
A Genetic Programming Approach to Distributed
QoS-aware Web Service Composition

Yang Yu, Hui Ma, Mengjie Zhang
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

Email: yuyang2@myvuw.ac.nz | hui.ma@ecs.vuw.ac.nz | mengjie.zhang@ecs.vuw.ac.nz

Abstract—Web service composition has emerged as a promis-
ing technique for building complex web applications, thus sup-
porting business-to-business and enterprise application integra-
tion. Nowadays there are increasing numbers of web services are
distributed across the internet. For a given service request there
are many ways of service composition that can meet the service
functional requirements (inputs and outputs) but have different
qualities of Services (QoS), like response time or execution cost.
QoS-aware web service composition seeks to find a service com-
position with optimized QoS properties. Genetic Programming is
an efficient tool for tacking such optimization problems efficiently.
This paper proposes a novel GP-based approach for distributed
web service composition where multiple QoS constraints are
considered simultaneously. A series of experiments have been
conducted to evaluate the proposed approach with test data. The
results show that our approach is efficient and effective to find
a near-optimal service composition solution in the context of
distributed service environment.

I. INTRODUCTION

Service computing is a new software engineering paradigm
where new software is built by composing existing services.
In this way software can be developed in an agile and cost
efficient way. For example, a travel booking service can
be composed from three component web services, a flight
booking service, a hotel booking service, and a car rental
service. Component web services can be atomic services or
a composite service itself, composed by other component
services. Web services are defined by functional characteristics
(inputs and outputs) and non-functional characteristics, which
encompasses a variety of parameters such as response time,
execution cost and availability. These non-functional charac-
teristics are called quality of service (QoS) properties. Often
there are several web services available on the web that offer
identical or overlapping functionality, but observe different
non-functional characteristics. For a given service request, ser-
vice composition seeks to find a service composition solution
that meets not only the functional requirements but also non-
functional requirements. This is so called QoS-aware service
composition. The goal of QoS-aware web service composition
is to discover the best composition of web services that fulfills
the functional requirements and meets the end-to-end QoS
requirements.

There are increasing numbers of web services, often dis-
tributed over the internet, available for service compositions.
QoS-aware service composition is an NP-hard problem due to
the huge search space for finding best service compositions.
Therefore, efficient algorithms for computing optimal solu-

tions are unlikely to exist. Even finding near-optimal solutions
efficiently is a challenge. There are two general approaches
to QoS-aware web service composition, namely local op-
timization and global optimization. For local optimization,
an optimal web service is selected for each individual task
independently and the performance of each task is assured.
This approach is very efficient as the complexity of the
approach is linear in the number of candidate atomic web
services. However, local optimization cannot satisfy end-to-
end QoS requirements (e.g., minimized total response time).
In contrast, global optimization considers QoS constraints as
a whole, i.e., aims to maximize the overall QoS value of
the composition. However, the global approach increases the
complexity compared to local optimization. Genetic Program-
ming (GP) [5] has been applied with some success to QoS-
aware web service composition. However, most of previous
research [4], [11], [15] assumes a centralized repository for
web services, disregarding the fact that web services are
distributed across the Internet. In fact, the performance of
an atomic web service is related to users’ locations, because
the values of user dependent QoS properties (e.g., response
time) can vary widely for different users that are influenced
by unpredictable network environment. In the context of the
distributed environment of web services, developing effective
approaches to distributed QoS-aware web service composition
still remains an open issue. Therefore, the overall aim of this
paper is to propose an effective approach to QoS-aware web
service composition that copes with web service composition
in the distributed environment.

This paper is organized as follows. Section II gives a
brief description of the background and some related works.
Section III presents the proposed GP-based approach in detail.
Section IV reports on the experiments conducted for eval-
uation. Finally, conclusions and future work are outlined in
section V.

II. BACKGROUND AND RELATED WORK

Service requests are often described with both functional
and QoS requirements. A critical step of web service com-
position is to select best service composition in order to
satisfy users’ service functional requirements and provide
optimal QoS properties, e.g., response time, execution cost
and availability. In this section we present some functions
for calculating end-to-end QoS properties for distributed com-
posite services, in particular we discuss how to incorporate

1840

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

the distribution features of web services and users’ locations.
Also, we will review related works on QoS aware service
composition.

