to (divided by) the complete length of the
individuals, the diversity degree of the population.

To describe a population’s similarities, which has to meet a
certain degree of diversity, we create an according pattern set.
Any newly created individual can be checked, whether or not
it is covered by one of the patterns. If so, this individual is not
appropriate to become a member of the population, otherwise
it is.

For example, let’s consider a 10 elements signature Σ =
{a, b, c, d, e, f, g, h, i, j} and a (to keep the example sim-
ple, small) population Pop of three individuals34: Pop =
{abcjheidfga, acgdibhjfea, acgdhjfheba}. In case a di-
versity degree of more than 0.4, all sub-sequences with the
length of 0.4 ∗ length(gene), i.e. all 40% of the gene’s length
containing sub-sequences have to be replaced by variables.

Since our individuals have 10 elements, all 4-elemental
parts of it are replaced by variables. Therefore, the pattern
set Pat, that represents the 0.6 - similarity of this population
is Pat = {aXeidfga, abXidfga, abcXdfga, abcjXfga,
abcjhXga, abcjheXa, aXbhjfea, acXhjfea, acgXjfea,
acgdXfea, acgdiXea, acgdibXa, aXjfheba, acXfheba,
acgXheba, acgdXeba, acgdhXba, acgdhjXa}.

To avoid finding local optima only, the solution space
should be well covered by a population, i.e. the individuals
should be well distributed among the patterns.

From a diversity point of view, it is desirable to have a good
coverage of the solution space by a population. In terms of
our structural diversity representation it means, the individuals
should be well distributed among the patterns, i.e. the number
of individuals covered by a pattern is about the same for each
pattern.

If, for example, a pattern covers 100 individuals and the
remaining 20 patterns cover about 3 individuals each, the in-
dividuals of the population are not homogeneously distributed
among the patterns and thus, not very diverse. Vice versa,
in case it is about the same for each pattern, there is no

3Since our application of the TSP problem, the individuals contain all
elements (cities to visit) of the signature, but in different sequences.

4For clearness, we use different colors for different individuals. The color
of a pattern refers to the individual it is derived from.

3255

concentration of many individuals for a particular pattern, i.e.
in such a situation the request of being diverse is met much
better.

A measure for being ”well distributed” among the patterns
is the entropy of the patterns based on the probability of a
pattern to cover any individual of the population

H(Pat, Pop) = −
|Pat|∑
i=1

pi ∗ ld(pi)

with pi being the likelihood of a population’s individual to
be covered by the i-th pattern of the pattern set Pat, i.e. the
number of individuals covered by the pattern related to the
total number of individuals in the population.

The entropy is maximal, if all individuals are equally
distributed among the patterns and becomes less, the more
the distribution is unequal. This metric has the advantage that
each individual counts not more than once, even in case it is
covered by several patterns.

The issue, whether or not a new TSP solution improves the
diversity in the CB is answered by using the pattern set:

1) In case it does not match with any of the patterns,
it is accepted for inclusion into the CB, even if its
fitness is more than 1/5 worse than the fitness of the
CBs fittest element and

2) in case it does match with any of the patterns it is
accepted, if it improves the entropy of the distribution
of the TSP solutions among the patterns, even if its
fitness is more than 1/5 worse than the fitness of the
CBs fittest element and

In case of (1), the pattern set needs to be updated by adding
those patterns for the new individual, which are not already in
the pattern set.

V. EXPERIMENTS AND RESULTS

A. Experiment

In this section, we compare the proposed method with
our former one, namely BR-GA. The comparison experiments
were done by solving two TSPLIB problems.

The experiments were conducted under the following com-
putation environment. Namely, the CPU is an AMD Athlon 64
X2 3800+ 2GHz processor. It is almost the same performance
as Athlon 64 3200+ 2GHz, because of its execution perfor-
mance on the single core mode with 1 GB memory.

The programs were written in C language, compiled by
Microsoft Visual C++ .NET 2003 version 7.1.3091 with the
/02 option (directing the execution speed preference), and
executed on Windows XP Professional. The experiments were
conducted under the following computation environment. The
CPU is Intel(R)Core(TM) i7-2600 CPU @3.40GHz processor
with 4GB memory.