A. QoS of Distributed Web Service Composition

QoS properties of web services can be categorized into
user-independent and user-dependent ones. User-independent
QoS attributes, e.g., execution cost, have identical values
for different users, and the values are usually determined
by service providers. User-dependent QoS attributes, e.g.,
response time, have different values for different users. As
shown in Figure 1, end users send service requests via one of
the broker middlewares which are usually distributed across
the internet. In each broker there is a set of web services
advertised or registered. Brokers can communicate with one
another by end-to-end message exchange. Often web services
are distributed across several brokers, thus user-dependent QoS
attributes may be affected by the communication link (i.e., the
network) between the brokers. This holds true, for example,
for response time. Previous research on service composition
has often ignored the impact of the network on the overall
QoS. In this research we consider the distributed nature of web
services by incorporating the impact of network on response
time.

Fig. 1. A decentralized model of web services.

The web service compositions are often represented with
some workflow patterns (e.g., sequence, parallel and choice).
The overall QoS of a composite service is determined by the
individual QoS of the component services and the composition
workflow structure. To evaluate the QoS of a composite ser-
vice, a web service quality model must be defined to calculate
the aggregated QoS based on the QoS of the component ser-
vices. The QoS attributes considered in this paper are response
time (T), execution cost (C), availability (A) and reliability
(R), which represent a selection of relevant non-functional
characteristics of web services, see [10], [11]. According to
[13], the four QoS attributes are defined as follows.

– Response time T measures the expected delay in sec-
onds between the moment when a request is sent and
the moment when the results are received. Note that in
the distributed environment, response time is the sum of
process time and transmission time spent on the network.

– Execution cost C is the amount of money that a service
requester has to pay for executing the web service.

– Reliability R is the probability that a request is correctly
responded within the maximum expected time frame.

– Availability A is the probability that a web service is
accessible.

Note that increasing response time and execution cost mean
decreasing QoS values, while increasing reliability and avail-
ability mean increasing QoS values.

The four basic control structures shared by web service
composition languages such as OWL-S and BPEL4WS are
sequence, parallel (flow), choice (switch) and loop [11].
Table I lists the corresponding aggregation functions for each
combination of the QoS attributes and the control structures.

Here, tn, cn, an and rn denote the response time, execution
cost, availability and reliability for a component service Wn,
respectively, of a composite service.

– For a sequence construct, the aggregation functions for
response time T and execution cost C are additive,
while the availability A and reliability R functions are
multiplicative.

– For the parallel construct, except for response time T ,
where the aggregated value is the maximum of the
response time of component services, the aggregation
functions for the other QoS attributes (i.e., execution cost,
availability and reliability) are the same as the ones in
the sequence structure.

– For a choice construct with m branches, assume that the
percentage for each branch to be selected is p1,...,pm,
where

∑m
n=1 pn = 1, all QoS attributes are evaluated as

a sum of the multiplication of the attribute value of each
component service and its corresponding percentage.

– For a loop construct with k iterations, the aggregation
functions for response time T and execution cost C are
t·k and c·k respectively. For availability A and reliability
R, the aggregation functions are the kth power of the
value of one iteration, i.e., ak and rk.

Note that for distributed service composition for response
time we need to consider both service process time tprocess
and transportation cost, ttransmission when we calculate re-
sponse time. Because the location of web services and of
service users have an impact on the performance of the web
service when consumed by the users. That is, the transmission
delay or network latency between the web service’s location
and the user’s location must be considered when selecting
web services for composition. In this research the transmission
delay or network latency (i.e., round-trip transmission and
propagation delay) between two locations is measured by
their network distance. To estimate the distance we employ a
Network coordinate systems, the Global Network Positioning
(GNP) [9], which model the internet as a geometric space with
a well-defined coordinate system and a distance function. Each
host in the internet is mapped to a point in the geometric space,
and the distance between any two hosts can be estimated using
the distance function. This approach makes use of a small
distributed set of cooperating hosts as reference points, called
landmarks, Li, as shown in Figure 2. The coordinates of

1841

TABLE I
AGGREGATION FUNCTIONS FOR QOS ATTRIBUTES FOR DIFFERENT WORKFLOW STRUCTURES

QoS attribute Sequence Parallel (Flow) Choice (Switch) Loop
Response time T =

∑m
n=1 tn T = MAX {tn|n ∈ {1, . . . ,m}} T =

∑m
n=1 pn ∗ tn T = k ∗ t

Execution cost C =
∑m

n=1 cn C =
∑m

n=1 cn C =
∑m

n=1 pn ∗ cn C = k ∗ c
Availability A =

∏m
n=1 an A =

∏m
n=1 an A =

∑m
n=1 pn ∗ an A = ak

Reliability R =
∏m

n=1 rn R =
∏m

n=1 rn R =
∑m

n=1 pn ∗ rn R = rk

any host can be computed from the host’s network distances
to these landmarks. Algorithm 1 can be used for calculating
the coordinates of a host in a network coordinate system. For
details, see [9].