B. Results

Table I shows the error rates of our former approach BR-
GA and the method proposed here for 2 instances of large
scale TSP benchmarks, namely u1432+30 and rl1889+30. By

TABLE I. EXPERIMENTAL RESULTS

TPS worst error rate of 3 seconds runtime
BR-GA proposed method

u1432+30 5.92 0.68
rl1889+30 10.26 0.88

error rate, we define the percentage of the TSP solution’s total
distance being longer that the optimal solution, which we also
computed - of course with much more computation cost - for
this evaluation purpose. These results are pretty convincing
that deriving new TSP solutions from a good former solution
of a similar TSP, is a good idea. The error rate is about 10
times better that it was with our former approach.

The search of the most similar case in the CB took between
50ms and 100ms.

The performance regarding computational complexity (run
time) is theoretically that of n/5 of BR-GA, since a maximum
of 20% of a solution is created, the rest of the solution is just
adopted from its ”parent”, a former TSP solution.

VI. CONCLUSION

In this paper, we introduced a Case Based approximation
method to solve up to 2000 cities TSP problems in a required
maximal response time of 3 seconds with a required maximum
error rate of 3 %.

This method is based on the insight, that most solutions
are very similar to solutions that have been created. Thus, in
many cases a solution can be derived from former solutions
by

1) selecting a most similar TSP from a library of former
TSP solutions,

2) removing the locations that are not part of the current
TSP and

3) adding the missing locations of the current TSP by
mutation, namely Nearest Insertion (NI).

This way of creating solutions by Case Based Reasoning
(CBR) avoids the computational costs to create new solutions
from scratch.

The evaluation of this new method revealed remarkable
results according the error rate of the derived solutions within
a run time that is just 20 % of the time to create a new solution
from scratch plus 50− 100ms for searching the most similar
case in the library of former TSP solutions.

As to future work, we aim at reaching the following
objectives:

∙ First of all, we investigate the influence of the pa-
rameter for fitness and diversity requirements of a
new solution to be accepted for inclusion into the
CB (which is currently intuitively set to 5) fix it
accordingly.

∙ For adapting a former solution toward a requested one,
we extend the (quite simple) NI method towards a
GA that uses NI (multiply, in parallel) and extend this
GA later by also including edges assembly crossover
(EAX) besides NI. This way, new TSP can adopt

3256

useful properties (fitness, being divers from others in
the population) from two parents and utilize the best
of each parent. We have some hope, to stay within
the required limit of computational costs by these
extensions and thing about using parallel computation
to still meet this requirement.

∙ Our maintenance technique for the CB is still quite
simple. We think about extending it concept that
ensures a well-balanced trade-off between fitness and
diversity within the TSP solutions of the case base.

∙ Moreover, we investigate ways to extend the class
of TSP problems towards practical requirements from
field experts, who like to include one-way traffic
(asymmetric TSPs), road conditions (instead of just
considering the distance as fitness), and other issues
to make the system more practicable.

ACKNOWLEDGMENT

This work was supported by KAKENHI (23500288) and
Research Institute for Science and Technology of Tokyo Denki
University (Q10J-04).

REFERENCES

[1] http://www.math.uwaterloo.ca/tsp/concorde/index.html, accessed March
18, 2014.

[2] R. Baragiia, J. I. Hidalgo, and R. Perego, ”A hybrid heuristic for
the traveling salesman problem”, IEEE Transactions on Evolutionary
Computation, vol. 5, issue 6, pp. 613-622, 2001.

[3] C. Cheng, W. Lee, and K. Wong, ”A genetic algorithm-based clustering
approach for database partitioning”, IEEE Transactions on Systems,
Man and Cybernetics, Part C, vol. 32, issue 3, pp. 215-230, 2002.

[4] Y. Fang, G. Liu, Y. He, and Y. Qiu, ”Tabu search algorithm based
on insertion method”, Proc. of the 2003 International Conference on
Neural Networks and Signal Processing, pp. 420-423, 2003.

[5] T. A. Feo, M. G. C. Recende, and S. H. Smith, ”A Greedy Randomized
Adaptive Search Procedure for Maximum Independent Set”, Operations
Research, vol. 42, number 5, pp. 860-878, 1994.

[6] F. Glover, ”Tabu Search - Part 1”, ORSA Journal on Computing 1 (2),
pp. 190-206, 1989.

[7] F. Glover, ”Tabu Search - Part 2”, ORSA Journal on Computing 2 (1),
pp. 4-32, 1990.

[8] H. Goto, Y. Hasegawa, and M. Tanaka, ”Efficient Scheduling Focusing
on the Duality of MPL Representatives,” Proc. of the 2007 IEEE Symp.
Computational Intelligence in Scheduling (SCIS 07), IEEE Press, pp.
57-64, 2007.