Fig. 2. An example of 2-dimensional network coordinate system.

Algorithm 1 Calculation of coordinates [9]
1: Select a small set of hosts for reference points (RP) (i.e.,

L1, L2 and L3) to create the origin of the coordinate
system.

2: Measure the round-trip-time (RTT) between RPs.
3: Calculate the coordinates for each RP.
4: Measure the RTT between the host and RPs.
5: Calculate the coordinates (x4, y4) for the host based on its

latencies to each of the landmarks (i.e., L1, L2 and L3).

In this paper, we use a 2-dimensional Euclidean space as the
geometric space, see Figure 2. The network distance between
any two hosts Hm(xm, ym) and Hn(xn, yn) is given by

d (Hm, Hn) =

√
(xm − xn)

2
+ (ym − yn)

2

.
With the information of the distance of any two hosts trans-

mission costs can be calculated. We will discuss in Section
III about how to measure transmission costs of component
services of a composition service.

B. Related Work

Web service composition with end-to-end QoS constraints
has attracted considerable research efforts. In [6], [12], QoS-
aware service composition is modelled as a multiple-choice
knapsack problem where the composition represents the knap-
sack and each atomic web service represents one item that
can be put into the knapsack. In [7], [8], QoS-aware service
composition is modelled as path-finding problems in graphs.
All these approaches require exponential time.

Global planning and integer linear programming (ILP) have
been suggested for QoS-aware service composition, too. In

[13], [14], ILP is used with an objective function defined as
a linear composition of multiple QoS constraints. ILP-based
approaches do not scale well. Their practicability is further
limited as objective functions and constraints must be linear
functions. If non-linear integer programming is adopted, then
scalability becomes a problem [10].

Evolutionary techniques are a popular way to improve
scalability. In [15], Genetic Algorithms (GA) is adopted for
QoS-aware service composition. The proposed approach uses
a one-dimensional chromosome-encoded method where each
gene represents an atomic web service. As a consequence, the
length of the chromosome increases as the number of tasks and
atomic web services increases. [4] proposes a revised encoding
method each gene represents an abstract task of a composite
service, and its value represents an atomic web service. Still,
this encoding schema cannot reflect the relationships between
component services in a composite service efficiently. In [11]
a GP-based approach is recently proposed which uses tree
representations of composed services. This makes it easier to
understand and interpret the relationships between component
services. In addition, an adaptive strategy is applied to the
search parameters of GP in order to solve the premature
convergence of GP. However, all these approaches assume
a centralized broker middleware that delegates end users to
communicate and interact with all web services.

III. THE NOVEL GP-BASED APPROACH

In this paper, we propose a GP-based approach to distributed
QoS-aware web service composition that differentiates be-
tween the QoS of web services and the QoS of the network.
In other terms, the communication links (i.e., the network)
between web services will be considered while selecting web
services for composition.

Our approach adopts a tree-based representation which is
commonly used in GP systems to encode the composition of
web services. Each non-terminal node of the tree represents
a control structure, while each terminal (leaf) node represents
a concrete service. The benefit of this representation is that
understanding and interpreting various relationships between
component services becomes easier and more effective. An
example of a service composition is shown in Figure 3, where
web services WS1 and WS2 are executed in sequence, while
WS3, and WS4 are executed in parallel. The inputs of WS1,
WS3 and WS4 are directly from user’s inputs, whereas the
inputs of WS2 are composed of the outputs of WS1. The
composition of WS1, WS2, WS3 and WS4 produces the
required outputs of a given service request and returns them
to user.

1842

Fig. 3. A tree-based representation of a service composition.

The function set of the GP system contains sequence,
choice, parallel, loop, and the terminal set consists of a set of
atomic web services. A compact description of our GP-based
approach is given in Algorithm 2.

Algorithm 2 GP for distributed QoS-aware web service com-
position
Require: available inputs, required outputs, and a set of

distributed web services
Ensure: a service composition

1: Calculate user’s coordinates (x, y).
2: Initialize a population P randomly.
3: Update the attributes of all nodes. //see Algorithm 3
4: Calculate the aggregated value of each QoS attribute

according to the functions specified in Table I
5: Evaluate each individual i in P using the fitness function
6: while fbest < maxFit and g < gmax do
7: Select two parents from the population P
8: Perform crossover with rate Pc

9: Perform mutation with rate Pm

10: Generate a new population P ′

11: Update the attributes of all nodes
12: Calculate the aggregated value of each QoS attribute

according to the functions specified in Table I
13: Evaluate each individual i in P ′ using the fitness

function
14: end while
15: return the individual with the best fitness

In Step 1 of the Algorithm 2, the user’s virtual coordinates
are calculated. Using Algorithm 1, we are able to obtain a good
approximation of user’s coordinates with minimized errors
with regard to the coordinates of the landmarks.

In Step 2, a random population of individuals is generated.
A new individual is created by randomly combining non-
terminal nodes and terminal nodes together, following the rules
that each non-terminal node can have an arbitrary number of
children whereas each terminal node cannot have any children.
In order to avoid high computational complexity, the maximum
initial depth of an individual program is restricted to 10. If the
depth of the tree reaches the maximum predefined value, then
all non-terminal nodes at the bottom of the tree are replaced
with randomly selected terminal nodes of type atomic web

service.
The selection operator used is the roulette-wheel selection

[3], which allows the individual with the highest fitness value
to have the highest probability of being reproduced to next
generation. The probability of an individual to be reproduced
to next generation is calculated based on the total fitness of all
individuals in the population. Assume that the population size
is N , the fitness of individual i is fi, then the probability of

individual i to be selected is Pi =
fi∑N
j=1 fj

, which indicates

that individuals with higher fitness are more likely to be
selected.

In Step 3, the attributes of each node are updated as
described in Algorithm 3. For each child of a non-terminal
node, if the first child is a terminal node, then calculate the
network distance (i.e., transmission delay) according to the
coordinates of its parent non-terminal node and update the
response time of the node. Note, if the parent non-terminal
node does not have a pair of valid coordinates, which means
this node is the root node, then user’s coordinates will be
used as the coordinates of the non-terminal node. For any
other child node who is not the first child, the response
time is updated based on the measurement of the network
distance between its left sibling and itself. On the other hand,
if the first child is a non-terminal node (e.g., a sequence
construct), the coordinates of its parent non-terminal node will
be disseminated to current non-terminal node. Similarly, if
the parent non-terminal node does not have valid coordinates,
then user’s coordinates will be propagated instead. Otherwise,
for any other non-terminal children, their coordinates are
determined by the coordinates of their left sibling. Note that
Algorithm 3 is used to incorporate transmission time into web
service response time, t = tprocess+ttransmission, meanwhile
all other QoS attributes remain unchanged.

The crossover operator used is standard sub-tree crossover
[5]. The crossover points are randomly selected from two
parent individuals and then the parents swap their sub-trees
to produce two new descendants (individuals).

The mutation operator randomly selects a node and modi-
fies it. If the selected node is a non-terminal node, another
control structure is randomly picked from the function set
to replace the selected one. Otherwise, another atomic web
service is randomly selected to replace the node, or the
terminal node is replaced with a non-terminal node of type
control structure, and a subtree is randomly generated that has
the non-terminal node as its root.

Each individual i in the gth population is evaluated based on
the used inputs inputa, the generated outputs outputa, and the
aggregated QoS attributes, i.e., response time, execution cost,
availability and reliability. The fitness fi for an individual i is
computed as follows:

fi =
(w1Ai + w2Ri) ∗ (w5Ii + w6Oi)

w3Ti + w4Ci
(1)

where Ti, Ci, Ai and Ri represent the composite response
time, execution cost, availability, and reliability of an individ-

1843

Algorithm 3 Algorithm for updating response time of all
nodes

1: for each child c of n, n ∈ non-terminal nodes do
2: if c is a terminal node then
3: if c is the first child then
4: update the response time t of c by measuring the

network distance between c and n
5: else
6: update the response time t of c by measuring the

network distance between c and its left sibling
7: end if
8: else
9: if c is the first child then