[9] G. Gutin and A. P. Punnen (Eds.), The Traveling Salesman Problem
and its Variations. Springer, NY, USA, 2007.

[10] K. Helsgaun, ”General k-opt submoves for the Lin-Kernighan TSP
heuristic,” Mathematical Programming Computation, vol. 1, pp.
119-163, 2009.

[11] E. Huellermeier, Case-Based Approximate Reasoning. Springer, Berlin,
2007.

[12] T. Kanazawa, K. Yasuda, ”Proximate Optimality Principle Based Tabu
Search”, IEEJ Transactions on Electronics, Information and Systems,
vol. 124-C, number 3, pp. 912-920, 2004.

[13] R. M. Karp, ”Probabilistic analysis of partitioning algorithms for the
traveling-salesman problem in the plane”, Math. Oper. Res. 2(3), pp.
209-224, 1977.

[14] H. Ken, I. Kokolo, S. Jun, O. Isao and K. Shigenobu, ”Hybridization
of Genetic Algorithm with Local Search in Multiobjective Function
Optimization : Recommendation of GA then LS,” Transactions of the
Japanese Society for Artificial Intelligence, vol. 21, pp. 482-492, 2006.

[15] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, ”Optimization by
Simulated Annealing”, Science 220(4598), pp. 671-680, 1983.

[16] S. Kubota, T. Onoyama, K. Onayagi, and S. Tsuruta, ”Traveling Sales-
man Problem Solving Method fit for Interactive Repetitive Simulation
of Large-scale Distribution Network”, Proc. IEEE SMC 99, pp. 533-
538, 1999.

[17] S. Lin and B. W. Kernighan, ”An Effective Heuristic Algorithm for the
Traveling-Salesman Problem”. Operations Research 21(2), pp. 498-516,
1973.

[18] Y. Nagata and S. Kobayashi, ”The Proposal and Evaluation of
a Crossover for Traveling Salesman Problems: Edge Assembly
Crossover”, Journal of Japan Society for Al, vol. 14, number 5, pp.
848-859, 1999.

[19] H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, ”Imple-
mentation of an Effective Hybrid GA for Large-Scale Traveling Sales-
man Problems”, IEEE Transactions on Systems, Man and Cybernetics,
part B, vol. 37, issue 1, pp. 92-99, 2007.

[20] Y. Sakurai, T. Onoyama, S. Kubota, Y. Nakamura, and S. Tsuruta,
”A Multiworld Intelligent Genetic Algorithm to Interactively Optimize
Large Scale TSP”, Proc. of the 2006 IEEE International Conference on
Information Reuse and Integration (IEEE IRI2006), Hawaii, USA, pp.
248-255, 2006.

[21] Y. Sakurai, T. Onoyama, S. Kubota, and S. Tsuruta: ”A Multi-
inner-world Genetic Algorithm to Optimize Delivery Problem with
Interactive-time”, Proc. of the 4th IEEE Conf. on Automation Science
and Engineering (CASE 2008), Washington DC, USA, pp. 583-590,
2008.

[22] Y. Sakurai, K. Takada, N. Tsukamoto, T. Onoyama, and R. Knauf, ”A
Simple Optimization Method based on Backtrack and GA for Delivery
Schedule”, Proc. of the IEEE Congress on Evolutionary Computation
2011 (CEC 2011), IEEE Catalog Number: CFP11ICE-CDR, ISBN: 978-
1-4244-7833-0, pp. 2790-2797, 2011.

[23] X. Van, H. Liu, J. Van, and Q. Wu, ”A Fast Evolutionary Algorithm
for Traveling Salesman Problem”, Proc. of the Third International
Conference on Natural Computation (ICNC 2007), vol. 4, pp. 85-90,
2007.

[24] D. Whiteley and T. Starkweather, ”Scheduling Problem and Traveling
Salesman: The Genetic Edge Recombination Operator”, Proc. of ICGA
89, pp. 133-140, 1989.

[25] Y. Yamamoto and M. Kubo, Invitation to the Traveling Salesman
Problem. Asakura Syoten, Tokyo, 1997.

[26] M. Yanagiura and T. Ibaraki, ”On Metaheuristic Algorithms for Combi-
natorial Optimization Problems”, Transactions of the IEICE, vol. J85-
D-II, number 8, pp. 3-25, 2000.

3257