10: update the coordinates of c according to the coor-
dinates of n

11: else
12: update the coordinates of c according to the coor-

dinates of its left sibling
13: end if
14: end if
15: end for

ual (composite service), respectively, which can be calculated
utilizing the formulae shown in Table I. In addition, w1, w2,
w3 w4, w5 and w6 are real and positive weights of different
factors in the fitness. In particular, w1, w2, w3 and w4 weight
the importance of a particular QoS attribute. Note, the weights
of different quality of attributes are normally assigned by users
of web services, to indicate their opinions of the importance of
the QoS criteria. To guarantee each ingredient has a fair impact
on the calculation of fitness fi, the weights given to the fitness
function are in the range [0, 1]. A larger weight means that the
QoS criterion associated with that weight is considered more
important than others. Note also that, this fitness function can
be adapted to users requirements, i.e. removing or adding QoS
criteria. Our GP-based service composition algorithm make
use of the fitness function to find individuals of highest fitness
value.

Ii and Oi indicate the goodness of inputs and outputs of
individual i as defined in [2],

Ii =
|inputr|

|inputr ∪ inputa|
, Oi =

|outputr ∩ outputa|
|outputr|

(2)

where inputr is the list of inputs given from service request,
inputa is the list of inputs of a composite service solution,
and |.| represents the number of inputs in the list, outputr is
the list of outputs required by a service request, and outputa
is the list of outputs that are actually produced by a given
solution. These two criteria indicate the degree to which a
valid solution has been found.

Since different QoS attributes are measured in different
units and noncommensurable, the QoS attributes need to be
normalized in the interval [0, 1]. Furthermore, all the QoS
attributes that need to be minimized should be a numerator,
and others that need to be maximized should be a denominator

in the above formula. Note that the above formula can be
extensible on the basis of particular application cases. As
illustrated in Formula 1, the problem of QoS-aware web
service composition is converted to a maximization problem.
When the fitness is closer to 1, the solution is more likely to
generate the required outputs given the inputs, and satisfy the
global end-to-end QoS constraints.

IV. EXPERIMENTAL EVALUATION

Datasets. To the best of our knowledge, there is no exist-
ing benchmark tool or framework for distributed QoS-aware
web service composition based on evolutionary computation
approaches. Therefore, five sets of web services are generated
from the QWS test set [1] which contains more than 2000
real-world web services collected from the Internet. The sizes
of the test sets used for experimental purpose are 20, 30,
60, 150 and 450, respectively. Meanwhile the response time,
execution cost, availability and reliability rates of all web
services are normalized in the interval [0, 1]. Table II outlines
the hypothetical service requests used to evaluate the proposed
approach, which have been designed to cover various degree
of complexity. The complexity of the request increases with
the increasing number of inputs and outputs. For example,
service request 1 is very simple as it requires only one atomic
web service to achieve the task. However, the rationale behind
such a design is to prove the effectiveness of the approach
regardless of the complexity. Note that the last column of Table
II indicates the number of atomic web services in the dataset
that is used to compose the required service.

TABLE II
HYPOTHETICAL SERVICE REQUESTS FOR EXPERIMENTS

Request Inputs Outputs Size
1 PhoneNumber Address 20
2 ZipCode, Date City, WeatherInfo 30

3 From, To,
DepartDate, ReturnDate

ArrivalDate, HotelReservation,
WeatherInfo, BusTicket 60

4 From, To,
DepartDate, ReturnDate

ArrivalDate, HotelReservation,
WeatherInfo, BusTicket, Map 150

4 From, To,
DepartDate, ReturnDate

ArrivalDate, HotelReservation,
WeatherInfo, BusTicket, Map 450

Parameters. The experiments are conducted on a PC with
3.0 GHz CPU and 3.7 GB RAM. The population size of
GP is 50, and the maximum number of generations gmax is
500. The crossover probability Pc is 0.9 and the mutation
probability Pm is 0.01 as we found that this combination
can produce good results. In our experiments, the execution
cost and reliability of web services are considered to be more
significant than the other two QoS attributes (i.e., response
time and availability). Therefore, the weights of execution cost
and reliability are set larger than those of response time and
availability. The defined weights in the fitness function are
w1 = 0.2, w2 = 0.3, w3 = 0.2, w4 = 0.3, which are normally
assigned by users. Since the goodness values of inputs and
outputs of an optimal solution should be both 1, the weights
of both are set to be 0.5, that is, w5 = 0.5 and w6 = 0.5, in
order to assure that the overall fitness is distributed in [0, 1].

1844

As GP is nondeterministic, 30 independent runs are performed
for each experiment.

The accuracy of the GNP system [9] depends on the number
of landmarks and the landmark selection. This, however,
is beyond the scope of our paper. Therefore, we randomly
generate 3 landmarks for the virtual space as there must be at
least n+1 landmarks to ensure unambiguous positioning in an
n-dimensional geometric space [1]. It is also assumed that the
coordinates of web services are known and stored in different
brokers. To ensure a high precision of user’s coordinates, 30
iterations are used for the Downhill Simplex method [9].

Experimental Results. Next we present an analysis of the
proposed GP-based approach. Table III shows the experimental
results for all the service requests described in Table II. Each
row in the table represents the corresponding results of a
dataset. The first column specifies the number of web services
in the test case. The second column denotes the fitness value of
the best solution. The third column reflects the average search
time used to obtain the best solution over 30 independent runs.
The fourth and last columns describe the goodness values of
inputs and outputs of the best solution over 30 independent
runs.

TABLE III
EXPERIMENTAL RESULTS FOR DISTRIBUTED QOS-AWARE WEB SERVICE

COMPOSITION.

Size Best Fitness Search time (ms) Goodness of I. Goodness of O.
20 0.872 194± 36 1± 0 1± 0
30 0.803 220± 26 1± 0 1± 0
60 0.772 326± 29 1± 0 1± 0
150 0.716 618± 33 1± 0 1± 0
450 0.698 1372± 24 1± 0 1± 0

Table III shows that the goodness of inputs and outputs of
the best solutions are always 1 regardless of the complexity
of the test set and the service request. Hence, the proposed
approach is able to discover an optimal service composition
even when the number of distributed web services is large.
In addition, the search time does not grow exponentially
with the number of web services in the test set. While the
distributed model of web services increases the complexity of
the composition problem a lot, GP is very effective in solving
global QoS optimization problems, and scales better than
traditional approaches like ILP [4], of which the computation
time will rise exponentially as the number of available services
increases.

Fig. 4. The best solution to service request 5.

Figure 4 presents one of the best evolved programs for
service request 5 which is supposed to be the most complicated
request. As depicted in the figure, the composite service
found consists of three workflow structures (i.e., two parallel
constructs and one sequence construct), and five atomic web
services. According to the specifications in Table II, the Flight
Expert service takes From, To, DepartDate and ReturnDate as
inputs and outputs the flights information including Arrival-
Date. In the meanwhile, the AccuWeather service produces the
weather information of the destination for the period between
DepartDate and ReturnDate, and the FeedMap service returns
the map information for the travel destination. Following the
Flight Expert service, the Hotel Club and Click A Bus services
are processed in parallel based on ArrivalDate and ReturnDate
in order to reserve a hotel and bus respectively.

Fig. 5. The comparison of search time between centralized web service
composition and distributed web service composition.

Comparison of Centralized vs. Distributed QoS-aware
Web Service Composition. In [11] it is shown that GP is
capable of discovering service composition efficiently, such
that the functional requirements and certain global end-to-end
QoS constraints are met (e.g, low execution cost and high
reliability). However, [11] assumes a centralized service broker
model, which contradicts with the distributed and loosely-
coupled environment of web services. Our evaluation demon-
strates the effectiveness of our approach. Due to the increased
time complexity, however, the search time for distributed QoS-
aware web service composition needs to be compared to that
for non-distributed (centralized) one in order to prove that our
approach is acceptable in time aspect.

As depicted in Figure 5, with the increase of the number
of web services and the complexity of service requests, the
gap of the search time between distributed QoS-aware web
service composition and non-distributed one becomes larger.
Nevertheless, it is clear that the increase on search time is
still small when the number of web services is very large. For
example, the increase is only 122ms, 10% of the total time,
while solving the composition problem that contains up to 450
web services. This suggests that the proposed approach is very
efficient in solving large-scale distributed QoS-aware service
composition problems.

1845

V. CONCLUSIONS AND FUTURE WORK

A new GP-based approach to distributed QoS-aware web
service composition has been presented. The impact of com-
munication links on QoS attributes of selected web services
is explicitly considered. In order to cope with the distributed
environment of web services, a network coordinate system has
been adopted to estimate the time spent on the communication
links between web services, and between web services and end
users. The experimental results show that our new approach
has the ability to find a service composition which fulfills users
functional requirements and non-functional requirements at the
same time, based on the fact that web services are distributed
across the Internet. In addition, the distributed service com-
position approach was compared with the centralized one that
assumes a central repository of web services. The results prove
the efficiency of the proposed approach indicated by slightly
increase on search time compared to the search time used by
the centralized approach.

Future work includes applying our approach to more com-
plicated case studies that consist of a larger number of web
services. Moreover the distributed approach will take dynamic
aspects into account, such as server load, flash crowd effects,
etc. In this paper, multiple QoS criteria are simply combined
into one single criterion to be optimized, which can produce
only one optimal solution that gives users little chance to
choose. Therefore, we will also investigate the use of multi-
objective GP with the expectation that multiple and often
conflicting QoS criteria (e.g., time and cost) can be optimized
simultaneously to produce a set of Pareto-optima solutions.

REFERENCES

[1] AL-MASRI, E., AND MAHMOUD, Q. H. QoS-based discovery and
ranking of web services. In Computer Communications and Networks,
IEEE Int. Conf., ICCCN (2007).

[2] AVERSANO, L., DI PENTA, M., AND TANEJA, K. A genetic program-
ming approach to support the design of service compositions. Int. J.
Comp. Syst. Sci. Eng. 4 (2006), 247–254.

[3] BANZHAF, W., FRANCONE, F. D., KELLER, R. E., AND NORDIN, P.
Genetic programming. Morgan Kaufmann, 1998.

[4] CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VILLANI, M. L.
An approach for QoS-aware service composition based on genetic
algorithms. In Genetic and Evolutionary Computation, Conf., GECCO
(2005), pp. 1069–1075.

[5] KOZA, J. R. Genetic programming. MIT Press, 1992.
[6] LEE, J. Matching algorithms for composing business process solutions

with web services. In E-Commerce and Web Technologies, Int. Conf.,
EC-Web (2003), vol. 2738 of LNCS, Springer, pp. 393–402.

[7] LI, W., AND YAN-XIANG, H. A web service composition algorithm
based on global QoS optimizing with mocaco. In Algorithms and
Architectures for Parallel Processing, 10th Int. Conf., ICA3PP (2010),
C.-H. Hsu, L. T. Yang, J. H. Park, and S.-S. Yeo, Eds., vol. 6082 of
LNCS, Springer, pp. 218–224.

[8] MEI XIA, Y., CHEN, J.-L., AND WU MENG, X. On the dynamic ant
colony algorithm optimization based on multi-pheromones. In Computer
and Information Science, 7th IEEE/ACIS Int. Conf. (2008), pp. 630–635.

[9] NG, T. S. E., AND ZHANG, H. Towards global network positioning.
In Internet Measurement, 1st ACM SIGCOMM Workshop, IMW (2001),
pp. 25–29.

[10] WANG, L., SHEN, J., AND YONG, J. A survey on bio-inspired algo-
rithms for web service composition. In Computer Supported Cooperative
Work in Design, IEEE 16th Int. Conf., CSCWD (2012), pp. 569–574.

[11] YANG YU, H. M., AND ZHANG, M. An adaptive genetic programming
approach for QoS-aware web service composition. In Evolutionary
Computation, IEEE Congress, CEC (2013), pp. 1740–1747.

[12] YU, T., ZHANG, Y., AND LIN, K.-J. Efficient algorithms for web
services selection with end-to-end QoS constraints. ACM Trans. Web,
TWEB 1, 1 (2007).

[13] ZENG, L., BENATALLAH, B., DUMAS, M., KALAGNANAM, J., AND
SHENG, Q. Z. Quality driven web services composition. In World Wide
Web, Int. Conf., WWW (2003), pp. 411–421.

[14] ZENG, L., BENATALLAH, B., NGU, A., DUMAS, M., KALAGNANAM,
J., AND CHANG, H. QoS-aware middleware for web services composi-
tion. IEEE Trans. Softw. Eng. 30, 5 (2004), 311–327.

[15] ZHANG, L.-J., AND LI, B. Requirements driven dynamic services
composition for web services and grid solutions. Journal of Grid
Computing 2 (2004), 121–140.

1846

